1
|
Huang LZY, Shaw ZL, Penman R, Cheeseman S, Truong VK, Higgins MJ, Caruso RA, Elbourne A. Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces. ACS APPLIED BIO MATERIALS 2024; 7:344-361. [PMID: 38100088 DOI: 10.1021/acsabm.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Naturally occurring and synthetic nanostructured surfaces have been widely reported to resist microbial colonization. The majority of these studies have shown that both bacterial and fungal cells are killed upon contact and subsequent surface adhesion to such surfaces. This occurs because the presence of high-aspect-ratio structures can initiate a self-driven mechanical rupture of microbial cells during the surface adsorption process. While this technology has received a large amount of scientific and medical interest, one important question still remains: what factors drive microbial death on the surface? In this work, the interplay between microbial-surface adhesion, cell elasticity, cell membrane rupture forces, and cell lysis at the microbial-nanostructure biointerface during adsorptive processes was assessed using a combination of live confocal laser scanning microscopy, scanning electron microscopy, in situ amplitude atomic force microscopy, and single-cell force spectroscopy. Specifically, the adsorptive behavior and nanomechanical properties of live Gram-negative (Pseudomonas aeruginosa) and Gram-positive (methicillin-resistant Staphylococcus aureus) bacterial cells, as well as the fungal species Candida albicans and Cryptococcus neoformans, were assessed on unmodified and nanostructured titanium surfaces. Unmodified titanium and titanium surfaces with nanostructures were used as model substrates for investigation. For all microbial species, cell elasticity, rupture force, maximum cell-surface adhesion force, the work of adhesion, and the cell-surface tether behavior were compared to the relative cell death observed for each surface examined. For cells with a lower elastic modulus, lower force to rupture through the cell, and higher work of adhesion, the surfaces had a higher antimicrobial activity, supporting the proposed biocidal mode of action for nanostructured surfaces. This study provides direct quantification of the differences observed in the efficacy of nanostructured antimicrobial surface as a function of microbial species indicating that a universal, antimicrobial surface architecture may be hard to achieve.
Collapse
Affiliation(s)
- Louisa Z Y Huang
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Z L Shaw
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Rowan Penman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Samuel Cheeseman
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Graeme Clark Institute, Faculty of Engineering and Information Technology & Faculty of Medicine, Dentistry and Health Services, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Vi Khanh Truong
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael J Higgins
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- Applied Chemistry and Environmental Science, School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
2
|
Cheng F, Tong Y, Liu Y, Yuan Y, Chen Z, Liang J, Zhang Y, Zhou P, Duan X, Lai B. Vanadium as co-catalyst for exceptionally boosted Fenton and Fenton-like oxidation: Vanadium species mediated direct and indirect routes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130719. [PMID: 36623343 DOI: 10.1016/j.jhazmat.2023.130719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
In this study, vanadium powder (V) was employed as a cocatalyst to enhance the Fenton-like system. The V-Fe(III)/H2O2 system can rapidly produce hydroxyl radicals and completely oxidize chloramphenicol with exceptionally high stability for long-term operation. The low-valent vanadium sites on the surface during the stepwise oxidation of vanadium from V0 to V(IV) can donate electrons for direct H2O2 activation and indirect Fenton reaction by reducing Fe(III) to produce hydroxyl radicals. Meanwhile, density functional theory (DFT) calculation unveils that low-valent vanadium sites of vanadium can lengthen Fe-O bonds of FeOH2+ to elevate the oxidation potential of Fe(III) and promote Fe(III) reduction induced by H2O2. The self-cleaning effect of vanadium under acidic conditions can maintain reactive sites for sustainable electron donation and long-lasting enhanced Fenton oxidation. This study provides a novel enhanced Fenton oxidation for water remediation and the first mechanistic insights into the origins of V-based advanced oxidation technologies, it may also be beneficial to treat vanadium-contained wastewater.
Collapse
Affiliation(s)
- Feng Cheng
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China; Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, China
| | - Yongfei Tong
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yue Yuan
- College of Chemistry and Environment Protection Engineering, Southwest Minzu University, Chengdu 610065, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Liang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Yongli Zhang
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide SA5005, Australia
| | - Bo Lai
- College of Architecture & Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Lee MS, Hussein HR, Chang SW, Chang CY, Lin YY, Chien Y, Yang YP, Kiew LV, Chen CY, Chiou SH, Chang CC. Nature-Inspired Surface Structures Design for Antimicrobial Applications. Int J Mol Sci 2023; 24:1348. [PMID: 36674860 PMCID: PMC9865960 DOI: 10.3390/ijms24021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Surface contamination by microorganisms such as viruses and bacteria may simultaneously aggravate the biofouling of surfaces and infection of wounds and promote cross-species transmission and the rapid evolution of microbes in emerging diseases. In addition, natural surface structures with unique anti-biofouling properties may be used as guide templates for the development of functional antimicrobial surfaces. Further, these structure-related antimicrobial surfaces can be categorized into microbicidal and anti-biofouling surfaces. This review introduces the recent advances in the development of microbicidal and anti-biofouling surfaces inspired by natural structures and discusses the related antimicrobial mechanisms, surface topography design, material application, manufacturing techniques, and antimicrobial efficiencies.
Collapse
Grants
- 110VACS-003 Establishment of Regenerative Medicine and Cell Therapy Platform of Veterans General Hospital system
- 110VACS-007 Establishment of epidemic prevention and research platform in the veterans medical system for the control of emerging infectious diseases
- MOHW108-TDU-B-211-133001 Ministry of Health and Welfare
- MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1 VGH, TSGH, NDMC, AS Joint Research Program
- VTA108-V1-5-3 VGH, TSGH, NDMC, AS Joint Research Program
- VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- NSTC 111-2321-B-A49-007 National Science and Technology Council, Taiwan
- NSTC 111-2112-M-A49-025 National Science and Technology Council, Taiwan
- MOST 108-2320-B-010-019-MY3 National Science and Technology Council, Taiwan
- MOST 109-2327-B-010-007 National Science and Technology Council, Taiwan
- MOST 109-2327-B-016-002 National Science and Technology Council, Taiwan
- NSTC 111-2927-I-A49-004 National Science and Technology Council, Taiwan
- IIRG003B-19FNW Universiti Malaya and the Ministry of Higher Education, Malaysia
Collapse
Affiliation(s)
- Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hussein Reda Hussein
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt
| | - Sheng-Wen Chang
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
- Department of French Language and Literature, National Central University, Taoyuan City 320317, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lik-Voon Kiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Pompilio M, Ierides I, Cacialli F. Biomimetic Approaches to "Transparent" Photovoltaics: Current and Future Applications. Molecules 2022; 28:180. [PMID: 36615373 PMCID: PMC9822409 DOI: 10.3390/molecules28010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/28/2022] Open
Abstract
There has been a surge in the interest for (semi)transparent photovoltaics (sTPVs) in recent years, since the more traditional, opaque, devices are not ideally suited for a variety of innovative applications spanning from smart and self-powered windows for buildings to those for vehicle integration. Additional requirements for these photovoltaic applications are a high conversion efficiency (despite the necessary compromise to achieve a degree of transparency) and an aesthetically pleasing design. One potential realm to explore in the attempt to meet such challenges is the biological world, where evolution has led to highly efficient and fascinating light-management structures. In this mini-review, we explore some of the biomimetic approaches that can be used to improve both transparent and semi-transparent photovoltaic cells, such as moth-eye inspired structures for improved performance and stability or tunable, coloured, and semi-transparent devices inspired by beetles' cuticles. Lastly, we briefly discuss possible future developments for bio-inspired and potentially bio-compatible sTPVs.
Collapse
|
5
|
Suárez‐Tovar CM, Guillermo‐Ferreira R, Cooper IA, Cezário RR, Córdoba‐Aguilar A. Dragon colors: the nature and function of Odonata (dragonfly and damselfly) coloration. J Zool (1987) 2022. [DOI: 10.1111/jzo.12963] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- C. M. Suárez‐Tovar
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| | - R. Guillermo‐Ferreira
- Lestes Lab Federal University of Triângulo Mineiro Uberaba Brazil
- Graduate program in Entomology University of São Paulo Ribeirão Preto Brazil
| | - I. A. Cooper
- Biology Department James Madison University Harrisonburg VA USA
| | - R. R. Cezário
- Lestes Lab Federal University of Triângulo Mineiro Uberaba Brazil
- Graduate program in Entomology University of São Paulo Ribeirão Preto Brazil
| | - A. Córdoba‐Aguilar
- Departamento de Ecología Evolutiva Instituto de Ecología Universidad Nacional Autónoma de México Ciudad de México México
| |
Collapse
|
6
|
Sato H, Yamagishi A, Shimizu M, Watanabe K, Koshoubu J, Yoshida J, Kawamura I. Mapping of Supramolecular Chirality in Insect Wings by Microscopic Vibrational Circular Dichroism Spectroscopy: Heterogeneity in Protein Distribution. J Phys Chem Lett 2021; 12:7733-7737. [PMID: 34355918 DOI: 10.1021/acs.jpclett.1c01949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The supramolecular chirality of the hindwing of Anomala albopilosa (male) was investigated using a microscopic vibrational circular dichroism (VCD) system, denoted as MultiD-VCD. The source of intense infrared (IR) light for the system was a quantum cascade laser. Two-dimensional maps of IR and VCD spectra were taken by scanning the surface area (ca. 2 mm × 2 mm) of the insect hindwing tissue. The spectra ranged from 1500 to 1700 cm-1, and the maps have a spatial resolution of 100 μm. The distribution of proteins, including their supramolecular structures, was analyzed from the location-dependent spectral shape of the VCD bands assigned to amides I and II. The results revealed that the hindwing consists of segregated domains of proteins with different secondary structures: an α-helix (in one part of the membrane), a hybrid of α-helix and β-sheet (in another part of the membrane), and a coil (in a vein).
Collapse
Affiliation(s)
- Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-chou, Matsuyama, Ehime 790-8577, Japan
| | - Akihiko Yamagishi
- Department of Medicine, Faculty of Medicine, Toho University, Ota-ku 143-8540, Japan
| | - Masaru Shimizu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Keisuke Watanabe
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Koshoubu
- JASCO Corporation, Ishikawa 2967-5, Hachioji, Tokyo 192-8537, Japan
| | - Jun Yoshida
- Department of Chemistry, College of Humanities & Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, Hodogaya-ku, Yokohama 240-8501, Japan
| |
Collapse
|
7
|
Antifungal versus antibacterial defence of insect wings. J Colloid Interface Sci 2021; 603:886-897. [PMID: 34265480 DOI: 10.1016/j.jcis.2021.06.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS The ability exhibited by insect wings to resist microbial infestation is a unique feature developed over 400 million years of evolution in response to lifestyle and environmental pressures. The self-cleaning and antimicrobial properties of insect wings may be attributed to the unique combination of nanoscale structures found on the wing surface. EXPERIMENTS In this study, we characterised the wetting characteristics of superhydrophobic damselfly Calopteryx haemorrhoidalis wings. We revealed the details of air entrapment at the micro- and nano scales on damselfly wing surfaces using a combination of spectroscopic and electron microscopic techniques. Cryo-focused-ion-beam scanning electron microscopy was used to directly observe fungal spores and conidia that were unable to cross the air-liquid interface. By contrast, bacterial cells were able to cross the air-water interface to be ruptured upon attachment to the nanopillar surface. The robustness of the air entrapment, and thus the wing antifungal behaviour, was demonstrated after 1-week of water immersion. A newly developed wetting model confirmed the strict Cassie-Baxter wetting regime when damselfly wings are immersed in water. FINDINGS We provide evidence that the surface nanopillar topography serves to resist both fungal and bacterial attachment via a dual action: repulsion of fungal conidia while simultaneously killing bacterial cells upon direct contact. These findings will play an important role in guiding the fabrication of biomimetic, anti-fouling surfaces that exhibit both bactericidal and anti-fungal properties.
Collapse
|
8
|
Heiman-Burstein D, Dotan A, Dodiuk H, Kenig S. Hybrid Sol-Gel Superhydrophobic Coatings Based on Alkyl Silane-Modified Nanosilica. Polymers (Basel) 2021; 13:polym13040539. [PMID: 33673101 PMCID: PMC7918660 DOI: 10.3390/polym13040539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/16/2022] Open
Abstract
Hybrid sol-gel superhydrophobic coatings based on alkyl silane-modified nanosilica were synthesized and studied. The hybrid coatings were synthesized using the classic Stöber process for producing hydrophilic silica nanoparticles (NPs) modified by the in-situ addition of long-chain alkyl silanes co-precursors in addition to the common tetraethyl orthosilicate (TEOS). It was demonstrated that the long-chain alkyl substituent silane induced a steric hindrance effect, slowing the alkylsilane self-condensation and allowing for the condensation of the TEOS to produce the silica NPs. Hence, following the formation of the silica NPs the alkylsilane reacted with the silica's hydroxyls to yield hybrid alkyl-modified silica NPs having superhydrophobic (SH) attributes. The resulting SH coatings were characterized by contact angle goniometry, demonstrating a more than 150° water contact angle, a water sliding angle of less than 5°, and a transmittance of more than 90%. Confocal microscopy was used to analyze the micro random surface morphology of the SH surface and to indicate the parameters related to superhydrophobicity. It was found that a SH coating could be obtained when the alkyl length exceeded ten carbons, exhibiting a raspberry-like hierarchical morphology.
Collapse
|
9
|
Wang H, Chi G, Li L, Gong S, Zhu J, Tian C, Wang Y, Wang Z. Numerical Calculation of Apparent Contact Angles on the Hierarchical Surface with Array Microstructures by Wire Electrical Discharge Machining. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1768-1778. [PMID: 33494604 DOI: 10.1021/acs.langmuir.0c03033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is necessary to theoretically research wettability in superhydrophobic surface fabrication. Here, a numerical calculation approach is proposed for determining the contact angle of the water droplets on array micropillars by wire electrical discharge machining (WEDM). A hierarchical model is employed for these array microstructures, including mechanical analysis for a water droplet placed on a smooth array and wettability evaluation on the morphology of the WEDM surface. On pillars, equations are listed to solve the apparent contact angle according to force balance of gravity, tension, and pressure. As for the WEDM morphology, temperature simulation and measurement are carried out, and then the effect of roughness on surface wettability is studied. Constructed formulas predict the contact angle, and then the effect of geometric dimensions is obtained. In order to verify the assumption, array micropillars with different cross-profiles are prepared using high-speed WEDM on the Al alloy surface. Through the results of contact angle determination, the numerical calculation is carried out. This theoretical prediction is beneficial for improving the fabrication of the superhydrophobic surface by WEDM.
Collapse
Affiliation(s)
- Han Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Guanxin Chi
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Lei Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Sirui Gong
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Jialei Zhu
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Chuan Tian
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Yukui Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| | - Zhenlong Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001 Heilongjiang, China
| |
Collapse
|
10
|
Bacillus subtilis extracellular polymeric substances conditioning layers inhibit Escherichia coli adhesion to silicon surfaces: A potential candidate for interfacial antifouling additives. Biointerphases 2021; 16:011003. [PMID: 33706527 DOI: 10.1116/6.0000737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biofouling on material surfaces is a ubiquitous problem in a variety of fields. In aqueous environments, the process of biofouling initiates with the formation of a layer of macromolecules called the conditioning layer on the solid-liquid interface, followed by the adhesion and colonization of planktonic bacteria and the subsequent biofilm development and maturation. In this study, the extracellular polymeric substances (EPS) secreted by Bacillus subtilis were collected and used to prepare conditioning layers on inert surfaces. The morphologies and antifouling performances of the EPS conditioning layers were investigated. It was found that the initial adhesion of Escherichia coli was inhibited on the surfaces precoated with EPS conditioning layers. To further explore the underlying antifouling mechanisms of the EPS conditioning layers, the respective roles of two constituents of B. subtilis EPS (γ-polyglutamic acid and surfactin) were investigated. This study has provided the possibility of developing a novel interfacial antifouling additive with the advantages of easy preparation, nontoxicity, and environmental friendliness.
Collapse
|
11
|
Šigutová H, Šigut M, Kovalev A, Gorb SN. Wing wettability gradient in a damselfly Lestes sponsa (Odonata: Lestidae) reflects the submergence behaviour during underwater oviposition. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201258. [PMID: 33489275 PMCID: PMC7813233 DOI: 10.1098/rsos.201258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
The phenomenon of hydrophobicity of insect cuticles has received great attention from technical fields due to its wide applicability to industry or medicine. However, in an ecological/evolutionary context such studies remain scarce. We measured spatial differences in wing wettability in Lestes sponsa (Odonata: Lestidae), a damselfly species that can submerge during oviposition, and discussed the possible functional significance. Using dynamic contact angle (CA) measurements together with scanning electron microscopy (SEM), we investigated differences in wettability among distal, middle and proximal wing regions, and in surface nanostructures potentially responsible for observed differences. As we moved from distal towards more proximal parts, mean values of advancing and receding CAs gradually increased from 104° to 149°, and from 67° to 123°, respectively, indicating that wing tips were significantly less hydrophobic than more proximal parts. Moreover, values of CA hysteresis for the respective wing parts decreased from 38° to 26°, suggesting greater instability of the structure of the wing tips. Accordingly, compared with more proximal parts, SEM revealed higher damage of the wax nanostructures at the distal region. The observed wettability gradient is well explained by the submergence behaviour of L. sponsa during underwater oviposition. Our study thus proposed the existence of species-dependent hydrophobicity gradient on odonate wings caused by different ovipositional strategies.
Collapse
Affiliation(s)
- Hana Šigutová
- Department of Biology and Ecology/ENC, Faculty of Science, University of Ostrava, Chittussiho 10, 71000 Ostrava, Czech Republic
| | - Martin Šigut
- Department of Biology and Ecology/ENC, Faculty of Science, University of Ostrava, Chittussiho 10, 71000 Ostrava, Czech Republic
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1–9, 24118 Kiel, Germany
| |
Collapse
|
12
|
Román-Kustas J, Hoffman JB, Alonso D, Reed JH, Gonsalves AE, Oh J, Hong S, Jo KD, Dana CE, Alleyne M, Miljkovic N, Cropek DM. Analysis of cicada wing surface constituents by comprehensive multidimensional gas chromatography for species differentiation. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. Proc Natl Acad Sci U S A 2020; 117:12598-12605. [PMID: 32457154 DOI: 10.1073/pnas.1916680117] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechano-bactericidal activity of nanostructured surfaces has become the focus of intensive research toward the development of a new generation of antibacterial surfaces, particularly in the current era of emerging antibiotic resistance. This work demonstrates the effects of an incremental increase of nanopillar height on nanostructure-induced bacterial cell death. We propose that the mechanical lysis of bacterial cells can be influenced by the degree of elasticity and clustering of highly ordered silicon nanopillar arrays. Herein, silicon nanopillar arrays with diameter 35 nm, periodicity 90 nm and increasing heights of 220, 360, and 420 nm were fabricated using deep UV immersion lithography. Nanoarrays of 360-nm-height pillars exhibited the highest degree of bactericidal activity toward both Gram stain-negative Pseudomonas aeruginosa and Gram stain-positive Staphylococcus aureus bacteria, inducing 95 ± 5% and 83 ± 12% cell death, respectively. At heights of 360 nm, increased nanopillar elasticity contributes to the onset of pillar deformation in response to bacterial adhesion to the surface. Theoretical analyses of pillar elasticity confirm that deflection, deformation force, and mechanical energies are more significant for the substrata possessing more flexible pillars. Increased storage and release of mechanical energy may explain the enhanced bactericidal action of these nanopillar arrays toward bacterial cells contacting the surface; however, with further increase of nanopillar height (420 nm), the forces (and tensions) can be partially compensated by irreversible interpillar adhesion that reduces their bactericidal effect. These findings can be used to inform the design of next-generation mechano-responsive surfaces with tuneable bactericidal characteristics for antimicrobial surface technologies.
Collapse
|
14
|
Abstract
Titanium dioxide is well known for its photocatalytic properties and low toxicity, meanwhile, silicone dioxide exhibits hydrophobic and hydrophilic properties and thermal stability. The union of these two materials offers a composite material with a wide range of applications that relate directly to the combined properties. The SiO2-TiO2 composite has been synthesized through physical methods and chemical methods and, with adequate conditions, morphology, crystallinity, boundaries between SiO2-TiO2, among other properties, can be controlled. Thus, the applications of this composite are wide for surface applications, being primarily used as powder or coating. However, the available research information on this kind of composite material is still novel, therefore research in this field is still needed in order to clarify all the physical and chemical properties of the material. This review aims to encompass the available methods of synthesis of SiO2-TiO2 composite with modifiers or dopants, the application and known chemical and physical properties in surfaces such as glass, mortar and textile, including aspects for the development of this material.
Collapse
|
15
|
Nguyen DHK, Loebbe C, Linklater DP, Xu X, Vrancken N, Katkus T, Juodkazis S, Maclaughlin S, Baulin V, Crawford RJ, Ivanova EP. The idiosyncratic self-cleaning cycle of bacteria on regularly arrayed mechano-bactericidal nanostructures. NANOSCALE 2019; 11:16455-16462. [PMID: 31451827 DOI: 10.1039/c9nr05923g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanostructured mechano-bactericidal surfaces represent a promising technology to prevent the incidence of microbial contamination on a variety of surfaces and to avoid bacterial infection, particularly with antibiotic resistant strains. In this work, a regular array of silicon nanopillars of 380 nm height and 35 nm diameter was used to study the release of bacterial cell debris off the surface, following inactivation of the cell due to nanostructure-induced rupture. It was confirmed that substantial bactericidal activity was achieved against Gram-negative Pseudomonas aeruginosa (85% non-viable cells) and only modest antibacterial activity towards Staphylococcus aureus (8% non-viable cells), as estimated by measuring the proportions of viable and non-viable cells via fluorescence imaging. In situ time-lapse AFM scans of the bacteria-nanopillar interface confirmed the removal rate of the dead P. aeruginosa cells from the surface to be approximately 19 minutes per cell, and approximately 11 minutes per cell for dead S. aureus cells. These results highlight that the killing and dead cell detachment cycle for bacteria on these substrata are dependant on the bacterial species and the surface architecture studied and will vary when these two parameters are altered. The outcomes of this work will enhance the current understanding of antibacterial nanostructures, and impact upon the development and implementation of next-generation implants and medical devices.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | | | - Denver P Linklater
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia. and Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - XiuMei Xu
- IMEC, Kapeldreef 75, Leuven 3001, Belgium
| | - Nandi Vrancken
- IMEC, Kapeldreef 75, Leuven 3001, Belgium and Research Group Electrochemical and Surface Engineering (SURF), Dept. of Materials & Chemistry (MACH), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Elsene, Belgium
| | - Tomas Katkus
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Saulius Juodkazis
- Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Vladimir Baulin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili Tarragona, Spain
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia.
| |
Collapse
|
16
|
Hasan J, Roy A, Chatterjee K, Yarlagadda PKDV. Mimicking Insect Wings: The Roadmap to Bioinspiration. ACS Biomater Sci Eng 2019; 5:3139-3160. [DOI: 10.1021/acsbiomaterials.9b00217] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jafar Hasan
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| | - Anindo Roy
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560 012, India
| | - Prasad K. D. V. Yarlagadda
- Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane, QLD 4001, Australia
| |
Collapse
|
17
|
Wan Q, Li H, Zhang S, Wang C, Su S, Long S, Pan B. Combination of active behaviors and passive structures contributes to the cleanliness of housefly wing surfaces: A new insight for the design of cleaning materials. Colloids Surf B Biointerfaces 2019; 180:473-480. [PMID: 31102851 DOI: 10.1016/j.colsurfb.2019.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/07/2019] [Accepted: 05/07/2019] [Indexed: 10/26/2022]
Abstract
Evolutionary pressure has pushed many extant plants and animals to develop micro/nanostructures on their surfaces to keep them clean. These structures have become ideal models for bio-inspired design. Although microstructures on biological surfaces have been widely studied, little attention has been paid to the combined role of microstructures and animal's active cleaning behaviors in keeping their surfaces clean. In this study, we explored the relationship between these micro/nanostructures and wettability as well as the role of the housefly cleaning behaviors in keeping their wings clean. Hierarchical structures consisting of microscale macrotrichias with nanoscale grooves on the wings were observed under scanning electron microscope. The wings were hydrophobic (CA = 133.3°) but with high adhesion to water (CAH = 87.5°), indicating that they were non-self-cleaning surfaces. Macroscale droplets standing on the wings could be best described as being in a transitional wetting state between Wenzel and Cassie-Baxter states due to the presence of the nanoscale grooves, which increased the resistance to water penetration. The hydrophobicity decreased (CA = 109.9°) when the nanostructures were removed by coating the wings with a thick layer of polydimethylsiloxane (PDMS). The houseflies could highly efficiently remove the microscale droplets atop the macrotrichias, and reduce bacterial contamination on their wings through grooming and flutter activities. These active cleaning behaviors could offset the absence of self-cleaning properties and play a key role in keeping the wings clean. The results indicate that housefly wings could be used as a template for the design of special functional surfaces. The present findings not only improve our understanding of the wettability and cleaning properties of natural surfaces, but also provide important insights into the design of bio-inspired materials.
Collapse
Affiliation(s)
- Qiang Wan
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Shudong Zhang
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Chuanwen Wang
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Shanchun Su
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Shaojun Long
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
18
|
Elbourne A, Chapman J, Gelmi A, Cozzolino D, Crawford RJ, Truong VK. Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces. J Colloid Interface Sci 2019; 546:192-210. [PMID: 30921674 DOI: 10.1016/j.jcis.2019.03.050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 02/07/2023]
Abstract
The attachment of single-celled organisms, namely bacteria and fungi, to abiotic surfaces is of great interest to both the scientific and medical communities. This is because the interaction of such cells has important implications in a range of areas, including biofilm formation, biofouling, antimicrobial surface technologies, and bio-nanotechnologies, as well as infection development, control, and mitigation. While central to many biological phenomena, the factors which govern microbial surface attachment are still not fully understood. This lack of understanding is a direct consequence of the complex nature of cell-surface interactions, which can involve both specific and non-specific interactions. For applications involving micro- and nano-structured surfaces, developing an understanding of such phenomenon is further complicated by the diverse nature of surface architectures, surface chemistry, variation in cellular physiology, and the intended technological output. These factors are extremely important to understand in the emerging field of antibacterial nanostructured surfaces. The aim of this perspective is to re-frame the discussion surrounding the mechanism of nanostructured-microbial surface interactions. Broadly, the article reviews our current understanding of these phenomena, while highlighting the knowledge gaps surrounding the adhesive forces which govern bacterial-nanostructure interactions and the role of cell membrane rigidity in modulating surface activity. The roles of surface charge, cell rigidity, and cell-surface adhesion force in bacterial-surface adsorption are discussed in detail. Presently, most studies have overlooked these areas, which has left many questions unanswered. Further, this perspective article highlights the numerous experimental issues and misinterpretations which surround current studies of antibacterial nanostructured surfaces.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia.
| | - James Chapman
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Amy Gelmi
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Daniel Cozzolino
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| | - Vi Khanh Truong
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia; Nanobiotechnology Laboratory, RMIT University, Melbourne, VIC 3001, Australia
| |
Collapse
|
19
|
Elbourne A, Dupont MF, Collett S, Truong VK, Xu X, Vrancken N, Baulin V, Ivanova EP, Crawford RJ. Imaging the air-water interface: Characterising biomimetic and natural hydrophobic surfaces using in situ atomic force microscopy. J Colloid Interface Sci 2019; 536:363-371. [DOI: 10.1016/j.jcis.2018.10.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022]
|
20
|
Elbourne A, Coyle VE, Truong VK, Sabri YM, Kandjani AE, Bhargava SK, Ivanova EP, Crawford RJ. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. NANOSCALE ADVANCES 2019; 1:203-212. [PMID: 36132449 PMCID: PMC9473181 DOI: 10.1039/c8na00124c] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 05/14/2023]
Abstract
The incorporation of high-aspect-ratio nanostructures across surfaces has been widely reported to impart antibacterial characteristics to a substratum. This occurs because the presence of such nanostructures can induce the mechanical rupture of attaching bacteria, causing cell death. As such, the development of high-efficacy antibacterial nano-architectures fabricated on a variety of biologically relevant materials is critical to the wider acceptance of this technology. In this study, we report the antibacterial behavior of a series of substrata containing multi-directional electrodeposited gold (Au) nanospikes, as both a function of deposition time and precursor concentration. Firstly, the bactericidal efficacy of substrata containing Au nanospikes was assessed as a function of deposition time to elucidate the nanopattern that exhibited the greatest degree of biocidal activity. Here, it was established that multi-directional nanospikes with an average height of ∼302 nm ± 57 nm (formed after a deposition time of 540 s) exhibited the greatest level of biocidal activity, with ∼88% ± 8% of the bacterial cells being inactivated. The deposition time was then kept constant, while the concentration of the HAuCl4 and Pb(CH3COO)2 precursor materials (used for the formation of the Au nanospikes) was varied, resulting in differing nanospike architectures. Altering the Pb(CH3COO)2 precursor concentration produced multi-directional nanostructures with a wider distribution of heights, which increased the average antibacterial efficacy against both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. Importantly, the in situ electrochemical fabrication method used in this work is robust and straightforward, and is able to produce highly reproducible antibacterial surfaces. The results of this research will assist in the wider utilization of mechano-responsive nano-architectures for antimicrobial surface technologies.
Collapse
Affiliation(s)
- Aaron Elbourne
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Victoria E Coyle
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Vi Khanh Truong
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology Haw-thorn VIC 3122 Australia
- ARC Research Hub for Australian Steel Manufacturing Wollongong New South Wales Australia
| | - Ylias M Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Ahmad E Kandjani
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Suresh K Bhargava
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University Melbourne VIC 3001 Australia
| |
Collapse
|
21
|
Elbourne A, Truong VK, Cheeseman S, Rajapaksha P, Gangadoo S, Chapman J, Crawford RJ. The use of nanomaterials for the mitigation of pathogenic biofilm formation. METHODS IN MICROBIOLOGY 2019. [DOI: 10.1016/bs.mim.2019.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases 2018; 13:060801. [DOI: 10.1116/1.5054057] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Cheeseman S, Owen S, Truong VK, Meyer D, Ng SH, Vongsvivut J, Linklater D, Tobin MJ, Werner M, Baulin VA, Luque P, Marchant R, Juodkazis S, Crawford RJ, Ivanova EP. Pillars of Life: Is There a Relationship between Lifestyle Factors and the Surface Characteristics of Dragonfly Wings? ACS OMEGA 2018; 3:6039-6046. [PMID: 30221231 PMCID: PMC6130794 DOI: 10.1021/acsomega.8b00776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/07/2018] [Indexed: 05/05/2023]
Abstract
Dragonfly wings are of great interest to researchers investigating biomimetic designs for antiwetting and antibacterial surfaces. The waxy epicuticular layer on the membrane of dragonfly wings possesses a unique surface nanoarchitecture that consists of irregular arrays of nanoscale pillars. This architecture confers superhydrophobic, self-cleaning, antiwetting, and antibiofouling behaviors. There is some evidence available that suggests that lifestyle factors may have influenced the evolution of the wing nanostructures and, therefore, the resulting properties of the wings; however, it appears that no systematic studies have been performed that have compared the wing surface features across a range of dragonfly species. Here, we provided a comparison of relevant wing surface characteristics, including chemical composition, wettability, and nanoarchitecture, of seven species of dragonfly from three families including Libellulidae, Aeshnidae, and Gomphidae. The characteristic nanopillar arrays were found to be present, and the chemical composition and the resultant wing surface superhydrophobicity were found to be well-conserved across all of the species studied. However, subtle differences were observed between the height, width, and density of nanofeatures and water droplet bouncing behavior on the wing surfaces. The results of this research will contribute to an understanding of the physical and chemical surface features that are optimal for the design of antiwetting and antibacterial surfaces.
Collapse
Affiliation(s)
- Samuel Cheeseman
- School
of Science, Faculty of Science, Engineering and Technology, and School of Health
Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Stephanie Owen
- School
of Science, Faculty of Science, Engineering and Technology, and School of Health
Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Vi Khanh Truong
- School
of Science, Faculty of Science, Engineering and Technology, and School of Health
Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Denny Meyer
- School
of Science, Faculty of Science, Engineering and Technology, and School of Health
Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Soon Hock Ng
- School
of Science, Faculty of Science, Engineering and Technology, and School of Health
Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Jitraporn Vongsvivut
- Infrared
Microspectroscopy Beamline, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Denver Linklater
- School
of Science, Faculty of Science, Engineering and Technology, and School of Health
Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Mark J. Tobin
- Infrared
Microspectroscopy Beamline, Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Marco Werner
- Departament
d’Enginyeria Quimica, Universitat
Rovira i Virgili, 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Vladimir A. Baulin
- Departament
d’Enginyeria Quimica, Universitat
Rovira i Virgili, 26 Av. dels Paisos Catalans, 43007 Tarragona, Spain
| | - Pere Luque
- Museu
de les Terres de l’Ebre, Gran Capità, 34, 43870 Amposta, Spain
| | - Richard Marchant
- Museum Victoria, P.O. Box 666, Melbourne, Victoria 3001, Australia
| | - Saulius Juodkazis
- School
of Science, Faculty of Science, Engineering and Technology, and School of Health
Sciences, Faculty of Health, Arts and Design, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Russell J. Crawford
- School
of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Elena P. Ivanova
- School
of Science, College of Science, Engineering and Health, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
24
|
Structure and Chemical Organization in Damselfly Calopteryx haemorrhoidalis Wings: A Spatially Resolved FTIR and XRF Analysis with Synchrotron Radiation. Sci Rep 2018; 8:8413. [PMID: 29849036 PMCID: PMC5976759 DOI: 10.1038/s41598-018-26563-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 12/05/2022] Open
Abstract
Insects represent the majority of known animal species and exploit a variety of fascinating nanotechnological concepts. We investigated the wings of the damselfly Calopteryx haemorrhoidalis, whose males have dark pigmented wings and females have slightly pigmented wings. We used scanning electron microscopy (SEM) and nanoscale synchrotron X-ray fluorescence (XRF) microscopy analysis for characterizing the nanostructure and the elemental distribution of the wings, respectively. The spatially resolved distribution of the organic constituents was examined by synchrotron Fourier transform infrared (s-FTIR) microspectroscopy and subsequently analyzed using hierarchical cluster analysis. The chemical distribution across the wing was rather uniform with no evidence of melanin in female wings, but with a high content of melanin in male wings. Our data revealed a fiber-like structure of the hairs and confirmed the presence of voids close to its base connecting the hairs to the damselfly wings. Within these voids, all detected elements were found to be locally depleted. Structure and elemental contents varied between wing membranes, hairs and veins. The elemental distribution across the membrane was rather uniform, with higher Ca, Cu and Zn levels in the male damselfly wing membranes.
Collapse
|
25
|
Hazell G, Fisher LE, Murray WA, Nobbs AH, Su B. Bioinspired bactericidal surfaces with polymer nanocone arrays. J Colloid Interface Sci 2018; 528:389-399. [PMID: 29870825 DOI: 10.1016/j.jcis.2018.05.096] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/24/2018] [Accepted: 05/27/2018] [Indexed: 12/31/2022]
Abstract
Infections resulting from bacterial biofilm formation on the surface of medical devices are challenging to treat and can cause significant patient morbidity. Recently, it has become apparent that regulation of surface nanotopography can render surfaces bactericidal. In this study, poly(ethylene terephthalate) nanocone arrays are generated through a polystyrene nanosphere-mask colloidal lithographic process. It is shown that modification of the mask diameter leads to a direct modification of centre-to-centre spacing between nanocones. By altering the oxygen plasma etching time it is possible to modify the height, tip width and base diameter of the individual nanocone features. The bactericidal activity of the nanocone arrays was investigated against Escherichia coli and Klebsiella pneumoniae. It is shown that surfaces with the most densely populated nanocone arrays (center-to-center spacing of 200 nm), higher aspect ratios (>3) and tip widths <20 nm kill the highest percentage of bacteria (∼30%).
Collapse
Affiliation(s)
- Gavin Hazell
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, United Kingdom.
| | - Leanne E Fisher
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - W Andrew Murray
- School of Physics, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, United Kingdom
| |
Collapse
|
26
|
Truong VK, Vongsvivut J, Geeganagamage NM, Tobin MJ, Luque P, Baulin V, Werner M, Maclaughlin S, Crawford RJ, Ivanova EP. Study of melanin localization in the mature male Calopteryx haemorrhoidalis damselfly wings. JOURNAL OF SYNCHROTRON RADIATION 2018; 25:874-877. [PMID: 29714199 DOI: 10.1107/s1600577518004460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Damselflies Calopteryx haemorrhoidalis exhibiting black wings are found in the western Mediterranean, Algeria, France, Italy, Spain and Monaco. Wing pigmentation is caused by the presence of melanin, which is involved in physiological processes including defence reactions, wound healing and sclerotization of the insect. Despite the important physiological roles of melanin, the presence and colour variation among males and females of the C. haemorrhoidalis species and the localization of the pigment within the wing membrane remain poorly understood. In this study, infrared (IR) microspectroscopy, coupled with the highly collimated synchrotron IR beam, was employed in order to identify the distribution of the pigments in the wings at a high spatial resolution. It was found that the melanin is localized in the procuticle of the C. haemorrhoidalis damselfly wings, distributed homogeneously within this layer, and not associated with the lipids of the epicuticle.
Collapse
Affiliation(s)
- Vi Khanh Truong
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
| | | | | | - Mark J Tobin
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Pere Luque
- Museu de les Terres de l'Ebre, 34 Gran Capità, 43870 Amposta, Spain
| | - Vladimir Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avinguda dels Paisos Catalans, 43007 Tarragona, Spain
| | - Marco Werner
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, 26 Avinguda dels Paisos Catalans, 43007 Tarragona, Spain
| | | | - Russell J Crawford
- College of Science, Engineering and Health, RMIT University, Melbourne 3001, Victoria, Australia
| | - Elena P Ivanova
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
| |
Collapse
|
27
|
Elbourne A, Crawford RJ, Ivanova EP. Nano-structured antimicrobial surfaces: From nature to synthetic analogues. J Colloid Interface Sci 2017; 508:603-616. [DOI: 10.1016/j.jcis.2017.07.021] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/10/2023]
|
28
|
Linklater DP, Juodkazis S, Ivanova EP. Nanofabrication of mechano-bactericidal surfaces. NANOSCALE 2017; 9:16564-16585. [PMID: 29082999 DOI: 10.1039/c7nr05881k] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The search for alternatives to the standard methods of preventing bacterial adhesion and biofilm formation on biotic and abiotic surfaces alike has led to the use of biomimetics to reinvent through nanofabrication methods, surfaces, whereby the nanostructured topography is directly responsible for bacterial inactivation through physico-mechanical means. Plant leaves, insect wings, and animal skin have been used to inspire the fabrication of synthetic high-aspect-ratio nanopillared surfaces, which can resist bacterial colonisation. The adaptation of bacteria to survive in the presence of antibiotics and their ability to form biofilms on conventional antibacterial surfaces has led to an increase in persistent infections caused by resistant strains of bacteria. This presents a worldwide health epidemic that can only be mitigated through the search for a new generation of biomaterials.
Collapse
Affiliation(s)
- Denver P Linklater
- Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.
| | | | | |
Collapse
|
29
|
Oh J, Dana CE, Hong S, Román JK, Jo KD, Hong JW, Nguyen J, Cropek DM, Alleyne M, Miljkovic N. Exploring the Role of Habitat on the Wettability of Cicada Wings. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27173-27184. [PMID: 28719187 DOI: 10.1021/acsami.7b07060] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Evolutionary pressure has pushed many extant species to develop micro/nanostructures that can significantly affect wettability and enable functionalities such as droplet jumping, self-cleaning, antifogging, antimicrobial, and antireflectivity. In particular, significant effort is underway to understand the insect wing surface structure to establish rational design tools for the development of novel engineered materials. Most studies, however, have focused on superhydrophobic wings obtained from a single insect species, in particular, the Psaltoda claripennis cicada. Here, we investigate the relationship between the spatially dependent wing wettability, topology, and droplet jumping behavior of multiple cicada species and their habitat, lifecycle, and interspecies relatedness. We focus on cicada wings of four different species: Neotibicen pruinosus, N. tibicen, Megatibicen dorsatus, and Magicicada septendecim and take a comparative approach. Using spatially resolved microgoniometry, scanning electron microscopy, atomic force microscopy, and high speed optical microscopy, we show that within cicada species, the wettability of wings is spatially homogeneous across wing cells. All four species were shown to have truncated conical pillars with widely varying length scales ranging from 50 to 400 nm in height. Comparison of the wettability revealed three cicada species with wings that are superhydrophobic (>150°) with low contact angle hysteresis (<5°), resulting in stable droplet jumping behavior. The fourth, more distantly related species (Ma. septendecim) showed only moderate hydrophobic behavior, eliminating some of the beneficial surface functional aspects for this cicada. Correlation between cicada habitat and wing wettability yielded little connection as wetter, swampy environments do not necessarily equate to higher measured wing hydrophobicity. The results, however, do point to species relatedness and reproductive strategy as a closer proxy for predicting wettability and surface structure and resultant enhanced wing surface functionality. This work not only elucidates the differences between inter- and intraspecies cicada wing topology, wettability, and water shedding behavior but also enables the development of rational design tools for the manufacture of artificial surfaces for energy and water applications.
Collapse
Affiliation(s)
- Junho Oh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Catherine E Dana
- Department of Entomology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Sungmin Hong
- Construction Engineering Research Laboratory, United States Army Engineer Research and Development Center , Champaign, Illinois 61822, United States
| | - Jessica K Román
- Construction Engineering Research Laboratory, United States Army Engineer Research and Development Center , Champaign, Illinois 61822, United States
| | - Kyoo Dong Jo
- Construction Engineering Research Laboratory, United States Army Engineer Research and Development Center , Champaign, Illinois 61822, United States
| | - Je Won Hong
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonah Nguyen
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Donald M Cropek
- Construction Engineering Research Laboratory, United States Army Engineer Research and Development Center , Champaign, Illinois 61822, United States
| | - Marianne Alleyne
- Department of Entomology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University , 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
30
|
The susceptibility of Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 cells to the bactericidal action of nanostructured Calopteryx haemorrhoidalis damselfly wing surfaces. Appl Microbiol Biotechnol 2017; 101:4683-4690. [PMID: 28246886 DOI: 10.1007/s00253-017-8205-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/14/2017] [Accepted: 02/17/2017] [Indexed: 01/21/2023]
Abstract
Nanostructured insect wing surfaces have been reported to possess the ability to resist bacterial colonization through the mechanical rupture of bacterial cells coming into contact with the surface. In this work, the susceptibility of physiologically young, mature and old Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9721 bacterial cells, to the action of the bactericidal nano-pattern of damselfly Calopteryx haemorrhoidalis wing surfaces, was investigated. The results were obtained using several surface characterization techniques including optical profilometry, scanning electron microscopy, synchrotron-sourced Fourier transform infrared microspectroscopy, water contact angle measurements and antibacterial assays. The data indicated that the attachment propensity of physiologically young S. aureus CIP 65.8T and mature P. aeruginosa ATCC 9721 bacterial cells was greater than that of the cells at other stages of growth. Both the S. aureus CIP 65.8T and P. aeruginosa ATCC 9721 cells, grown at the early (1 h) and late stationary phase (24 h), were found to be most susceptible to the action of the wings, with up to 89.7 and 61.3% as well as 97.9 and 97.1% dead cells resulting from contact with the wing surface, respectively.
Collapse
|
31
|
Liu Y, Zhu Y, Yuan D. Fabrication of superhydrophobic and conductive CNT/KB/PBZ nanocomposites. HIGH PERFORM POLYM 2016. [DOI: 10.1177/0954008316664964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, a simple and economical fabrication of superhydrophobic and conductive coatings with different loadings of carbon nanotubes (CNTs) and Ketjen black (KB) dispersed in polybenzoxazine (PBZ) solution is presented. The relationship between the ratio of CNT, KB and PBZ with the properties of the composites was investigated in this article. The morphology and structure of the obtained composites were characterized by scanning electron microscopy, the water contact angle (WCA) and sheet resistance were investigated using a contact angle goniometer and four-point probe technique. Loading different amounts of CNT, KB and PBZ allowed the composites to exhibit different degrees of hydrophobicity and conductivity. Interestingly, a synergistic effect has been observed between CNT and KB. It was found that the coatings containing CNT:KB:PBZ = 4:6:10 showed both the highest WCA (about 160°), lowest sliding angle (about 3°) and lowest sheet resistance, which can reach approximately 6.5 × 102 Ω/sq. Furthermore, the CNT/KB/PBZ nanocomposites have excellent stability under a wide range of pH values and different environmental conditions.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Radioactive Geology and Exploration Technology, Fundamental Science for National Defense, East China University of Technology, Nanchang, Jiangxi, 330013, China
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Yean Zhu
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, China
| | - Dingzhong Yuan
- School of Chemistry, Biology and Material Science, East China University of Technology, Nanchang, Jiangxi, 330013, China
| |
Collapse
|
32
|
Antibacterial titanium nano-patterned arrays inspired by dragonfly wings. Sci Rep 2015; 5:16817. [PMID: 26576662 PMCID: PMC4649496 DOI: 10.1038/srep16817] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022] Open
Abstract
Titanium and its alloys remain the most popular choice as a medical implant material because of its desirable properties. The successful osseointegration of titanium implants is, however, adversely affected by the presence of bacterial biofilms that can form on the surface, and hence methods for preventing the formation of surface biofilms have been the subject of intensive research over the past few years. In this study, we report the response of bacteria and primary human fibroblasts to the antibacterial nanoarrays fabricated on titanium surfaces using a simple hydrothermal etching process. These fabricated titanium surfaces were shown to possess selective bactericidal activity, eliminating almost 50% of Pseudomonas aeruginosa cells and about 20% of the Staphylococcus aureus cells coming into contact with the surface. These nano-patterned surfaces were also shown to enhance the aligned attachment behavior and proliferation of primary human fibroblasts over 10 days of growth. These antibacterial surfaces, which are capable of exhibiting differential responses to bacterial and eukaryotic cells, represent surfaces that have excellent prospects for biomedical applications.
Collapse
|
33
|
Guillermo-Ferreira R, Bispo PC, Appel E, Kovalev A, Gorb SN. Mechanism of the wing colouration in the dragonfly Zenithoptera lanei (Odonata: Libellulidae) and its role in intraspecific communication. JOURNAL OF INSECT PHYSIOLOGY 2015; 81:129-36. [PMID: 26188874 DOI: 10.1016/j.jinsphys.2015.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 05/13/2023]
Abstract
Zenithoptera dragonflies are known for their remarkable bluish colouration on their wings and unique male behaviour of folding and unfolding their wings while perching. However, nothing is known about the optical properties of such colouration and its structural and functional background. In this paper, we aimed to study the relationship between the wing membrane ultrastructure, surface microstructure and colour spectra of male wings in Zenithoptera lanei and test the hypothesis that colouration functions as a signal in territorial fights between males. The results show that the specific wing colouration derives from interference in alternating layers of melanized and unmelanized cuticle in the wing membrane, combined with diffuse scattering in two different layers of wax crystals on the dorsal wing surface, one lower layer of long filaments, and one upper layer of leaf-shaped crystals. The results also show that the thicker wax coverage of the dorsal surface of the wings results in increased brightness and reduced chroma. In the field experiments, we have demonstrated that there is a reduction of aggressive reactions of rivals towards individuals with experimentally reduced amount of blue wing colouration.
Collapse
Affiliation(s)
- Rhainer Guillermo-Ferreira
- Department of Hydrobiology, Federal University of São Carlos, Rod. Washington Luis, km 235, São Carlos, São Paulo, Brazil; Department of Biological Sciences, São Paulo State University, Av. Dom Antônio 2100, Assis, São Paulo, Brazil; Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany.
| | - Pitágoras C Bispo
- Department of Biological Sciences, São Paulo State University, Av. Dom Antônio 2100, Assis, São Paulo, Brazil
| | - Esther Appel
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
34
|
Hasan J, Raj S, Yadav L, Chatterjee K. Engineering a nanostructured "super surface" with superhydrophobic and superkilling properties. RSC Adv 2015; 5:44953-44959. [PMID: 29075481 PMCID: PMC5654505 DOI: 10.1039/c5ra05206h] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We present a nanostructured "super surface" fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 μm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0° and contact angle hysteresis of 8.3°. Bacterial studies revealed the bactericidal property of the surface against both gram negative (Escherichia coli) and gram positive (Staphylococcus aureus) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing self-cleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.
Collapse
Affiliation(s)
- Jafar Hasan
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Shammy Raj
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Lavendra Yadav
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, Karnataka, India 560012
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India 560012
| |
Collapse
|
35
|
Simple immersion to prepare a Zn/Ag biomimetic superhydrophobic surface and exploring its applications on SERS. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Nguyen SH, Webb HK, Mainwaring DE, Mahon PJ, Crawford RJ, Ivanova EP. Bacterial patterning at the three-phase line of contact with microtextured alkanes. BIOFOULING 2015; 31:297-307. [PMID: 25959368 DOI: 10.1080/08927014.2015.1038706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aliphatic crystallites, characteristic of the eicosane and docosane components of naturally occurring lipids, were found to form microtextures that were structured by specific interactions with ordered graphite (HOPG) used as the underlying substratum, as confirmed by scanning electron microscopy (SEM) and fast Fourier transform (FFT) analysis. Confocal scanning laser microscopy (CLSM) showed highly directed bacterial alignment for two bacterial species (spherical and rod-shaped), reflecting the preferential orientation of the crystallite-air-water interfaces to give linear and triangular bacterial patterning. The mechanisms of bacterial attachment are demonstrated in terms of the balance between effective radial adhesional forces and the capillary forces resulting from the water contact angle of the bacteria at the three-phase line (TPL) of the lipid surface. It is suggested that these microtextured surfaces, which exhibit the ability to limit bacterial adhesion to a precise patterning at the lipid TPL, could be used as a means of controlling bacterial colonization.
Collapse
Affiliation(s)
- Song Ha Nguyen
- a Faculty of Science, Engineering and Technology , Swinburne University of Technology , Hawthorn , Australia
| | | | | | | | | | | |
Collapse
|
37
|
Chen Y, Li N, Mo S, Xu Q. Preparation of a New Super Hydrophobic Material Based on Zirconium[(3-ethylsulfanyl)–propyl]–phosphonate. Ind Eng Chem Res 2013. [DOI: 10.1021/ie402106a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan Chen
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Donglu, Beijing 100029, China
| | - Nili Li
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Donglu, Beijing 100029, China
| | - Shijing Mo
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Donglu, Beijing 100029, China
| | - Qinghong Xu
- State Key Laboratory of Chemical
Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan Donglu, Beijing 100029, China
| |
Collapse
|