1
|
Jana R, Ahmed SA, Seth D. Interaction between Cucurbit[7]uril and Bile Salts: An Isothermal Titration Calorimetry Study. ChemistrySelect 2022. [DOI: 10.1002/slct.202103800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rabindranath Jana
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| | - Sayeed Ashique Ahmed
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| | - Debabrata Seth
- Department of Chemistry Indian Institute of Technology Patna Patna 801103 Bihar India
| |
Collapse
|
2
|
Triterpenoid-PEG Ribbons Targeting Selectivity in Pharmacological Effects. Biomedicines 2021; 9:biomedicines9080951. [PMID: 34440155 PMCID: PMC8391127 DOI: 10.3390/biomedicines9080951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/03/2023] Open
Abstract
(1) Background: To compare the effect of selected triterpenoids with their structurally resembling derivatives, designing of the molecular ribbons was targeted to develop compounds with selectivity in their pharmacological effects. (2) Methods: In the synthetic procedures, Huisgen 1,3-dipolar cycloaddition was applied as a key synthetic step for introducing a 1,2,3-triazole ring as a part of a junction unit in the molecular ribbons. (3) Results: The antimicrobial activity, antiviral activity, and cytotoxicity of the prepared compounds were studied. Most of the molecular ribbons showed antimicrobial activity, especially on Staphylococcus aureus, Pseudomonas aeruginosa, and Enterococcus faecalis, with a 50–90% inhibition effect (c = 25 µg·mL−1). No target compound was effective against HSV-1, but 8a displayed activity against HIV-1 (EC50 = 50.6 ± 7.8 µM). Cytotoxicity was tested on several cancer cell lines, and 6d showed cytotoxicity in the malignant melanoma cancer cell line (G-361; IC50 = 20.0 ± 0.6 µM). Physicochemical characteristics of the prepared compounds were investigated, namely a formation of supramolecular gels and a self-assembly potential in general, with positive results achieved with several target compounds. (4) Conclusions: Several compounds of a series of triterpenoid molecular ribbons showed better pharmacological profiles than the parent compounds and displayed certain selectivity in their effects.
Collapse
|
3
|
di Gregorio MC, Cautela J, Galantini L. Physiology and Physical Chemistry of Bile Acids. Int J Mol Sci 2021; 22:1780. [PMID: 33579036 PMCID: PMC7916809 DOI: 10.3390/ijms22041780] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bile acids (BAs) are facial amphiphiles synthesized in the body of all vertebrates. They undergo the enterohepatic circulation: they are produced in the liver, stored in the gallbladder, released in the intestine, taken into the bloodstream and lastly re-absorbed in the liver. During this pathway, BAs are modified in their molecular structure by the action of enzymes and bacteria. Such transformations allow them to acquire the chemical-physical properties needed for fulling several activities including metabolic regulation, antimicrobial functions and solubilization of lipids in digestion. The versatility of BAs in the physiological functions has inspired their use in many bio-applications, making them important tools for active molecule delivery, metabolic disease treatments and emulsification processes in food and drug industries. Moreover, moving over the borders of the biological field, BAs have been largely investigated as building blocks for the construction of supramolecular aggregates having peculiar structural, mechanical, chemical and optical properties. The review starts with a biological analysis of the BAs functions before progressively switching to a general overview of BAs in pharmacology and medicine applications. Lastly the focus moves to the BAs use in material science.
Collapse
Affiliation(s)
- Maria Chiara di Gregorio
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jacopo Cautela
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| |
Collapse
|
4
|
di Gregorio MC, Travaglini L, Del Giudice A, Cautela J, Pavel NV, Galantini L. Bile Salts: Natural Surfactants and Precursors of a Broad Family of Complex Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6803-6821. [PMID: 30234994 DOI: 10.1021/acs.langmuir.8b02657] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Bile salts (BSs) are naturally occurring rigid surfactants with a steroidal skeleton and specific self-assembly and interface behaviors. Using bile salts as precursors, derivatives can be synthesized to obtain molecules with specific functionalities and amphiphilic structure. Modifications on single molecules are normally performed by substituting the least-hindered hydroxyl group on carbon C-3 of the steroidal A ring or at the end of the lateral chain. This leads to monosteroidal rigid building blocks that are often able to self-organize into 1D structures such as tubules, twisted ribbons, and fibrils with helical supramolecular packing. Tubular aggregates are of particular interest, and they are characterized by cross-section inner diameters spanning a wide range of values (3-500 nm). They can form through appealing pH- or temperature-responsive aggregation and in mixtures of bile salt derivatives to provide mixed tubules with tunable charge and size. Other derivatives can be prepared by covalently linking two or more bile salt molecules to provide complex systems such as oligomers, dendrimers, and polymeric materials. The unconventional amphiphilic molecular structure imparts specific features to BSs and derivatives that can be exploited in the formulation of capsules, drug carriers, dispersants, and templates for the synthesis of nanomaterials.
Collapse
Affiliation(s)
| | - Leana Travaglini
- CNRS, ISIS UMR 7006 , Université de Strasbourg , 8 allée Gaspard Monge , 67000 Strasbourg , France
| | - Alessandra Del Giudice
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Jacopo Cautela
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Nicolae Viorel Pavel
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| | - Luciano Galantini
- Dipartimento di Chimica , "Sapienza" Università di Roma , P. le A. Moro 5 , 00185 Roma , Italy
| |
Collapse
|
5
|
Feng J, Wen W, Jia YG, Liu S, Guo J. pH-Responsive Micelles Assembled by Three-Armed Degradable Block Copolymers with a Cholic Acid Core for Drug Controlled-Release. Polymers (Basel) 2019; 11:E511. [PMID: 30960495 PMCID: PMC6473676 DOI: 10.3390/polym11030511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
One of the most famous anticancer drugs, paclitaxel (PTX), has often been used in drug controlled-release studies. The polymers derived from bio-compound bile acids and degradable poly(ε-caprolactone) (PCL) form a reservoir and have been used as a drug delivery system with great advantages. Herein, we grafted poly(N,N-diethylaminoethyl methacrylate) and poly(poly(ethylene glycol) methyl ether methacrylate) into the bile acid-derived three-armed macroinitiator CA-(PCL)₃, resulting in the amphiphilic block copolymers CA-(PCL-b-PDEAEMA-b-PPEGMA)₃. These pH-responsive three-armed block copolymers self-assembled into micelles in aqueous solution and PTX was encapsulated into the micellar core to form PTX-loaded micelles with a drug loading of 29.92 wt %. The micelles were stable in PBS at pH 7.4 and showed a pH-triggered release behavior of PTX under acidic environments, in which 55% of PTX was released at pH 5.0 in 80 h. These cholic acid-based functionalized three-armed block polymers present good biocompatibility, showing great potential for drug controlled-release.
Collapse
Affiliation(s)
- Jingjie Feng
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Weiqiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Jianwei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
6
|
Sun X, Li G, Yin Y, Zhang Y, Li H. Carbon quantum dot-based fluorescent vesicles and chiral hydrogels with biosurfactant and biocompatible small molecule. SOFT MATTER 2018; 14:6983-6993. [PMID: 29972201 DOI: 10.1039/c8sm01155a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, it is heartening to witness that carbon quantum dots (CQDs), a rising star in the family of carbon nanomaterials, have displayed tremendous applications in bioimaging, biosensing, drug delivery, optoelectronics, photovoltaics and photocatalysis. However, the investigations toward self-assembly of CQDs are still in their infancy. The participation of CQDs can bring additional functions to supramolecular self-assemblies, with photoluminescent property as the most exciting aspect. Here, we introduce CQDs into two types of classic colloidal systems containing low molecular weight surfactant and gelator to construct fluorescent vesicles and chiral hydrogels. The CQD-based vesicles were constructed through electrostatic interaction between the positively charged CQDs with peripherally substituted imidazolium cations and a negatively-charged biosurfactant, i.e., sodium deoxycholate (NaDC). The chiral hydrogels were prepared by increasing the concentration of NaDC and addition of a tripeptide (glutathione, GSH). It was found that both the hydrogels and corresponding xerogels are highly photoluminescent. A solid sensing system was prepared by coating a uniform layer of the hydrogel onto the silica gel plates by doctor blade technique followed by air-drying, which was then utilized to semiquantitatively detect Cu2+ in aqueous solutions.
Collapse
Affiliation(s)
- Xiaofeng Sun
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000, China.
| | | | | | | | | |
Collapse
|
7
|
Cunningham AJ, Robinson M, Banquy X, Leblond J, Zhu XX. Bile Acid-Based Drug Delivery Systems for Enhanced Doxorubicin Encapsulation: Comparing Hydrophobic and Ionic Interactions in Drug Loading and Release. Mol Pharm 2018; 15:1266-1276. [PMID: 29378128 DOI: 10.1021/acs.molpharmaceut.7b01091] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Doxorubicin (Dox) is a drug of choice in the design of drug delivery systems directed toward breast cancers, but is often limited by loading and control over its release from polymer micelles. Bile acid-based block copolymers present certain advantages over traditional polymer-based systems for drug delivery purposes, since they can enable a higher drug loading via the formation of a reservoir through their aggregation process. In this study, hydrophobic and electrostatic interactions are compared for their influence on Dox loading inside cholic acid based block copolymers. Poly(allyl glycidyl ether) (PAGE) and poly(ethylene glycol) (PEG) were grafted from the cholic acid (CA) core yielding a star-shaped block copolymer with 4 arms (CA-(PAGE- b-PEG)4) and then loaded with Dox via a nanoprecipitation technique. A high Dox loading of 14 wt % was achieved via electrostatic as opposed to hydrophobic interactions with or without oleic acid as a cosurfactant. The electrostatic interactions confer a pH responsiveness to the system. 50% of the loaded Dox was released at pH 5 in comparison to 12% at pH 7.4. The nanoparticles with Dox loaded via hydrophobic interactions did not show such a pH responsiveness. The systems with Dox loaded via electrostatic interactions showed the lowest IC50 and highest cellular internalization, indicating the pre-eminence of this interaction in Dox loading. The blank formulations are biocompatible and did not show cytotoxicity up to 0.17 mg/mL. The new functionalized star block copolymers based on cholic acid show great potential as drug delivery carriers.
Collapse
Affiliation(s)
- Alexander J Cunningham
- Département de Chimie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| | - Mattieu Robinson
- Département de Gérontologie , Université de Sherbrooke , Sherbrooke , Quebec J1H 4C4 , Canada
| | - Xavier Banquy
- Faculté de Pharmacie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| | - Jeanne Leblond
- Faculté de Pharmacie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| | - X X Zhu
- Département de Chimie , Université de Montréal , CP 6128, Succursale Centre-ville, Montréal , Quebec H3C 3J7 , Canada
| |
Collapse
|
8
|
Sett R, Guchhait N. Differential Perturbation of the Protrotropic Equilibrium of a Biological Photosensitizer within Bile Salt Aggregates of Varying Hydrophobicity: A Fluorimetric Investigation. Photochem Photobiol 2017; 94:328-337. [PMID: 29164617 DOI: 10.1111/php.12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/27/2017] [Indexed: 12/01/2022]
Abstract
The present work reveals the binding interactions of a credible cancer cell photosensitizer, harmane (HM), with some selected bile salt aggregates of dissimilar hydrophobicity viz. sodium deoxycholate (NaDC), sodium cholate (NaC) and sodium taurocholate (NaTC). The explicit variation of the prototropic equilibrium of the photosensitizer both in the ground and excited state has been utilized to scrutinize the interaction phenomena. Differential modulation in the prototropic equilibrium of HM in the aforesaid aggregates has been explained on the basis of the structural dissimilarities of the bile salt monomers. The contrived hydrophobic surroundings provided by the aggregates have been reflected on the spectroscopic results, especially in the time-resolved fluorescence and the rotational dynamical behavior of the molecule of interest. Slow solvent reorientation time with regard to the lifetime of HM proliferated by the red-edge effect in two specific bile salts namely NaC and NaTC, whereas its absence in NaDC aggregates has also been elucidated on the basis of accessibility of the solvent molecules within the aggregates.
Collapse
Affiliation(s)
- Riya Sett
- Department of Chemistry, University of Calcutta, Calcutta, India
| | - Nikhil Guchhait
- Department of Chemistry, University of Calcutta, Calcutta, India
| |
Collapse
|
9
|
Bertula K, Nonappa, Myllymäki TT, Yang H, Zhu X, Ikkala O. Hierarchical self-assembly from nanometric micelles to colloidal spherical superstructures. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Banquy X, Le Dévédec F, Cheng HW, Faivre J, Zhu JXX, Valtiner M. Interaction Forces between Pegylated Star-Shaped Polymers at Mica Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28027-28033. [PMID: 28770981 DOI: 10.1021/acsami.7b06922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a study focused on characterizing the interaction forces between mica surfaces across solutions containing star-shaped polymers with cationic ends. Using the surface forces apparatus, we show that the interaction forces in pure water between surfaces covered with the polymers can be adequately described by the dendronized brush model. In that framework, our experimental data suggest that the number of branches adsorbed at the surface decreases as the concentration of polymer in the adsorbing solution increases. The onset of interaction was also shown to increase with the concentration of polymer in solution up to distances much larger than the contour length of the polymer, suggesting that the nanostructure of the polymer film is significantly different from that of a monolayer. High compression of the polymer film adsorbed at low polymer concentration revealed the appearance of a highly structured hydration layer underneath the polymer layer. These results support that charged polymer chains do not necessarily come into close contact with the surface even if strong electrostatic interaction is present. Altogether, our results provide a comprehensive understanding of the interfacial behavior of star-shaped polymers and reveal the unexpected role of hydration water in the control of the polymer conformation.
Collapse
Affiliation(s)
| | | | - Hsiu-Wei Cheng
- Interface Chemistry and Surface Engineering, Max-Planck-Institut fír Eisenforschung , Max-Planck-Straße 1, 40237 Düsseldorf, Germany
- Institut fír Physikalische Chemie, TU Bergakademie Freiberg , Leipziger Straße 29, 09599 Freiberg, Germany
| | | | | | - Markus Valtiner
- Interface Chemistry and Surface Engineering, Max-Planck-Institut fír Eisenforschung , Max-Planck-Straße 1, 40237 Düsseldorf, Germany
- Institut fír Physikalische Chemie, TU Bergakademie Freiberg , Leipziger Straße 29, 09599 Freiberg, Germany
| |
Collapse
|
11
|
Sreekanth V, Medatwal N, Pal S, Kumar S, Sengupta S, Bajaj A. Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability. Mol Pharm 2017; 14:2649-2659. [DOI: 10.1021/acs.molpharmaceut.7b00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vedagopuram Sreekanth
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- KIIT University, Bhubaneswar-751024, Odisha, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
- Manipal University, Manipal-576104, Karnataka, India
| | - Sagar Sengupta
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad-121001, Haryana, India
| |
Collapse
|
12
|
Zhang K, Jia YG, Tsai IH, Strandman S, Ren L, Hong L, Zhang G, Guan Y, Zhang Y, Zhu XX. "Bitter-Sweet" Polymeric Micelles Formed by Block Copolymers from Glucosamine and Cholic Acid. Biomacromolecules 2017; 18:778-786. [PMID: 28094989 DOI: 10.1021/acs.biomac.6b01640] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural compounds glucosamine and cholic acid have been used to make acrylic monomers which are subsequently used to prepare amphiphilic block copolymers by reversible addition-fragmentation chain transfer (RAFT) polymerization. Despite the striking difference in polarity and solubility, three diblock copolymers consisting of glucosamine and cholic acid pendants with different hydrophilic and hydrophobic chain lengths have been synthesized without the use of protecting groups. They are shown to self-assemble into polymeric micelles with a "bitter" bile acid core and "sweet" sugar shell in aqueous solutions, as evidenced by dynamic light scattering and transmission electron microscopy. The critical micelle concentration varies with the hydrophobic/hydrophilic ratio, ranging from 0.62 to 1.31 mg/L. Longer chains of polymers induced the formation of larger micelles in range of 50-70 nm. These micelles can solubilize hydrophobic compounds such as Nile Red in aqueous solutions. Their loading capacity mainly depends upon the hydrophobic/hydrophilic ratio of the polymers, and may be also related to the length of the hydrophilic block. These polymeric micelles allowed for a 10-fold increase in the aqueous solubility of paclitaxel and showed no cytotoxicity below the concentration of 500 mg/L. Such properties make these polymeric micelles interesting reservoirs for hydrophobic molecules and drugs for biomedical applications.
Collapse
Affiliation(s)
- Kun Zhang
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Yong-Guang Jia
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - I-Huang Tsai
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Satu Strandman
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology , Guangzhou, China
| | - Liangzhi Hong
- School of Materials Science and Engineering, South China University of Technology , Guangzhou, China
| | - Guangzhao Zhang
- School of Materials Science and Engineering, South China University of Technology , Guangzhou, China
| | - Ying Guan
- Institute of Polymer Chemistry, Nankai University , Tianjin, China
| | - Yongjun Zhang
- Institute of Polymer Chemistry, Nankai University , Tianjin, China
| | - X X Zhu
- Département de Chimie, Université de Montréal , C.P. 6128, Succ. Centre-ville, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
13
|
Myllymäki TTT, Nonappa, Yang H, Liljeström V, Kostiainen MA, Malho JM, Zhu XX, Ikkala O. Hydrogen bonding asymmetric star-shape derivative of bile acid leads to supramolecular fibrillar aggregates that wrap into micrometer spheres. SOFT MATTER 2016; 12:7159-65. [PMID: 27491728 PMCID: PMC5322467 DOI: 10.1039/c6sm01329e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/27/2016] [Indexed: 06/06/2023]
Abstract
We report that star-shaped molecules with cholic acid cores asymmetrically grafted by low molecular weight polymers with hydrogen bonding end-groups undergo aggregation to nanofibers, which subsequently wrap into micrometer spherical aggregates with low density cores. Therein the facially amphiphilic cholic acid (CA) is functionalized by four flexible allyl glycidyl ether (AGE) side chains, which are terminated with hydrogen bonding 2-ureido-4[1H]pyrimidinone (UPy) end-groups as connected by hexyl spacers, denoted as CA(AGE6-C6H12-UPy)4. This wedge-shaped molecule is expected to allow the formation of a rich variety of solvent-dependent structures due to the complex interplay of interactions, enabled by its polar/nonpolar surface-active structure, the hydrophobicity of the CA in aqueous medium, and the possibility to control hydrogen bonding between UPy molecules by solvent selection. In DMSO, the surfactant-like CA(AGE6-C6H12-UPy)4 self-assembles into nanometer scale micelles, as expected due to its nonpolar CA apexes, solubilized AGE6-C6H12-UPy chains, and suppressed mutual hydrogen bonds between the UPys. Dialysis in water leads to nanofibers with lateral dimensions of 20-50 nm. This is explained by promoted aggregation as the hydrogen bonds between UPy molecules start to become activated, the reduced solvent dispersibility of the AGE-chains, and the hydrophobicity of CA. Finally, in pure water the nanofibers wrap into micrometer spheres having low density cores. In this case, strong complementary hydrogen bonds between UPy molecules of different molecules can form, thus promoting lateral interactions between the nanofibers, as allowed by the hydrophobic hexyl spacers. The wrapping is illustrated by transmission electron microscopy tomographic 3D reconstructions. More generally, we foresee hierarchically structured matter bridging the length scales from molecular to micrometer scale by sequentially triggering supramolecular interactions.
Collapse
Affiliation(s)
- Teemu T. T. Myllymäki
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Nonappa
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Hongjun Yang
- Department of Chemistry , Université de Montréal , C.P. 6128 , Succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Ville Liljeström
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - Mauri A. Kostiainen
- Department of Biotechnology and Chemical Technology , Aalto University , P.O. Box 16100 , FI-00076 AALTO , Finland
| | - Jani-Markus Malho
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| | - X. X. Zhu
- Department of Chemistry , Université de Montréal , C.P. 6128 , Succursale Centre-ville , Montréal , QC H3C 3J7 , Canada
| | - Olli Ikkala
- Department of Applied Physics , Aalto University , P.O. Box 15100 , FI-00076 AALTO , Finland . ;
| |
Collapse
|
14
|
Medina-O'Donnell M, Rivas F, Reyes-Zurita FJ, Martinez A, Martin-Fonseca S, Garcia-Granados A, Ferrer-Martín RM, Lupiañez JA, Parra A. Semi-synthesis and antiproliferative evaluation of PEGylated pentacyclic triterpenes. Eur J Med Chem 2016; 118:64-78. [DOI: 10.1016/j.ejmech.2016.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/18/2022]
|
15
|
Abstract
Bile acids are gaining increasing importance as building blocks in the development of novel polymeric materials. This is evidenced by the growing number of publications advocating the advantages of their incorporation in the design and construction of materials. Composed of a rigid steroid backbone, functional groups with potential towards diverse reactions, and a biocompatible framework, there are various ways in which these molecules can be utilized to afford biomaterials via distinct architectures. Soft materials utilize the intrinsic capacity of bile acids to self-assemble and have seen a range of applications, most notably in the field of drug delivery. On the other hand, there is also the possibility of including bile acids in the polymer backbone, which has been used in the preparation of elastomers. This review discusses a selection of materials that can be prepared using bile acids and the advantages afforded by these molecules. Focus will be on the development of soft and hard materials, where soft materials are described as being held by weak intermolecular interactions, whereas hard materials are mechanically stronger with bile acids covalently incorporated in the polymer network.
Collapse
Affiliation(s)
- Alexander J. Cunningham
- Département de Chimie, Université de Montréal, C.P. 1628, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, C.P. 1628, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - X.X. Zhu
- Département de Chimie, Université de Montréal, C.P. 1628, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
- Département de Chimie, Université de Montréal, C.P. 1628, Succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
16
|
Faustino C, Serafim C, Rijo P, Reis CP. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv 2016; 13:1133-48. [DOI: 10.1080/17425247.2016.1178233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Célia Faustino
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Serafim
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Rijo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
| | - Catarina Pinto Reis
- Universidade Lusófona de Humanidades e Tecnologias, Escola de Ciências e Tecnologias da Saúde, Research Center for Biosciences and Healht Technologies (CBIOS), Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculty of Sciences, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Strandman S, Zhu XX. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions. Gels 2016; 2:E16. [PMID: 30674148 PMCID: PMC6318650 DOI: 10.3390/gels2020016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 12/26/2022] Open
Abstract
Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-healing through a variety of covalent and non-covalent bonding strategies. The structural recovery of physical gels has long been a topic of interest in soft materials physics and various supramolecular interactions can induce this kind of recovery. This review highlights the non-covalent strategies of building self-repairing hydrogels and the characterization of their mechanical properties. Potential applications and future prospects of these materials are also discussed.
Collapse
Affiliation(s)
- Satu Strandman
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada.
| | - X X Zhu
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
18
|
Paul BK, Ghosh N, Mukherjee S. Direct insight into the nonclassical hydrophobic effect in bile salt:β-cyclodextrin interaction: role of hydrophobicity in governing the prototropism of a biological photosensitizer. RSC Adv 2016. [DOI: 10.1039/c5ra27050b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The interaction of norharmane with bile salts is reported along with the evidence for nonclassical hydrophobic effect in bile salt:β-cyclodextrin interaction.
Collapse
Affiliation(s)
- Bijan K. Paul
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Narayani Ghosh
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| | - Saptarshi Mukherjee
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhopal 462066
- India
| |
Collapse
|
19
|
Song Z, Xin X, Shen J, Zhang H, Wang S, Yang Y. Tailoring self-assembly behavior of a biological surfactant by imidazolium-based surfactants with different lengths of hydrophobic alkyl tails. RSC Adv 2016. [DOI: 10.1039/c5ra21979e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Possible molecular packing model of microcrystal structures formed by NaDC and [C2mim]Br.
Collapse
Affiliation(s)
- Zhaohua Song
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| | - Xia Xin
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
| | - Jinglin Shen
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Han Zhang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Shubin Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Yanzhao Yang
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|
20
|
|
21
|
di Gregorio MC, Varenik M, Gubitosi M, Travaglini L, Pavel NV, Jover A, Meijide F, Regev O, Galantini L. Multi stimuli response of a single surfactant presenting a rich self-assembly behavior. RSC Adv 2015. [DOI: 10.1039/c5ra01394a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A bile salt derived surfactant shows an unusually rich multi responsive self-assembly, involving interesting opening/closure mechanisms of supramolecular tubules and drastic spectroscopic variations, potentially exploitable in sensing.
Collapse
Affiliation(s)
| | - M. Varenik
- Department of Chemical Engineering
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| | - M. Gubitosi
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| | - L. Travaglini
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| | - N. V. Pavel
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| | - A. Jover
- Departamento de Química Física
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - F. Meijide
- Departamento de Química Física
- Facultad de Ciencias
- Universidad de Santiago de Compostela
- 27002 Lugo
- Spain
| | - O. Regev
- Department of Chemical Engineering
- Ben-Gurion University of the Negev
- Beer-Sheva 84105
- Israel
| | - L. Galantini
- Dipartimento di Chimica
- Università di Roma “Sapienza”
- 00185 Roma
- Italy
| |
Collapse
|
22
|
Ye Y, Suo Y, Yang F, Han L. Microwave-assisted Synthesis of Novel Chiral Receptors Derived from Deoxycholic Acid and Their Molecular Recognition Properties. CHEM LETT 2014. [DOI: 10.1246/cl.140701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ying Ye
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
| | - Yourui Suo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences
| | - Fang Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
| | - Lijuan Han
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences
- University of the Chinese Academy of Sciences
| |
Collapse
|
23
|
Sun X, Xin X, Tang N, Guo L, Wang L, Xu G. Manipulation of the gel behavior of biological surfactant sodium deoxycholate by amino acids. J Phys Chem B 2014; 118:824-32. [PMID: 24393042 DOI: 10.1021/jp409626s] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supramolecular hydrogels were prepared in the mixtures of biological surfactant sodium deoxycholate (NaDC) and halide salts (NaCl and NaBr) in sodium phosphate buffer. It is very interesting that with the addition of two kinds of amino acids (L-lysine and L-arginine) to NaDC/NaX hydrogels, the gel becomes solution at room temperature. We characterized this performance through phase behavior observation, transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectra, and rheological measurements. The results demonstrate that the gels are formed by intertwined fibrils, which are induced by enormous cycles of NaDC molecules driven by comprehensive noncovalent interactions, especially the hydrogen bonds. Our conclusion is that the presence of halide salts (NaCl and NaBr) enhances the formation of the gels, while the addition of amino acids (L-lysine and L-arginine) could make the breakage of the hydrogen bonds and weaken the formation of the gels. Moreover, its fast disassembly in the presence of amino acids allows for the release of substances (i.e., the dye methylene blue) entrapped within the gel network. The tunable gel morphology, microstructure, mechanical strength, and anisotropy verify the role of halide salts and amino acids in altering the properties of the gels, which can probably be exploited for a variety of applications in future.
Collapse
Affiliation(s)
- Xiaofeng Sun
- National Engineering Technology Research Center for Colloidal Materials, Shandong University , Shanda nanlu No. 27, Jinan 250100, P. R. China
| | | | | | | | | | | |
Collapse
|
24
|
Zhang Y, Xin X, Shen J, Tang W, Ren Y, Wang L. Biodegradable, multiple stimuli-responsive sodium deoxycholate–amino acids–NaCl mixed systems for dye delivery. RSC Adv 2014. [DOI: 10.1039/c4ra13353f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Multiple stimuli-responsiveness of NaDC–amino acid–NaCl mixed systems.
Collapse
Affiliation(s)
- Yongjie Zhang
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan, P. R. China
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
| | - Xia Xin
- National Engineering Technology Research Center for Colloidal Materials
- Shandong University
- Jinan, P. R. China
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
| | - Jinglin Shen
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan, P. R. China
| | - Weiyue Tang
- China Research Institute of Daily Chemical Industry
- Taiyuan Shanxi, P. R. China
| | - Yingjie Ren
- China Research Institute of Daily Chemical Industry
- Taiyuan Shanxi, P. R. China
| | - Lin Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan, P. R. China
| |
Collapse
|
25
|
Le Dévédec F, Strandman S, Hildgen P, Leclair G, Zhu XX. PEGylated Bile Acids for Use in Drug Delivery Systems: Enhanced Solubility and Bioavailability of Itraconazole. Mol Pharm 2013; 10:3057-66. [DOI: 10.1021/mp400117m] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frantz Le Dévédec
- Department
of Chemistry and ‡Faculty of Pharmacy, Université de Montréal, CP 6128 Succursale Centre-ville,
Montréal, QC, H3C 3J7, Canada
| | - Satu Strandman
- Department
of Chemistry and ‡Faculty of Pharmacy, Université de Montréal, CP 6128 Succursale Centre-ville,
Montréal, QC, H3C 3J7, Canada
| | - Patrice Hildgen
- Department
of Chemistry and ‡Faculty of Pharmacy, Université de Montréal, CP 6128 Succursale Centre-ville,
Montréal, QC, H3C 3J7, Canada
| | - Grégoire Leclair
- Department
of Chemistry and ‡Faculty of Pharmacy, Université de Montréal, CP 6128 Succursale Centre-ville,
Montréal, QC, H3C 3J7, Canada
| | - X. X. Zhu
- Department
of Chemistry and ‡Faculty of Pharmacy, Université de Montréal, CP 6128 Succursale Centre-ville,
Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
26
|
Le Dévédec F, Strandman S, Baille WE, Zhu X. Functional star block copolymers with a cholane core: Thermo-responsiveness and aggregation behavior. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Liu M, Wang X, Bi Q, Zhao Z. Microwave-Assisted Synthesis and Recognition Properties of Chiral Molecular Tweezers Based on Deoxycholic Acid. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751913x13700971595393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ten novel methyl 3α-(4-nitrobenzoylhydrazides)-12 α-( L-amino acid carbamates)-cholan-24-oate chiral molecular tweezers based on deoxycholic acid have been easily constructed using microwave irradiation. Their structures were characterised by IR, 1H NMR, MS spectra and elemental analysis and their molecular recognition properties were investigated by UV-Vis spectral titration. The preliminary study indicated that these target compounds possess good selectivity for D/L amino acid methyl esters.
Collapse
Affiliation(s)
- Min Liu
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Xiaohong Wang
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Qingwei Bi
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Zhigang Zhao
- College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. China
| |
Collapse
|
28
|
Selivanova NM, Galeeva AI, Sukhanov AA, Gnezdilov OI, Chachkov DV, Galyametdinov YG. N,N-dimethyldodecylamine oxide self-organization in the presence of lanthanide ions in aqueous and aqueous-decanol solutions. J Phys Chem B 2013; 117:5355-64. [PMID: 23557206 DOI: 10.1021/jp400875b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The article represents the results of research in self-organization of new lanthanide systems in water-decanol medium. The systems are based on N,N-dimethyldodecylamine oxide, a zwitterionic surfactant. The study covers the complex formation of lanthanide ions with C12DMAO molecules and the influence of Ln(III) ions and medium composition on surfactant association in diluted solutions. The analysis of adsorption isotherms was carried out on the basis of the combination of Gibbs and Langmuir adsorption equations. The results were used to determine physicochemical properties and parameters of a monomolecular adsorption layer. The research objects were various lanthanide ions with identical coordination centers. A number of spectroscopic methods (UV, NMR self-diffusion, EPR, dynamic light scattering (DLS), and fluorescent analysis) were involved in the research for comparative estimations of molecular dynamics, critical micellization concentration, geometry, sizes, and aggregation numbers of micellar aggregates. Micelle structure simulation revealed good agreement between experimental data and quantum chemical calculations.
Collapse
Affiliation(s)
- Natalia M Selivanova
- Kazan National Research Technological University, 68 Karl Marx, Kazan, Russia, 420015.
| | | | | | | | | | | |
Collapse
|
29
|
Mandal S, Ghosh S, Aggala HHK, Banerjee C, Rao VG, Sarkar N. Modulation of the photophysical properties of 2,2'-bipyridine-3,3'-diol inside bile salt aggregates: a fluorescence-based study for the molecular recognition of bile salts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:133-143. [PMID: 23215031 DOI: 10.1021/la304319r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
2,2'-Bipyridine-3,3'-diol (BP(OH)(2)) has been used as a sensitive excited-state intramolecular proton transfer fluorophore to assess different bile salt aggregates as one of the potential biologically relevant host systems useful for carrying many sparingly water-soluble drug molecules. The formation of inclusion complexes, complex-induced fluorescence behavior, and their binding ability have been investigated from the modulated photophysics of BP(OH)(2) by means of photophysical techniques. The constrained hydrophobic environment provided by the aggregates significantly reduces the water-assisted nonradiative decay channels and lengthens the fluorescence lifetime of the proton-transferred DK tautomer. Both the absorption and fluorescence properties of BP(OH)(2) are found to be sensitive to the change in the structure, size, and hydrophobicity of the aggregates. Fluorescence quenching experiments were performed to gain insight into the differential distribution of the probe molecules between bulk aqueous phase and nanocavities of various aggregates. The observation of longer fluorescence lifetime and rotational relaxation time in NaDC aggregates compared to that in NaCh and NaTC aggregates indicates that the binding structures of NaDC aggregates are more rigid due to its greater hydrophobicity and larger size and therefore provide better protection to the bound guest. It is noteworthy to mention that the hydrophobic microenvironments provided by bile salt aggregates are much stronger than that provided by micelles and cyclodextrins. The accessibility of water to the aggregate-bound guest can significantly be enhanced with the addition of organic cosolvents. However, the efficiency decreases in the order of dimethylformamide, acetonitrile, and methanol.
Collapse
Affiliation(s)
- Sarthak Mandal
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | | | | | | | | | | |
Collapse
|