1
|
Linking path and filament persistence lengths of microtubules gliding over kinesin. Sci Rep 2022; 12:3081. [PMID: 35197505 PMCID: PMC8866476 DOI: 10.1038/s41598-022-06941-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
Microtubules and kinesin motor proteins are involved in intracellular transports in living cells. Such intracellular material transport systems can be reconstructed for utilisation in synthetic environments, and they are called molecular shuttles driven by kinesin motors. The performance of the molecular shuttles depends on the nature of their trajectories, which can be characterized by the path persistence length of microtubules. It has been theoretically predicted that the path persistence length should be equal to the filament persistence length of the microtubules, where the filament persistence length is a measure of microtubule flexural stiffness. However, previous experiments have shown that there is a significant discrepancy between the path and filament persistence lengths. Here, we showed how this discrepancy arises by using computer simulation. By simulating molecular shuttle movements under external forces, the discrepancy between the path and filament persistence lengths was reproduced as observed in experiments. Our close investigations of molecular shuttle movements revealed that the part of the microtubules bent due to the external force was extended more than it was assumed in the theory. By considering the extended length, we could elucidate the discrepancy. The insights obtained here are expected to lead to better control of molecular shuttle movements.
Collapse
|
2
|
Zhou H, Kaneko T, Isozaki N, Yokokawa R. Design of Mechanical and Electrical Properties for Multidirectional Control of Microtubules. Methods Mol Biol 2022; 2430:105-119. [PMID: 35476328 DOI: 10.1007/978-1-0716-1983-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microtubule (MT)-motor systems show promise as nanoscale actuator platforms for performing molecular manipulations in nanobiotechnology and micro total analysis systems. These systems have been demonstrated to exert a variety of functions, including the concentration, transportation, and detection of molecular cargos. Although gliding direction control of MTs is necessary for these applications, most direction control methods are currently conducted using micro/nanofabricated guiding structures and/or flow, magnetic, and electric field forces. These control methods force all MTs to exhibit identical gliding behaviors and destinations. In this chapter, we describe an active multidirectional control method for MT without guiding tracks. The bottom-up molecular design allowed MTs to be guided in designated directions under an electric field in a microfluidic device. By designing the stiffness and surface charge density of MTs, three types of MT (Stiff-MT, Soft-MT, and Charged soft-MT) with different mechanical and electrical properties are prepared. The gliding directions within an electric field are predicted according to the measured stiffness and electrophoretic mobility. Finally, the Stiff-MTs are separated from Soft-MTs and Charged soft-MTs with a microfluidic sorter.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Micro Engineering, Kyoto University, Kyoto, Japan
| | | | - Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto, Japan
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
4
|
Li F, Pan J, Choi JH. Local direction change of surface gliding microtubules. Biotechnol Bioeng 2019; 116:1128-1138. [PMID: 30659580 DOI: 10.1002/bit.26933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/30/2018] [Accepted: 01/16/2019] [Indexed: 11/07/2022]
Abstract
In vitro gliding assay, microtubule translocation by kinesin motor proteins on a surface, has been used as an engineering tool in analyte detection, molecular cargo transport, and other applications. Although controlling the moving direction is often necessary to realize these applications, current direction control methods focus largely on lithographic microfabrication of tracks or external fields on the microtubules. These methods are effective, but are relatively complicated. In addition, they cannot target particular microtubules without affecting others. In this study, we propose a facile approach that can make local direction changes for selected microtubules using a polystyrene particle as a circular motion center and a DNA double helix with streptavidin as a capture arm. The DNA arm captures a microtubule in the close proximity of the immobilized particle via biotin-streptavidin interaction and changes the moving direction ~10° on average. In contrast, no significant direction changes are observed other than random variations with streptavidin-less DNA arms (normal distribution centered at 0°), similar to regular motility assay. The particle-assisted local direction change scheme is compared with a flow field-based ensemble method. The combination of flow and kinesin interactions with each microtubule exerts a force to change the direction, ultimately aligning it to the flow field, regardless of its initial direction. A simple model based on the force balance predicts the time needed for such an alignment. Overall, the particle-based local scheme is distinct and different from ensemble methods such as crossflow that changes directions of all microtubules in the field, thus offering unique utility in engineering applications.
Collapse
Affiliation(s)
- Feiran Li
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Jing Pan
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Jong Hyun Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Abstract
Biomolecular motors, such as the motor protein kinesin, can be used as off-the-shelf components to power hybrid nanosystems. These hybrid systems combine elements from the biological and synthetic toolbox of the nanoengineer and can be used to explore the applications and design principles of active nanosystems. Efforts to advance nanoscale engineering benefit greatly from biological and biophysical research into the operating principles of motor proteins and their biological roles. In return, the process of creating in vitro systems outside of the context of biology can lead to an improved understanding of the physical constraints creating the fitness landscape explored by evolution. However, our main focus is a holistic understanding of the engineering principles applying to systems integrating molecular motors in general. To advance this goal, we and other researchers have designed biomolecular motor-powered nanodevices, which sense, compute, and actuate. In addition to demonstrating that biological solutions can be mimicked in vitro, these devices often demonstrate new paradigms without parallels in current technology. Long-term trends in technology toward the deployment of ever smaller and more numerous motors and computers give us confidence that our work will become increasingly relevant. Here, our discussion aims to step back and look at the big picture. From our perspective, energy efficiency is a key and underappreciated metric in the design of synthetic motors. On the basis of an analogy to ecological principles, we submit that practical molecular motors have to have energy conversion efficiencies of more than 10%, a threshold only exceeded by motor proteins. We also believe that motor and system lifetime is a critical metric and an important topic of investigation. Related questions are if future molecular motors, by necessity, will resemble biomolecular motors in their softness and fragility and have to conform to the "universal performance characteristics of motors", linking the maximum force and mass of any motor, identified by Marden and Allen. The utilization of molecular motors for computing devices emphasizes the interesting relationship among the conversion of energy, extraction of work, and production of information. Our recent work touches upon these topics and discusses molecular clocks as well as a Landauer limit for robotics. What is on the horizon? Just as photovoltaics took advantage of progress in semiconductor fabrication to become commercially viable over a century, one can envision that engineers working with biomolecular motors leverage progress in biotechnology and drug development to create the engines of the future. However, the future source of energy is going to be electricity rather than fossil or biological fuels, a fact that has to be accounted for in our future efforts. In summary, we are convinced that past, ongoing, and future efforts to engineer with biomolecular motors are providing exciting demonstrations and fundamental insights as well as opportunities to wander freely across the borders of engineering, biology, and chemistry.
Collapse
Affiliation(s)
- Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
6
|
Isozaki N, Shintaku H, Kotera H, Hawkins TL, Ross JL, Yokokawa R. Control of molecular shuttles by designing electrical and mechanical properties of microtubules. Sci Robot 2017; 2:2/10/eaan4882. [PMID: 33157889 DOI: 10.1126/scirobotics.aan4882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
Kinesin-driven microtubules have been focused on to serve as molecular transporters, called "molecular shuttles," to replace micro/nanoscale molecular manipulations necessitated in micro total analysis systems. Although transport, concentration, and detection of target molecules have been demonstrated, controllability of the transport directions is still a major challenge. Toward broad applications of molecular shuttles by defining multiple moving directions for selective molecular transport, we integrated a bottom-up molecular design of microtubules and a top-down design of a microfluidic device. The surface charge density and stiffness of microtubules were controlled, allowing us to create three different types of microtubules, each with different gliding directions corresponding to their electrical and mechanical properties. The measured curvature of the gliding microtubules enabled us to optimize the size and design of the device for molecular sorting in a top-down approach. The integrated bottom-up and top-down design achieved separation of stiff microtubules from negatively charged, soft microtubules under an electric field. Our method guides multiple microtubules by integrating molecular control and microfluidic device design; it is not only limited to molecular sorters but is also applicable to various molecular shuttles with the high controllability in their movement directions.
Collapse
Affiliation(s)
- Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taviare L Hawkins
- Department of Physics, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts Amherst, 666 North Pleasant Street, Amherst, MA 01003, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
7
|
Tarhan MC, Yokokawa R, Jalabert L, Collard D, Fujita H. Pick-and-Place Assembly of Single Microtubules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1701136. [PMID: 28692749 DOI: 10.1002/smll.201701136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Intracellular transport is affected by the filament network in the densely packed cytoplasm. Biophysical studies focusing on intracellular transport based on microtubule-kinesin system frequently use in vitro motility assays, which are performed either on individual microtubules or on random (or simple) microtubule networks. Assembling intricate networks with high flexibility requires the manipulation of 25 nm diameter microtubules individually, which can be achieved through the use of pick-and-place assembly. Although widely used to assemble tiny objects, pick-and-place is not a common practice for the manipulation of biological materials. Using the high-level handling capabilities of microelectromechanical systems (MEMS) technology, tweezers are designed and fabricated to pick and place single microtubule filaments. Repeated picking and placing cycles provide a multilayered and multidirectional microtubule network even for different surface topographies. On-demand assembly of microtubules forms crossings at desired angles for biophysical studies as well as complex networks that can be used as nanotransport systems.
Collapse
Affiliation(s)
- Mehmet Cagatay Tarhan
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- CIRMM, IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, 41 Blvd. Vauban, Lille, 59046, France
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, C3-c2S18, Kyoto daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Laurent Jalabert
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Dominique Collard
- LIMMS/CNRS-IIS (UMI2820), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hiroyuki Fujita
- CIRMM, IIS, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
8
|
Vélez M. Dynamic and Active Proteins: Biomolecular Motors in Engineered Nanostructures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:121-141. [DOI: 10.1007/978-3-319-39196-0_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Korten T, Chaudhuri S, Tavkin E, Braun M, Diez S. Kinesin-1 Expressed in Insect Cells Improves Microtubule in Vitro Gliding Performance, Long-Term Stability and Guiding Efficiency in Nanostructures. IEEE Trans Nanobioscience 2016; 15:62-9. [PMID: 26886999 DOI: 10.1109/tnb.2016.2520832] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cytoskeletal motor protein kinesin-1 has been successfully used for many nanotechnological applications. Most commonly, these applications use a gliding assay geometry where substrate-attached motor proteins propel microtubules along the surface. So far, this assay has only been shown to run undisturbed for up to 8 h. Longer run times cause problems like microtubule shrinkage, microtubules getting stuck and slowing down. This is particularly problematic in nanofabricated structures where the total number of microtubules is limited and detachment at the structure walls causes additional microtubule loss. We found that many of the observed problems are caused by the bacterial expression system, which has so far been used for nanotechnological applications of kinesin-1. We strive to enable the use of this motor system for more challenging nanotechnological applications where long-term stability and/or reliable guiding in nanostructures is required. Therefore, we established the expression and purification of kinesin-1 in insect cells which results in improved purity and--more importantly--long-term stability > 24 h and guiding efficiencies of > 90% in lithographically defined nanostructures.
Collapse
|
10
|
Fujimoto K, Nagai M, Shintaku H, Kotera H, Yokokawa R. Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip. LAB ON A CHIP 2015; 15:2055-2063. [PMID: 25805147 DOI: 10.1039/c5lc00148j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microtubules driven by kinesin motors have been utilised as "molecular shuttles" in microfluidic environments with potential applications in autonomous nanoscale manipulations such as capturing, separating, and/or concentrating biomolecules. However, the conventional flow cell-based assay has difficulty in separating bound target molecules from free ones even with buffer flushing because molecular manipulations by molecular shuttles take place on a glass surface and molecular binding occurs stochastically; this makes it difficult to determine whether molecules are carried by molecular shuttles or by diffusion. To address this issue, we developed a microtubule-based transport system between two compartments connected by a single-micrometre-scale channel array that forms dynamically via pneumatic actuation of a polydimethylsiloxane membrane. The device comprises three layers-a control channel layer (top), a microfluidic channel layer (middle), and a channel array layer (bottom)-that enable selective injection of assay solutions into a target compartment and dynamic formation of the microchannel array. The pneumatic channel also serves as a nitrogen supply path to the assay area, which reduces photobleaching of fluorescently labelled microtubules and deactivation of kinesin by oxygen radicals. The channel array suppresses cross-contamination of molecules caused by diffusion or pressure-driven flow between compartments, facilitating unidirectional transport of molecular shuttles from one compartment to another. The method demonstrates, for the first time, efficient and unidirectional microtubule transport by eliminating diffusion of target molecules on a chip and thus may constitute one of the key aspects of motor-driven nanosystems.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | | | | | | | | |
Collapse
|
11
|
Control of microtubule trajectory within an electric field by altering surface charge density. Sci Rep 2015; 5:7669. [PMID: 25567007 PMCID: PMC4286733 DOI: 10.1038/srep07669] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/04/2014] [Indexed: 11/08/2022] Open
Abstract
One of challenges for using microtubules (MTs) driven by kinesin motors in microfluidic environments is to control their direction of movement. Although applying physical biases to rectify MTs is prevalent, it has not been established as a design methodology in conjunction with microfluidic devices. In the future, the methodology is expected to achieve functional motor-driven nanosystems. Here, we propose a method to guide kinesin-propelled MTs in multiple directions under an electric field by designing a charged surface of MT minus ends labeled with dsDNA via a streptavidin-biotin interaction. MTs labeled with 20-bp or 50-bp dsDNA molecules showed significantly different trajectories according to the DNA length, which were in good agreement with values predicted from electrophoretic mobilities measured for their minus ends. Since the effective charge of labeled DNA molecules was equal to that of freely dispersed DNA molecules in a buffer solution, MT trajectory could be estimated by selecting labeling molecules with known charges. Moreover, the estimated trajectory enables to define geometrical sizes of a microfluidic device. This rational molecular design and prediction methodology allows MTs to be guided in multiple directions, demonstrating the feasibility of using molecular sorters driven by motor proteins.
Collapse
|
12
|
Ishigure Y, Nitta T. Understanding the guiding of kinesin/microtubule-based microtransporters in microfabricated tracks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12089-12096. [PMID: 25238638 DOI: 10.1021/la5021884] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Microtransporters using cargo-laden microtubules propelled by kinesin motors are attractive for numerous applications in nanotechnology. To improve the efficiency of transport, the movement of microtubules must be guided by microfabricated tracks. However, the mechanisms of the guiding methods used are not fully understood. Here, using computer simulation, we systematically studied the guiding of such microtransporters by three different types of guiding methods: a chemical boundary, a physical barrier, and their combination. The simulation reproduced the probabilities of guiding previously observed experimentally for the three methods. Moreover, the simulation provided further insight into the mechanisms of guiding, which overturn previous assumptions and models.
Collapse
Affiliation(s)
- Yuki Ishigure
- Department of Mathematical Design and Engineering and ‡Applied Physics Course, Gifu University , Gifu 501-1193, Japan
| | | |
Collapse
|
13
|
Steuerwald D, Früh SM, Griss R, Lovchik RD, Vogel V. Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device. LAB ON A CHIP 2014; 14:3729-3738. [PMID: 25008788 DOI: 10.1039/c4lc00385c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanoshuttles powered by the molecular motor kinesin have the potential to capture and concentrate rare molecules from solution as well as to transport, sort and assemble them in a high-throughput manner. One long-thought-of goal has been the realisation of a molecular assembly line with nanoshuttles as workhorses. To harness them for this purpose might allow the community to engineer novel materials and nanodevices. The central milestone towards this goal is to expose nanoshuttles to a series of different molecules or building blocks and load them sequentially to build hierarchical structures, macromolecules or materials. Here, we addressed this challenge by exploiting the synergy of two so far mostly complementary techniques, nanoshuttle-mediated active transport and pressure-driven passive transport, integrated into a single microfluidic device to demonstrate the realisation of a molecular assembly line. Multiple step protocols can thus be miniaturised to a highly parallelised and autonomous working lab-on-a-chip: in each reaction chamber, analytes or building blocks are captured from solution and are then transported by nanoshuttles across fluid flow boundaries in the next chamber. Cargo can thus be assembled, modified, analysed and eventually unloaded in a procedure that requires only one step by its operator.
Collapse
Affiliation(s)
- Dirk Steuerwald
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
14
|
Biomolecular motors in nanoscale materials, devices, and systems. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:163-77. [DOI: 10.1002/wnan.1252] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/01/2013] [Accepted: 10/09/2013] [Indexed: 11/07/2022]
|