1
|
Pandey Y, Kumar N, Goubert G, Zenobi R. Nanoscale Chemical Imaging of Supported Lipid Monolayers using Tip‐Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yashashwa Pandey
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
- Current address: Department of Chemistry Université du Québec à Montréal Montreal Québec H2X 2J6 Canada
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences ETH Zurich Vladimir-Prelog-Weg 1–5/10 8093 Zürich Switzerland
| |
Collapse
|
2
|
Pandey Y, Kumar N, Goubert G, Zenobi R. Nanoscale Chemical Imaging of Supported Lipid Monolayers using Tip-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021; 60:19041-19046. [PMID: 34170590 PMCID: PMC8456802 DOI: 10.1002/anie.202106128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/20/2021] [Indexed: 12/01/2022]
Abstract
Visualizing the molecular organization of lipid membranes is essential to comprehend their biological functions. However, current analytical techniques fail to provide a non‐destructive and label‐free characterization of lipid films under ambient conditions at nanometer length scales. In this work, we demonstrate the capability of tip‐enhanced Raman spectroscopy (TERS) to probe the molecular organization of supported DPPC monolayers on Au (111), prepared using the Langmuir–Blodgett (LB) technique. High‐quality TERS spectra were obtained, that permitted a direct correlation of the topography of the lipid monolayer with its TERS image for the first time. Furthermore, hyperspectral TERS imaging revealed the presence of nanometer‐sized holes within a continuous DPPC monolayer structure. This shows that a homogeneously transferred LB monolayer is heterogeneous at the nanoscale. Finally, the high sensitivity and spatial resolution down to 20 nm of TERS imaging enabled reproducible, hyperspectral visualization of molecular disorder in the DPPC monolayers, demonstrating that TERS is a promising nanoanalytical tool to investigate the molecular organization of lipid membranes.
Collapse
Affiliation(s)
- Yashashwa Pandey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Guillaume Goubert
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland.,Current address: Department of Chemistry, Université du Québec à Montréal, Montreal, Québec, H2X 2J6, Canada
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| |
Collapse
|
3
|
Henderson RDE, Filice CT, Wettig S, Leonenko Z. Kelvin probe force microscopy to study electrostatic interactions of DNA with lipid-gemini surfactant monolayers for gene delivery. SOFT MATTER 2021; 17:826-833. [PMID: 33346309 DOI: 10.1039/d0sm01926g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In novel gene therapy mechanisms utilising gemini surfactants, electrostatic interactions of the surfactant molecules with the DNA strands is a primary mechanism by which the two components of the delivery vehicle bind. In this work, we show for the first time direct evidence of electrostatic interactions of these compounds visualised with Kelvin probe force microscopy (KPFM) and correlated to their topography from atomic force microscopy (AFM). We construct monolayers of lipids and gemini surfactant to simulate interactions on a cellular level, using lipids commonly found in cell membranes, and allow DNA to bind to the monolayer as it is formed on a Langmuir-Blodgett trough. The difference in topography and electrical surface potential between monolayers with and without DNA is striking. In fact, KPFM reveals a strongly positive relative electrical surface potential in between where we identify a background lipid and the DNA strands, evidenced by the height profiles of the domains. Such identification is not possible without KPFM. We conclude that it is likely we are seeing cationic surfactant molecules surrounding DNA strands within a sea of background lipid.
Collapse
Affiliation(s)
- Robert D E Henderson
- Department of Physics & Astronomy, University of Waterloo, Waterloo, ON, Canada.
| | | | | | | |
Collapse
|
4
|
Janich C, Hädicke A, Bakowsky U, Brezesinski G, Wölk C. Interaction of DNA with Cationic Lipid Mixtures-Investigation at Langmuir Lipid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10172-10183. [PMID: 28873311 DOI: 10.1021/acs.langmuir.7b02014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four different binary lipid mixtures composed of a cationic lipid and the zwitterionic colipids DOPE or DPPC, which show different DNA transfer activities in cell culture models, were investigated at the soft air/water interface to identify transfection efficiency determining characteristics. Langmuir films are useful models to investigate the interaction between DNA and lipid mixtures in a two-dimensional model system by using different surface sensitive techniques, namely, epifluorescence microscopy and infrared reflection-absorption spectroscopy. Especially, the effect of adsorbed DNA on the properties of the lipid mixtures has been examined. Distinct differences between the lipid composites were found which are caused by the different colipids of the mixtures. DOPE containing lipid mixtures form fluid monolayers with a uniform distribution of the fluorescent probe in the presence and absence of DNA at physiologically relevant surface pressures. Only at high nonphysiological pressures, the lipid monolayer collapses and phase separation was observed if DNA was present in the subphase. In contrast, DPPC containing lipid mixtures show domains in the liquid condensed phase state in the presence and absence of DNA in the subphase. The adsorption of DNA at the positively charged mixed lipid monolayer induces phase separation which is expressed in the morphology and the point of appearance of these domains.
Collapse
Affiliation(s)
- Christopher Janich
- Martin Luther University Halle-Wittenberg , Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - André Hädicke
- CUO-Recherche, Hôpital du Saint-Sacrement, Centre de recherche du CHU de Québec and Département d'ophtalmologie, Faculté de médecine, and Regroupement stratégique PROTEO, Université Laval , Québec, Québec, Canada
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University Marburg , Ketzerbach 63, 35037 Marburg, Germany
| | - Gerald Brezesinski
- Max-Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm , Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Christian Wölk
- Martin Luther University Halle-Wittenberg , Institute of Pharmacy, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
Wilde M, Green RJ, Sanders MR, Greco F. Biophysical studies in polymer therapeutics: the interactions of anionic and cationic PAMAM dendrimers with lipid monolayers. J Drug Target 2017; 25:910-918. [DOI: 10.1080/1061186x.2017.1365877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marleen Wilde
- School of Pharmacy, University of Reading, Reading, UK
| | | | | | | |
Collapse
|
6
|
Drolle E, Negoda A, Hammond K, Pavlov E, Leonenko Z. Changes in lipid membranes may trigger amyloid toxicity in Alzheimer's disease. PLoS One 2017; 12:e0182194. [PMID: 28767712 PMCID: PMC5540602 DOI: 10.1371/journal.pone.0182194] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Amyloid-beta peptides (Aβ), implicated in Alzheimer’s disease (AD), interact with the cellular membrane and induce amyloid toxicity. The composition of cellular membranes changes in aging and AD. We designed multi-component lipid models to mimic healthy and diseased states of the neuronal membrane. Using atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM) and black lipid membrane (BLM) techniques, we demonstrated that these model membranes differ in their nanoscale structure and physical properties, and interact differently with Aβ1–42. Based on our data, we propose a new hypothesis that changes in lipid membrane due to aging and AD may trigger amyloid toxicity through electrostatic mechanisms, similar to the accepted mechanism of antimicrobial peptide action. Understanding the role of the membrane changes as a key activating amyloid toxicity may aid in the development of a new avenue for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Elizabeth Drolle
- Department of Biology, University of Waterloo, Waterloo, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada
| | - Alexander Negoda
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Keely Hammond
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| | - Evgeny Pavlov
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada.,Department of Basic Sciences, New York University College of Dentistry, New York, New York, United States of America
| | - Zoya Leonenko
- Department of Biology, University of Waterloo, Waterloo, Canada.,Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
| |
Collapse
|
7
|
Mora-Boza A, Lopes-Costa T, Gámez F, Pedrosa JM. Unveiling the interaction of DNA–octadecylamine at the air–water interface by ultraviolet-visible reflection spectroscopy. RSC Adv 2017. [DOI: 10.1039/c6ra27903a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, ultraviolet-visible reflection spectroscopy is proposed as a technique that, in combination with classical surface pressure–area isotherms, allows to study in situ the adsorption of DNA to octadecylamine monolayers.
Collapse
Affiliation(s)
- A. Mora-Boza
- Department of Physical, Chemical and Natural Systems
- Universidad Pablo de Olavide
- 41013 Seville
- Spain
| | - T. Lopes-Costa
- Department of Physical, Chemical and Natural Systems
- Universidad Pablo de Olavide
- 41013 Seville
- Spain
| | - F. Gámez
- Department of Physical, Chemical and Natural Systems
- Universidad Pablo de Olavide
- 41013 Seville
- Spain
| | - J. M. Pedrosa
- Department of Physical, Chemical and Natural Systems
- Universidad Pablo de Olavide
- 41013 Seville
- Spain
| |
Collapse
|
8
|
Lyadinskaya VV, Lin SY, Michailov AV, Povolotskiy AV, Noskov BA. Phase Transitions in DNA/Surfactant Adsorption Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13435-13445. [PMID: 27993018 DOI: 10.1021/acs.langmuir.6b03396] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The adsorption layers of complexes between DNA and oppositely charged surfactants dodecyltrimethylammonium bromide (DTAB) and cetyltrimethylammonium bromide (CTAB) at the solution/air interface were studied with surface tensiometry, dilational surface rheology, atomic force microscopy, Brewster angle microscopy, infrared absorption-reflection spectroscopy, and ellipsometry. Measurements of the kinetic dependencies of the surface properties gave a possibility to discover the time intervals corresponding to the coexistence of two-dimensional phases. One can assume that the observed phase transition is of the first order, unlike the formation of microaggregates in the adsorption layers of mixed solutions of synthetic polyelectrolytes and surfactants. The multitechniques approach together with the calculations of the adsorption kinetics allowed the elucidation of the structure of coexisting surface phases and the distinguishing of four main steps of adsorption layer formation at the surface of DNA/surfactant solutions.
Collapse
Affiliation(s)
- Vanda V Lyadinskaya
- National Taiwan University of Science and Technology , Chemical Engineering Department, 43 Keelung Road, Section 4, 106 Taipei, Taiwan
| | - Shi-Yow Lin
- National Taiwan University of Science and Technology , Chemical Engineering Department, 43 Keelung Road, Section 4, 106 Taipei, Taiwan
| | - Alexander V Michailov
- Institute of Chemistry, St. Petersburg State University , Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Alexey V Povolotskiy
- Institute of Chemistry, St. Petersburg State University , Universitetsky pr. 26, 198504 St. Petersburg, Russia
| | - Boris A Noskov
- Institute of Chemistry, St. Petersburg State University , Universitetsky pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
9
|
Lipid Monolayers with Adsorbed Oppositely Charged Polyelectrolytes: Influence of Reduced Charge Densities. Polymers (Basel) 2014. [DOI: 10.3390/polym6071999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Ortmann T, Ahrens H, Lawrenz F, Gröning A, Nestler P, Günther JU, Helm CA. Lipid monolayers and adsorbed polyelectrolytes with different degrees of polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6768-6779. [PMID: 24892967 DOI: 10.1021/la5001478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polystyrene sulfonate (PSS) of different molecular weight M(w) is adsorbed to oppositely charged DODAB monolayers from dilute solutions (0.01 mmol/L). PSS adsorbs flatly in a lamellar manner, as is shown by X-ray reflectivity and grazing incidence diffraction (exception: PSS with M(w) below 7 kDa adsorbs flatly disordered to the liquid expanded phase). The surface coverage and the separation of the PSS chains are independent of PSS M(w). On monolayer compression, the surface charge density increases by a factor of 2, and the separation of the PSS chains decreases by the same factor. Isotherms show that on increase of PSS M(w) the transition pressure of the LE/LC (liquid expanded/liquid condensed) phase transition decreases. When the contour length exceeds the persistence length (21 nm), the transition pressure is low and constant. For low-M(w) PSS (<7 kDa) the LE/LC transition of the lipids and the disordered/ordered transition of adsorbed PSS occur simultaneously, leading to a maximum in the contour length dependence of the transition enthalpy. These findings show that lipid monolayers at the air/water interface are a suitable model substrate with adjustable surface charge density to study the equilibrium conformation of adsorbed polyelectrolytes as well as their interactions with a model membrane.
Collapse
Affiliation(s)
- Thomas Ortmann
- Institut für Physik, Ernst-Moritz-Arndt Universität , Felix-Hausdorff-Straße 6, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Lee J, Chang CH. DNA association-enhanced physical stability of catanionic vesicles composed of ion pair amphiphile with double-chain cationic surfactant. Colloids Surf B Biointerfaces 2014; 121:171-7. [PMID: 24984265 DOI: 10.1016/j.colsurfb.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
Physical stability control of vesicle/DNA complexes is a key issue for the development of catanionic vesicles composed of ion pair amphiphile (IPA) as DNA carriers. In this work, physical stability characteristics of the complexes of DNA with positively charged catanionic vesicles composed of an IPA and a double-chain cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), were explored. It was found that in water, the mixed IPA/DHDAB catanionic vesicles became stable when the mole fraction of DHDAB (xDHDAB) was increased up to 0.5. The improved physical stability of the vesicles with a high xDHDAB could be related to the enhanced electrostatic interaction between the vesicles. When the catanionic vesicles interacted with DNA, excellent physical stability was detected for the vesicle/DNA complexes especially with a high xDHDAB. However, this could not be fully explained by the electrostatic interaction effect, and the role of molecular packing within the vesicular bilayers was apparently important. The corresponding Langmuir monolayer study demonstrated that the molecular packing of mixed IPA/DHDAB layers became ordered with DNA association due to inhibited desorption of the positively charged moiety of the IPA. Moreover, the DNA association-induced improvement in the molecular packing of the mixed IPA/DHDAB layers became pronounced with increased xDHDAB. The results imply that one can fabricate catanionic vesicle/DNA complexes with excellent physical stability through the improved molecular packing in the IPA vesicular bilayers with DHDAB addition and DNA association.
Collapse
Affiliation(s)
- Jung Lee
- Department of Chemical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 701, Taiwan
| | - Chien-Hsiang Chang
- Department of Chemical Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 701, Taiwan.
| |
Collapse
|
12
|
Lee J, Chang CH. The interaction between the outer layer of a mixed ion pair amphiphile/double-chained cationic surfactant vesicle and DNA: a Langmuir monolayer study. SOFT MATTER 2014; 10:1831-1839. [PMID: 24652187 DOI: 10.1039/c3sm52276h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The charge density of vesicular bilayers plays an important role in the structure characteristic of the vesicle-DNA complex for gene delivery. In this work, the charge density effect of catanionic vesicle surfaces on the association behavior of the vesicle with DNA was explored with the model Langmuir monolayer approach. The interaction of negatively charged DNA with positively charged Langmuir monolayers composed of catanionic vesicle-forming materials, hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS) and dihexadecyldimethylammonium bromide (DHDAB), was investigated with surface pressure-area isotherms, area-time relaxation curves and Brewster angle microscope images. The results showed that the adsorption of DNA molecules onto the monolayers was enhanced with an increased DHDAB molar fraction (XDHDAB), which was apparently related to the increased charge density of the monolayers. With XDHDAB being increased up to 0.5, the mixed monolayers with a higher XDHDAB, or higher charge density, possessed a more stable characteristic at high surface pressures, at which the molecular status was close to that in a corresponding vesicular bilayer, due to the DHDAB-improved molecular packing/interaction. It was found that the composition of the mixed HTMA-DS-DHDAB monolayers at high surface pressures would be affected by the adsorbed DNA with the extent depending on XDHDAB. For the formation of stable HTMA-DS-DHDAB monolayer-DNA complexes, a strong electrostatic interaction of DNA with a monolayer of high charge density and a high monolayer stability characteristic resulting from DHDAB-improved molecular packing/interaction were thus required. The finding has an implication for the formulation of catanionic vesicles composed of an ion pair amphiphile, HTMA-DS, with DHDAB in gene delivery applications.
Collapse
Affiliation(s)
- Jung Lee
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan.
| | | |
Collapse
|