1
|
Adlim M, Surbakti MS, Omar AF, Rahmayani RFI, Hasmar AH, Ozmen I, Yavuz M. Detecting dissolved mercury(ii) ions using chitosan-AgNP strips integrated with smartphones. RSC Adv 2024; 14:27504-27513. [PMID: 39221122 PMCID: PMC11363817 DOI: 10.1039/d4ra04901b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
A simple preparation of a paper strip test with a smartphone-based instrument for detecting dissolved mercury is still in development. This study aims to develop a smartphone-based colorimetric paper strip test using chitosan-stabilized silver nanoparticles for detecting dissolved mercury. The method demonstrated high sensitivity and selectivity for Hg2+ ions, with detection limits comparable to UV-vis spectrophotometry. Silver ions embedded in the chitosan matrix were reduced by either sodium NaBH4 or N2H4. Both chi-AgNP colloidal and chi-AgNP paper strips were tested for sensitivity of mercury(ii) solution detection with and without ion interference. The accuracy of colour change responding to the mercury concentration was recorded with several smartphones in a handmade cubical and a T-shape micro-studio. Only NaBH4 gives colloidal chi-AgNPs relatively dispersed, and the colloidal chi-AgNPs become aggregated when AgNP interacts with mercury(ii) ions. The colour change of chi-AgNP paper strips responding to the concentration of mercury(ii) and quantified using a smartphone is consistent when confirmed with UV-vis spectrophotometric determination with a comparable limit of detection (0.76 μM). The inferring ions do not significantly affect mercury(ii) analyses. Therefore, the paper strip integrated with the smartphone is effectively used for mercury(ii) detection in water as long as the mercury concentration is >1 μM. This finding might inspire advanced technology with a larger number of data references, and machine learning involvement to develop more compatible and simple mercury detection.
Collapse
Affiliation(s)
- Muhammad Adlim
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala Darussalam Banda Aceh 23111 Indonesia
- Chemistry Department, FKIP, Universitas Syiah Kuala Darussalam Banda Aceh 23111 Indonesia
| | | | - Ahmad Fairuz Omar
- School of Physics, Universiti Sains Malaysia Minden Pulau Pinang 11800 Malaysia
| | | | - Abdul Haris Hasmar
- Islamic Education Department, FTK UIN Ar-Raniry Banda Aceh Darussalam Banda Aceh 23111 Indonesia
| | - Ismail Ozmen
- Department of Chemistry, Faculty of Engineering and Nature Sciences, Suleyman Demirel University Isparta 32260 Turkey
| | - Musa Yavuz
- Animal Science Department, Agriculture Faculty, Isparta University of Applied Sciences Isparta 32260 Turkey
| |
Collapse
|
2
|
Heo D, Kim KJ, Kwon SJ. Superior Single-Entity Electrochemistry Performance of Capping Agent-Free Gold Nanoparticles Compared to Citrate-Capped Gold Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1399. [PMID: 39269061 PMCID: PMC11397711 DOI: 10.3390/nano14171399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
In observing the electrocatalytic current of nanoparticles (NPs) using single-entity electrochemistry (SEE), the surface state of the NPs significantly influences the SEE signal. This study investigates the influence of capping agents on the electrocatalytic properties of gold (Au) NPs using SEE. Two inner-sphere reactions, hydrazine oxidation and glucose oxidation, were chosen to explore the SEE characteristics of Au NPs based on the capping agent presence. The results revealed that "capping agent-free" Au NPs exhibited signal magnitudes and frequencies consistent with theoretical expectations, indicating superior stability and catalytic performance in electrolyte solutions. In contrast, citrate-capped Au NPs showed signals varying depending on the applied potential, with larger magnitudes and lower frequencies than expected, likely due to an aggregation of NPs. This study suggests that capping agents play a crucial role in the catalytic performance and stability of Au NPs in SEE. By demonstrating that minimizing capping agent presence can enhance effectiveness in SEE, it provides insights into the future applications of NPs, particularly highlighting their potential as nanocatalysts in energy conversion reactions and environmental applications.
Collapse
Affiliation(s)
- Dain Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ki Jun Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Ha LD, Kim KJ, Kwon SJ, Chang BY, Hwang S. Time-Resolved Electrochemical Impedance Spectroscopy of Stochastic Nanoparticle Collision: Short Time Fourier Transform versus Continuous Wavelet Transform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302158. [PMID: 37162441 DOI: 10.1002/smll.202302158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Indexed: 05/11/2023]
Abstract
This work demonstrates the utilization of short-time Fourier transform (STFT), and continuous wavelet transform (CWT) electrochemical impedance spectroscopy (EIS) for time-resolved analysis of stochastic collision events of platinum nanoparticles (NPs) onto gold ultramicroelectrode (UME). The enhanced electrocatalytic activity is observed in both chronoamperometry (CA) and EIS. CA provides the impact moment and rough estimation of the size of NPs. The quantitative information such as charge transfer resistance (Rct ) relevant to the exchange current density of a single Pt NP is estimated from EIS. The CWT analysis of the phase angle parameter is better for NP collision detection in terms of time resolution compared to the STFT method.
Collapse
Affiliation(s)
- Long Duong Ha
- Department of Advanced Materials Chemistry, Korea University, Sejong, 30019, South Korea
| | - Ki Jun Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Byoung-Yong Chang
- Department of Chemistry, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, South Korea
| | - Seongpil Hwang
- Department of Advanced Materials Chemistry, Korea University, Sejong, 30019, South Korea
| |
Collapse
|
5
|
Na J, Park K, Kwon SJ. Single-Entity Electrochemistry in the Agarose Hydrogel: Observation of Enhanced Signal Uniformity and Signal-to-Noise Ratio. Gels 2023; 9:537. [PMID: 37504416 PMCID: PMC10379969 DOI: 10.3390/gels9070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
For the first time, single-entity electrochemistry (SEE) was demonstrated in a hydrogel matrix. SEE involves the investigation of the electrochemical characteristics of individual nanoparticles (NPs) by observing the signal generated when a single NP, suspended in an aqueous solution, collides with an electrode and triggers catalytic reactions. Challenges associated with SEE in electrolyte-containing solutions such as signal variation due to NP aggregation and noise fluctuation caused by convection phenomena can be addressed by employing a hydrogel matrix. The polymeric hydrogel matrix acts as a molecular sieve, effectively filtering out unexpected signals generated by aggregated NPs, resulting in more uniform signal observations compared to the case in a solution. Additionally, the hydrogel environment can reduce the background current fluctuations caused by natural convection and other factors such as impurities, facilitating easier signal analysis. Specifically, we performed SEE of platinum (Pt) NPs for hydrazine oxidation within the agarose hydrogel to observe the electrocatalytic reaction at a single NP level. The consistent porous structure of the agarose hydrogel leads to differential diffusion rates between individual NPs and reactants, resulting in variations in signal magnitude, shape, and frequency. The changes in the signal were analyzed in response to gel concentration variations.
Collapse
Affiliation(s)
- Jaedo Na
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyungsoon Park
- Department of Chemistry and Cosmetics, Jeju Nation University, Jeju 63243, Republic of Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Wang Y, Xue XL, Zhang Q, Wang KP, Chen S, Tang L, Hu ZQ. A hemicyanine-based near-infrared fluorescent probe for vapor-phase hydrazine detection and bioimaging in a complete aqueous media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121406. [PMID: 35617838 DOI: 10.1016/j.saa.2022.121406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/30/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
A novel near-infrared fluorescent probe CyOE based on hemicyanine dye containing acetyl as a recognition site is reported. The probe CyOE shows high selectivity and sensitivity (LOD = 82 nM, 2.58 ppb), as well as good water solubility and quantitative detectability of hydrazine in the concentration range of 0-75 μM (R2 = 0.993). Moreover, CyOE has a significant increase in fluorescence at 735 nm with the addition of N2H4, which provides a rapid, colorimetric and gas-phase detection method for N2H4 in both aqueous solution and real water samples. In addition, CyOE is successfully utilized to visualize hydrazine in cells with low cytotoxicity and high cell permeability.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiao-Lei Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Linsheng Tang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
7
|
Rudakemwa H, Kim KJ, Park TE, Son H, Na J, Kwon SJ. Observation and Analysis of Staircase Response of Single Palladium Nanoparticle Collision on Gold Ultramicroelectrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183095. [PMID: 36144883 PMCID: PMC9500959 DOI: 10.3390/nano12183095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 05/14/2023]
Abstract
Collision (or impact) of single palladium nanoparticles (Pd NPs) on gold (Au), copper (Cu), nickel (Ni), and platinum (Pt) ultramicroelectrodes (UMEs) were investigated via electrocatalytic amplification method. Unlike the blip responses of previous Pd NP collision studies, the staircase current response was obtained with the Au UME. The current response, including collision frequency and peak magnitude, was analyzed depending on the material of the UME and the applied potential. Adsorption factors implying the interaction between the Pd NP and the UMEs are suggested based on the experimental results.
Collapse
|
8
|
Dai W, Wei W, Yao Z, Xiang S, Zhang Z. A photochromic NDI-based framework for the facile hydrazine sensor. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Yang X, Ding Y, Li Y, Yan M, Cui Y, Sun G. Dual-channel colorimetric fluorescent probe for determination of hydrazine and mercury ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119868. [PMID: 33940570 DOI: 10.1016/j.saa.2021.119868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 04/04/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Hydrazine and mercury (Hg) poisoning represented a serious hazard to human health. So, developing method to detect and recognize them is highly desirable. Here, we prepared a multifunctional colorimetric and fluorescent probe (PI-Rh) consisting of a phenanthroimidazole (PI) dye conjugated with a Rhodamine (Rh) group for the effective recognition of hydrazine and Hg2+, induvidually and collectively, with different colorimetric and fluorescence outputs. Probe PI-Rh displays low detection limits measured to be 0.0632 μM (~2 ppb) and 0.0101 μM (~2 ppb) respectively for hydrazine and Hg2+ with high selectivity and excellent sensitivity. Moreover, the experimental results indicated that the superiority of this probe lied in its wide applications, for example, successful response in real water, and soil analysis. Interestingly, an visual, rapid, and real-time detection of gaseous hydrazine can be realized with 0.2793 μM detection limit using the facile PI-Rh-impregnated test paper.
Collapse
Affiliation(s)
- Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China.
| | - Yiming Ding
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Yexin Li
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Yu Cui
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Guoxin Sun
- School of Chemistry and Chemical Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| |
Collapse
|
10
|
Chang X, Batchelor-McAuley C, Compton RG. Methanol oxidation at single platinum nanoparticles. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Chen R, Shi GJ, Wang JJ, Qin HF, Zhang Q, Chen S, Wen Y, Guo JB, Wang KP, Hu ZQ. A highly-sensitive "turn on" probe based on coumarin β-diketone for hydrazine detection in PBS and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119510. [PMID: 33561687 DOI: 10.1016/j.saa.2021.119510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Herein, a new "turn on" fluorescent probe C-1 is developed to specifically detect hydrazine using coumarin nucleus as the fluorophore and β-diketone as the recognition group. The probe shows high selectivity towards hydrazine over other common ions and amine-containing species, as well as good water solubility and quantitative detectability of hydrazine in concentration range of 1-200 μM. The detection limit is as low as 1.89 ppb, which is lower than the threshold set by EPA (10 ppb). Probe-coated filter papers are confirmed to detect gaseous hydrazine successfully through obvious fluorescence color changes. In addition, the probe has been verified to detect hydrazine in actual water environment and living cells.
Collapse
Affiliation(s)
- Rui Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guang-Jin Shi
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia-Jia Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hai-Feng Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaojin Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yonghong Wen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jia-Bin Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kun-Peng Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Zhi-Qiang Hu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
12
|
Du M, Meng Y, Zhu G, Gao M, Hsu HY, Liu F. Intrinsic electrocatalytic activity of a single IrO x nanoparticle towards oxygen evolution reaction. NANOSCALE 2020; 12:22014-22021. [PMID: 33140807 DOI: 10.1039/d0nr05780k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Identifying the intrinsic electrocatalytic activity of an individual nanoparticle is challenging as traditional ensemble measurements only provide average activity over a large number of nanoparticles and may be greatly affected by the ensemble properties, irrelevant to the nanoparticle itself. Here, single-particle collision electrochemistry is used to investigate the electrocatalytic activity of a single IrOx nanoparticle towards the oxygen evolution reaction (OER). The collision frequency is linearly proportional to the nanoparticle concentration. The mean peak current and transferred charge, extracted from current spikes of the collision, present a similar potential dependence relevant to IrOx intrinsic activity. The turnover frequency (TOF) is determined as 1.55 × 102 O2 s-1, which is orders of magnitude larger than TOFs of the reported ensemble systems. In addition, the deactivation of a single IrOx nanoparticle is also explored based on a half-width analysis of current spikes. This versatilely applicable method provides new insights into the intrinsic performance of a single nanoparticle, which is essential to reveal the structure-activity relations of nanoscale materials for the rational design of advanced catalysts.
Collapse
Affiliation(s)
- Minshu Du
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Guo Z, Niu Q, Yang Q, Li T, Wei T, Yang L, Chen J, Qin X. New “naked-eye” colori/fluorimetric “turn-on” chemosensor: Ultrafast and ultrasensitive detection of hydrazine in ∼100% aqueous solution and its bio-imaging in living cells. Anal Chim Acta 2020; 1123:64-72. [DOI: 10.1016/j.aca.2020.04.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/03/2023]
|
15
|
|
16
|
Hwang J, Chang J. Understanding the mass-transfer of Br species in an aqueous and quaternary ammonium polybromide biphasic system via particle-impact electrochemical analysis. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Sundar S, Kim KJ, Kwon SJ. Observation of Single Nanoparticle Collisions with Green Synthesized Pt, Au, and Ag Nanoparticles Using Electrocatalytic Signal Amplification Method. NANOMATERIALS 2019; 9:nano9121695. [PMID: 31783669 PMCID: PMC6956323 DOI: 10.3390/nano9121695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/31/2022]
Abstract
This work describes the tailored design, green synthesis and characterization of noble metal (Pt, Ag and Au) nanoparticles (NPs) using Sapinduss Mukkorossi fruit extract (SMFE) and its signal NP collision signal response, based on the principle of the electrocatatlytic amplication (EA) method. Here, the SMFE can act as both the reducing and the capping agent for the fabrication of noble nanometals. The SMFE-capped NPs was available for the observation of a single NP collision signal. Two general types of current response were observed: a staircase current response for the Pt or Au NPs, and a blip/spike current response for Ag NPs. These results demonstrated that the eco-friendly synthesized SMFE-capped NPs maintained their electrocatalytic activity, therefore they can be used for the single NP experiments and place an arena for future biosensing applications.
Collapse
|
18
|
Chen W, Wang H, Tang H, Yang C, Li Y. Unique Voltammetry of Silver Nanoparticles: From Single Particle to Aggregates. Anal Chem 2019; 91:14188-14191. [PMID: 31638365 DOI: 10.1021/acs.analchem.9b03372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding the electrooxidation process of metal nanoparticles (NPs) is very important because they have showed wide applications in electrocatalysis, sensing, and nanoelectronics. In this letter, we designed a strategy to investigate the anodic stripping voltammetry (ASV) of silver oxidation at single NP level and aggregation state by using gold single nanoelectrodes (SNEs) and ultramicroelectrodes. Results showed that the ASV peak potential and shape were significantly affected by the diameter and aggregation degree of the Ag NPs: symmetrical-peak shape, two-peak shape, and asymmetrical-peak shape appeared when Ag NPs changed from the single particle state to the large-aggregation state, and size-dependent ASVs for Ag NPs oxidation were also observed. These findings can help us deeply understand the metal NPs oxidation process and will benefit the related applications.
Collapse
Affiliation(s)
- Wei Chen
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P.R. China
| | - Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P.R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P.R. China
| | - Cheng Yang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P.R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , P.R. China
| |
Collapse
|
19
|
Defnet PA, Han C, Zhang B. Temporally-Resolved Ultrafast Hydrogen Adsorption and Evolution on Single Platinum Nanoparticles. Anal Chem 2019; 91:4023-4030. [DOI: 10.1021/acs.analchem.8b05463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter A. Defnet
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chu Han
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
20
|
Shi X, Huo F, Chao J, Zhang Y, Yin C. An isophorone-based NIR probe for hydrazine in real water samples and hermetic space. NEW J CHEM 2019. [DOI: 10.1039/c9nj01661a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The role of hydrazine in production is not to be underestimated due to its strong reducibility. However, every coin has two sides.
Collapse
Affiliation(s)
- Xinrong Shi
- Institute of Molecular Science
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University Taiyuan
- China
| | - Fangjun Huo
- Research Institute of Applied Chemistry (RIAC)
- Shanxi University
- Taiyuan
- China
| | - Jianbin Chao
- Research Institute of Applied Chemistry (RIAC)
- Shanxi University
- Taiyuan
- China
| | - Yongbin Zhang
- Institute of Molecular Science
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University Taiyuan
- China
| | - Caixia Yin
- Institute of Molecular Science
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University Taiyuan
- China
| |
Collapse
|
21
|
Zhou M, Wang D, Mirkin MV. Catalytic Amplification of Au
144
Nanocluster Collisions by Hydrogen Evolution Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201800703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Min Zhou
- Department of Chemistry and Biochemistry Queens College-CUNY Flushing NY11367 USA
- Department of Chemistry The University of Texas at Austin Austin TX 78712 USA
| | - Dengchao Wang
- Department of Chemistry and Biochemistry Queens College-CUNY Flushing NY11367 USA
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry Queens College-CUNY Flushing NY11367 USA
| |
Collapse
|
22
|
Kanokkanchana K, Saw EN, Tschulik K. Nano Impact Electrochemistry: Effects of Electronic Filtering on Peak Height, Duration and Area. ChemElectroChem 2018. [DOI: 10.1002/celc.201800738] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kannasoot Kanokkanchana
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| | - En N. Saw
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| | - Kristina Tschulik
- Chair of Analytical Chemistry IIDepartment of Chemistry and BiochemistryRuhr University Bochum Bochum Germany
| |
Collapse
|
23
|
Brasiliense V, Noël J, Wonner K, Tschulik K, Combellas C, Kanoufi F. Single Nanoparticle Growth from Nanoparticle Tracking Analysis: From Monte Carlo Simulations to Nanoparticle Electrogeneration. ChemElectroChem 2018. [DOI: 10.1002/celc.201800742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Vitor Brasiliense
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
- Northwestern University Department of Chemistry 2145 Sheridan Rd. 60208 Evanston IL USA
| | - Jean‐Marc Noël
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| | - Kevin Wonner
- Ruhr-University BochumChair of Analytical Chemistry II and Centre for Electrochemical Sciences (CES), ZEMOS Bochum 44801 Germany
| | - Kristina Tschulik
- Ruhr-University BochumChair of Analytical Chemistry II and Centre for Electrochemical Sciences (CES), ZEMOS Bochum 44801 Germany
| | - Catherine Combellas
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| | - Frédéric Kanoufi
- Université Sorbonne Paris Cité, Université Paris DiderotITODYS, CNRS UMR 7086 15 rue Jean-Antoine de Baïf F-75013 Paris France
| |
Collapse
|
24
|
Barakoti KK, Parajuli S, Chhetri P, Rana GR, Kazemi R, Malkiewich R, Alpuche-Aviles MA. Stochastic electrochemistry and photoelectrochemistry of colloidal dye-sensitized anatase nanoparticles at a Pt ultramicroelectrode. Faraday Discuss 2018; 193:313-325. [PMID: 27711900 DOI: 10.1039/c6fd00100a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the stochastic interactions between dye sensitized anatase nanoparticles, suspended in a colloid, and a Pt ultramicroelectrode (UME) that result in step-wise behavior in the current vs. time response. The stochastic currents are observed in the dark and under illumination. In the dark, the currents are anodic, consistent with the oxidation of the dye N719 at the Pt surface. The electrochemical behavior of the dye was investigated in MeOH and MeCN with a quasireversible cyclic voltammogram (CV) observed at 1 V s-1. The anodic currents observed in the dark due to nanoparticles (NPs) at the Pt surface are consistent with the CVs in MeOH and MeCN. Under illumination cathodic steps are observed and assigned to the reduction of the oxidized form of the dye generated after electrons are injected into the TiO2 NPs. The colloidal behavior is a strong function of the history of the colloid with illumination time increasing the size of the agglomerates and with larger agglomerates being less photoelectrochemically active. Agglomerates of ca. 100 nm in diameter are proposed to be photoactive entities with a higher probability of detection that contribute to the staircase photocurrent response.
Collapse
Affiliation(s)
| | - Suman Parajuli
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Pushpa Chhetri
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Ganesh R Rana
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Rezvan Kazemi
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | - Ryan Malkiewich
- Department of Chemistry, University of Nevada, Reno, 89557, USA.
| | | |
Collapse
|
25
|
Wang Y, Shan X, Tao N. Emerging tools for studying single entity electrochemistry. Faraday Discuss 2018; 193:9-39. [PMID: 27722354 DOI: 10.1039/c6fd00180g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrochemistry studies charge transfer and related processes at various microscopic structures (atomic steps, islands, pits and kinks on electrodes), and mesoscopic materials (nanoparticles, nanowires, viruses, vesicles and cells) made by nature and humans, involving ions and molecules. The traditional approach measures averaged electrochemical quantities of a large ensemble of these individual entities, including the microstructures, mesoscopic materials, ions and molecules. There is a need to develop tools to study single entities because a real system is usually heterogeneous, e.g., containing nanoparticles with different sizes and shapes. Even in the case of "homogeneous" molecules, they bind to different microscopic structures of an electrode, assume different conformations and fluctuate over time, leading to heterogeneous reactions. Here we highlight some emerging tools for studying single entity electrochemistry, discuss their strengths and weaknesses, and provide personal views on the need for tools with new capabilities for further advancing single entity electrochemistry.
Collapse
Affiliation(s)
- Yixian Wang
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | - Xiaonan Shan
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
| | - Nongjian Tao
- Center for Biosensors and Bioelectronics, Biodesign Institute and School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Yue G, Zeng Q, Huang J, Wang L. Mechanism studies of hydrazine electro-oxidation by a platinum ultramicroelectrode: Effects of supporting electrolytes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Jiao X, Batchelor-McAuley C, Lin C, Kätelhön E, Tanner EE, Young NP, Compton RG. Role of Nanomorphology and Interfacial Structure of Platinum Nanoparticles in Catalyzing the Hydrogen Oxidation Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01816] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xue Jiao
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Chuhong Lin
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Enno Kätelhön
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Eden E.L. Tanner
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Neil P. Young
- Department of Materials, Oxford University, 16 Parks Road, Oxford OX1 3PH, United Kingdom
| | - Richard G. Compton
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
28
|
Wuamprakhon P, Krittayavathananon A, Ma N, Phattharasupakun N, Maihom T, Limtrakul J, Sawangphruk M. Layered manganese oxide nanosheets coated on N-doped graphene aerogel for hydrazine detection: Reaction mechanism investigated by in situ electrochemical X-ray absorption spectroscopy. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Jiao X, Batchelor-McAuley C, Young NP, Compton RG. Simultaneous activity and surface area measurements on single mesoporous nanoparticle aggregates. Phys Chem Chem Phys 2018; 20:23847-23850. [DOI: 10.1039/c8cp04954h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The underpotential deposition of hydrogen and the hydrogen evolution reaction is studied at individual mesoporous nanoparticles. This work shows how the electroactive surface area and catalytic activity of these individual particles can be simultaneously measured.
Collapse
Affiliation(s)
- Xue Jiao
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford, South Parks Road
- Oxford OX1 3QZ
- UK
| | - Christopher Batchelor-McAuley
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford, South Parks Road
- Oxford OX1 3QZ
- UK
| | - Neil P. Young
- Department of Materials
- University of Oxford
- Parks Road
- Oxford OX1 3PH
- UK
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford, South Parks Road
- Oxford OX1 3QZ
- UK
| |
Collapse
|
30
|
Bae JH, Brocenschi RF, Kisslinger K, Xin HL, Mirkin MV. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles. Anal Chem 2017; 89:12618-12621. [PMID: 29139288 DOI: 10.1021/acs.analchem.7b03121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ∼5 nm sized Pt particles on the glass surface surrounding the electrode. The release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with a Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).
Collapse
Affiliation(s)
- Je Hyun Bae
- Department of Chemistry and Biochemistry, Queens College-CUNY , Flushing, New York 11367, United States
| | - Ricardo F Brocenschi
- Department of Chemistry and Biochemistry, Queens College-CUNY , Flushing, New York 11367, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY , Flushing, New York 11367, United States.,The Graduate Center, CUNY , New York, New York 10016, United States
| |
Collapse
|
31
|
Robinson DA, Liu Y, Edwards MA, Vitti NJ, Oja SM, Zhang B, White HS. Collision Dynamics during the Electrooxidation of Individual Silver Nanoparticles. J Am Chem Soc 2017; 139:16923-16931. [PMID: 29083174 DOI: 10.1021/jacs.7b09842] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent high-bandwidth recordings of the oxidation and dissolution of 35 nm radius Ag nanoparticles at a Au microelectrode show that these nanoparticles undergo multiple collisions with the electrode, generating multiple electrochemical current peaks. In the time interval between observed current peaks, the nanoparticles diffuse in the solution near the electrolyte/electrode interface. Here, we demonstrate that simulations of random nanoparticle motion, coupled with electrochemical kinetic parameters, quantitatively reproduce the experimentally observed multicurrent peak behavior. Simulations of particle diffusion are based on the nanoparticle-mass-based thermal nanoparticle velocity and the Einstein diffusion relations, while the electron-transfer rate is informed by the literature exchange current density for the Ag/Ag+ redox system. Simulations indicate that tens to thousands of particle-electrode collisions, each lasting ∼6 ns or less (currently unobservable on accessible experimental time scales), contribute to each experimentally observed current peak. The simulation provides a means to estimate the instantaneous current density during a collision (∼500-1000 A/cm2), from which we estimate a rate constant between ∼5 and 10 cm/s for the electron transfer between Ag nanoparticles and the Au electrode. This extracted rate constant is approximately equal to the thermal collisional velocity of the Ag nanoparticle (4.6 cm/s), the latter defining the theoretical upper limit of the electron-transfer rate constant. Our results suggest that only ∼1% of the surface atoms on the Ag nanoparticles are oxidized per instantaneous collision. The combined simulated and experimental results underscore the roles of Brownian motion and collision frequency in the interpretation of heterogeneous electron-transfer reactions involving nanoparticles.
Collapse
Affiliation(s)
- Donald A Robinson
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Yuwen Liu
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States.,College of Chemistry and Molecular Sciences, Wuhan University , Wuhan, 430072, China
| | - Martin A Edwards
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Nicholas J Vitti
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Stephen M Oja
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington , Seattle, Washington 98195-1700, United States
| | - Henry S White
- Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| |
Collapse
|
32
|
Mun SK, Lee S, Kim DY, Kwon SJ. Various Current Responses of Single Silver Nanoparticle Collisions on a Gold Ultramicroelectrode Depending on the Collision Conditions. Chem Asian J 2017; 12:2434-2440. [PMID: 28662286 DOI: 10.1002/asia.201700770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/21/2017] [Indexed: 12/24/2022]
Abstract
Collisions of silver nanoparticles (NPs) with a more electrocatalytic gold or platinum ultramicroelectrode (UME) surface have been observed by using an electrochemical method. Depending on the applied potential to the UME, the current response to the collision of Ag NPs on the UME resulted in various shape changes. A staircase decrease, a blip decrease, and a blip increase of the hydrazine oxidation current were obtained at an applied potential of 0.33, 0.80, and 1.3 V, respectively. Different collision behaviors of Ag NPs on the UME surface were suggested for each shape of current response. Ag NP attachment, which hindered the diffusion flux to the UME, caused a staircase decrease of the electrocatalytic current. Instantaneous blocking of the hydrazine oxidation by Ag NP collision and, following recovery of the current by means of oxidation of Ag NP, caused a blip decrease of the electrocatalytic current. The formation of a higher oxidation state of Ag on the Ag NP and its electrocatalytic hydrazine oxidation resulted in a blip increase of the electrocatalytic current. The analysis of the current response of a single NP collision experiment can be a useful tool to understand the various behaviors of NPs on the electrode surface.
Collapse
Affiliation(s)
- Seon Kyu Mun
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Sangmin Lee
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Dong Young Kim
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| | - Seong Jung Kwon
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143-701, Korea
| |
Collapse
|
33
|
Bonezzi J, Luitel T, Boika A. Electrokinetic Manipulation of Silver and Platinum Nanoparticles and Their Stochastic Electrochemical Detection. Anal Chem 2017; 89:8614-8619. [DOI: 10.1021/acs.analchem.7b02807] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jason Bonezzi
- Department of Chemistry, The University of Akron, 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Tulashi Luitel
- Department of Chemistry, The University of Akron, 190 East Buchtel Common, Akron, Ohio 44325, United States
| | - Aliaksei Boika
- Department of Chemistry, The University of Akron, 190 East Buchtel Common, Akron, Ohio 44325, United States
| |
Collapse
|
34
|
Understanding Br − transfer into electrochemically generated discrete quaternary ammonium polybromide droplet on Pt ultramicroelectrode. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
35
|
Ortiz-Ledón CA, Zoski CG. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface. Anal Chem 2017; 89:6424-6431. [DOI: 10.1021/acs.analchem.7b00188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- César A. Ortiz-Ledón
- Department of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Cynthia G. Zoski
- Department of Chemistry and
Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| |
Collapse
|
36
|
Castañeda AD, Brenes NJ, Kondajji A, Crooks RM. Detection of microRNA by Electrocatalytic Amplification: A General Approach for Single-Particle Biosensing. J Am Chem Soc 2017; 139:7657-7664. [DOI: 10.1021/jacs.7b03648] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alma D. Castañeda
- Department of Chemistry and
Center for Electrochemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Nicholas J. Brenes
- Department of Chemistry and
Center for Electrochemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Aditya Kondajji
- Department of Chemistry and
Center for Electrochemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and
Center for Electrochemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
37
|
Bonezzi J, Boika A. Deciphering the Magnitude of Current Steps in Electrochemical Blocking Collision Experiments and Its Implications. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.03.090] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Peng YY, Qian RC, Hafez ME, Long YT. Stochastic Collision Nanoelectrochemistry: A Review of Recent Developments. ChemElectroChem 2017. [DOI: 10.1002/celc.201600673] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yue-Yi Peng
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials; School of Chemistry & Molecular Engineering; East China University of Science and Technology; 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
39
|
Castañeda AD, Robinson DA, Stevenson KJ, Crooks RM. Electrocatalytic amplification of DNA-modified nanoparticle collisions via enzymatic digestion. Chem Sci 2016; 7:6450-6457. [PMID: 28451102 PMCID: PMC5356041 DOI: 10.1039/c6sc02165d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/22/2016] [Indexed: 01/04/2023] Open
Abstract
We report a new and general approach that will be useful for adapting the method of electrocatalytic amplification (ECA) to biosensing applications. In ECA, individual collisions of catalytic nanoparticles with a noncatalytic electrode surface lead to bursts of current. In the work described here, the current arises from catalytic electrooxidation of N2H4 at the surface of platinum nanoparticles (PtNPs). The problem with using ECA for biosensing applications heretofore, is that it is necessary to immobilize a receptor, such as DNA (as in the case here) or an antibody on the PtNP surface. This inactivates the colliding NP, however, and leads to very small collision signatures. In the present article, we show that single-stranded DNA (ssDNA) present on the PtNP surface can be detected by selectively removing a fraction of the ssDNA using the enzyme Exonuclease I (Exo I). About half of the current associated with collisions of naked PtNPs can be recovered from fully passivated PtNPs after exposure to Exo I. Experiments carried out using both Au and Hg ultramicroelectrodes reveal some mechanistic aspects of the collision process before and after treatment of the ssDNA-modified PtNPs with Exo I.
Collapse
Affiliation(s)
- Alma D Castañeda
- Department of Chemistry , Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1-512-475-8674
| | - Donald A Robinson
- Department of Chemistry , Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1-512-475-8674
| | - Keith J Stevenson
- Department of Chemistry , Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1-512-475-8674
| | - Richard M Crooks
- Department of Chemistry , Center for Electrochemistry, and the Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St., Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1-512-475-8674
| |
Collapse
|
40
|
Bentley CL, Kang M, Unwin PR. Time-Resolved Detection of Surface Oxide Formation at Individual Gold Nanoparticles: Role in Electrocatalysis and New Approach for Sizing by Electrochemical Impacts. J Am Chem Soc 2016; 138:12755-12758. [DOI: 10.1021/jacs.6b08124] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cameron L. Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Minkyung Kang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Patrick R. Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
41
|
Robinson DA, Kondajji AM, Castañeda AD, Dasari R, Crooks RM, Stevenson KJ. Addressing Colloidal Stability for Unambiguous Electroanalysis of Single Nanoparticle Impacts. J Phys Chem Lett 2016; 7:2512-2517. [PMID: 27306603 DOI: 10.1021/acs.jpclett.6b01131] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein the problem of colloidal instability on electrochemically detected nanoparticle (NP) collisions with a Hg ultramicroelectrode (UME) by electrocatalytic amplification is addressed. NP tracking analysis (NTA) shows that rapid aggregation occurs in solution after diluting citrate-stabilized Pt NPs with hydrazine/phosphate buffers of net ionic strength greater than 70 mM. Colloidal stability improves by lowering the ionic strength, indicating that aggregation processes were strongly affected by charge screening of the NP double layer interactions at high cation concentrations. For the system of lowest ionic strength, the overwhelming majority of observed electrocatalytic current signals represent single NP/electrode impacts, as confirmed by NTA kinetic monitoring. NP diffusion coefficients determined by NTA and NP impact electroanalysis are in excellent agreement for the stable colloids, which signifies that the sticking probability of Pt NPs interacting with Hg is unity and that the observed NP impact rate agrees with the expected steady-state diffusive flux expression for the spherical cap Hg UME.
Collapse
Affiliation(s)
- Donald A Robinson
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Aditya M Kondajji
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Alma D Castañeda
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Radhika Dasari
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Richard M Crooks
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| | - Keith J Stevenson
- Department of Chemistry, Center for Nano- and Molecular Science, and Center for Electrochemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
42
|
Jiang J, Huang X, Wang L. Effect of forced convection on the collision and interaction between nanoparticles and ultramicroelectrode. J Colloid Interface Sci 2016; 467:158-164. [DOI: 10.1016/j.jcis.2016.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
|
43
|
Robinson DA, Duay J, Kondajji AM, Stevenson KJ. Mechanistic aspects of hydrazine-induced Pt colloid instability and monitoring aggregation kinetics with nanoparticle impact electroanalysis. Faraday Discuss 2016; 193:293-312. [DOI: 10.1039/c6fd00121a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we investigate the mechanistic aspects of Pt nanoparticle (NP) aggregation in solutions typically used for detecting NP/electrode impacts by electrocatalytic amplification (ECA). We previously proposed a general mechanism for Pt colloid destabilization that involved the participation of both the hydrazine redox probe and the pH buffer species as coagulants. Herein the Pt NP coagulation and aggregation mechanisms were further investigated with microscopic kinetic NP concentration monitoring and zeta potential measurements using nanoparticle tracking analysis (NTA), as well as open circuit potential experiments with a citrate-treated polycrystalline Pt surface to assess electrical double layer potential. After considering the combined results of these experiments we propose that the colloidal stability of citrate-capped platinum nanoparticles involves much more than the typical physicochemical interactions predicted by DLVO theory. A structure based on intermolecular H-bonding in the citrate capping layer is the most plausible explanation for the exceptional stability of large Pt NPs in high ionic strength buffers. Thus, the mechanism of Pt NP aggregation includes specific reactive contributions from hydrazine. The catalytic decomposition of hydrazine, in particular, is thought to occur to some extent at the citrate-coated Pt surface while the citrate remains adsorbed. Evolved gases such as ammonia and possible surface bound intermediates from Pt-catalyzed decomposition of hydrazine may disrupt the stability of the citrate layer, causing colloidal instability and thus promoting Pt NP coagulation. In the closing section, we demonstrate nanoparticle impact electroanalysis by ECA detection as a method to quantify Pt NP concentration with adequate time resolution for monitoring the kinetics of Pt NP coagulation.
Collapse
Affiliation(s)
- D. A. Robinson
- Department of Chemistry
- Center for Nano- and Molecular Science and Technology
- The University of Texas at Austin
- Austin
- USA
| | - J. Duay
- Department of Chemistry
- Center for Nano- and Molecular Science and Technology
- The University of Texas at Austin
- Austin
- USA
| | - A. M. Kondajji
- Department of Chemistry
- Center for Nano- and Molecular Science and Technology
- The University of Texas at Austin
- Austin
- USA
| | - K. J. Stevenson
- Department of Chemistry
- Center for Nano- and Molecular Science and Technology
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
44
|
Saw EN, Grasmik V, Rurainsky C, Epple M, Tschulik K. Electrochemistry at single bimetallic nanoparticles – using nano impacts for sizing and compositional analysis of individual AgAu alloy nanoparticles. Faraday Discuss 2016; 193:327-338. [DOI: 10.1039/c6fd00112b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The increasing interest in producing bimetallic nanoparticles and utilizing them in modern technologies sets the demand for fast and affordable characterization of these materials. To date Scanning Transmission Electron Microscopy (STEM) coupled to energy dispersive X-ray spectroscopy is usually used to determine the size and composition of alloy nanoparticles, which is time-consuming and expensive. Here electrochemical single nanoparticle analysis is presented as an alternative approach to infer the particle size and composition of alloy nanoparticles, directly in a dispersion of these particles. As a proof of concept, 14 nm sized Ag0.73Au0.27 alloy nanoparticles are analyzed using a combination of chronoamperometric single nanoparticle analysis and cyclic voltammetry ensemble studies. It is demonstrated that the size, the alloying and the composition can all be inferred using this approach. Thus, the electrochemical characterization of single bimetallic alloy nanoparticles is suggested here as a powerful and convenient complement or alternative to TEM characterization of alloy nanoparticles.
Collapse
Affiliation(s)
- En Ning Saw
- Micro- & Nano-Electrochemistry and Center for Electrochemical Sciences (CES)
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Viktoria Grasmik
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)
- University of Duisburg-Essen
- Essen
- Germany
| | - Christian Rurainsky
- Micro- & Nano-Electrochemistry and Center for Electrochemical Sciences (CES)
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)
- University of Duisburg-Essen
- Essen
- Germany
| | - Kristina Tschulik
- Micro- & Nano-Electrochemistry and Center for Electrochemical Sciences (CES)
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| |
Collapse
|
45
|
Abstract
This perspective article provides a survey of recent advances in nanoscale electrochemistry, with a brief theoretical background and a detailed discussion of experimental results of nanoparticle based electrodes, including the rapidly expanding field of “impact electrochemistry”.
Collapse
Affiliation(s)
- Peter H. Robbs
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| | - Neil V. Rees
- School of Chemical Engineering
- University of Birmingham
- Birmingham
- UK
| |
Collapse
|
46
|
Chen CH, Ravenhill ER, Momotenko D, Kim YR, Lai SCS, Unwin PR. Impact of Surface Chemistry on Nanoparticle-Electrode Interactions in the Electrochemical Detection of Nanoparticle Collisions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11932-42. [PMID: 26448140 DOI: 10.1021/acs.langmuir.5b03033] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The electrochemical detection of a single nanoparticle (NP) at a support electrode can provide key information on surface chemistry and fundamental electron transfer (ET) properties at the nanoscale. This study employs scanning electrochemical cell microscopy (SECCM) as a fluidic device to both deliver individual citrate-capped gold nanoparticles (AuNPs) and study the interactions between them and a range of alkanethiol-modified Au electrodes with different terminal groups, namely, -COOH, -OH, and -CH3. Single NP collisions were detected through the AuNP-mediated ET reaction of Fe(CN)6(4-/3-) in aqueous solution. The collision frequency, residence time, and current-time characteristics of AuNPs are greatly affected by the terminal groups of the alkanethiol. Methods to determine these parameters, including the effect of the instrument response function, and derive ET kinetics are outlined. To further understand the interactions of AuNPs with these surfaces, atomic force microscopy (AFM) force measurements were performed using citrate-modified Au-coated AFM tips and the same alkanethiol-modified Au substrates in aqueous solution at the same potential bias as for the AuNP collision experiments. Force curves on OH-terminated surfaces showed no repulsion and negligible adhesion force. In contrast, a clear repulsion (on approach) was seen for COOH-terminated surface and adhesion forces (on retract) were observed for both COOH- and CH3-terminated surfaces. These interactions help to explain the residence times and collision frequencies in AuNP collisions. More generally, as the interfacial properties probed by AFM appear to be amplified in NP collision experiments, and new features also become evident, it is suggested that such experiments provide a new means of probing surface chemistry at the nanoscale.
Collapse
Affiliation(s)
- Chang-Hui Chen
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Emma R Ravenhill
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Dmitry Momotenko
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yang-Rae Kim
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Stanley C S Lai
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- MESA+ Institute for Nanotechnology, University of Twente , PO Box 217, 7500 AE Enschede, The Netherlands
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick , Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
47
|
Alligrant TM, Dasari R, Stevenson KJ, Crooks RM. Electrocatalytic Amplification of Single Nanoparticle Collisions Using DNA-Modified Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11724-11733. [PMID: 26457645 DOI: 10.1021/acs.langmuir.5b02620] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Here we report on the effect of DNA modification on individual collisions between Pt nanoparticles (PtNPs) and ultramicroelectrode (UME) surfaces. These results extend recent reports of electrocatalytic amplification (ECA) arising from collisions between naked surfaces, and they are motivated by our interest in using ECA for low-level biosensing applications. In the present case, we studied collisions between naked PtNPs and DNA-modified Au and Hg UMEs and also collisions between DNA-modified PtNPs and naked Au and Hg UMEs. In all cases, the sensing reaction is the catalytic oxidation of N2H4. The presence of ssDNA (5-mer or 25-mer) immobilized on the UME surface has little effect on the magnitude or frequency of ECA signals, regardless of whether the electrode is Au or Hg. In contrast, when DNA is immobilized on the PtNPs and the electrodes are naked, clear trends emerge. Specifically, as the surface concentration of ssDNA on the PtNP surface increases, the magnitude and frequency of the current transients decrease. This trend is most apparent for the longer 25-mer. We interpret these results as follows. When ssDNA is immobilized at high concentration on the PtNPs, the surface sites on the NP required for electrocatalytic N2H4 oxidation are blocked. This leads to lower and fewer ECA signals. In contrast, naked PtNPs are able to transfer electrons to UMEs having sparse coatings of ssDNA.
Collapse
Affiliation(s)
- Timothy M Alligrant
- Department of Chemistry and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin , 105 E. 24th St., Stop A5300, Austin, Texas 78712-0165 United States
| | - Radhika Dasari
- Department of Chemistry and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin , 105 E. 24th St., Stop A5300, Austin, Texas 78712-0165 United States
| | - Keith J Stevenson
- Department of Chemistry and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin , 105 E. 24th St., Stop A5300, Austin, Texas 78712-0165 United States
| | - Richard M Crooks
- Department of Chemistry and Center for Nano- and Molecular Science and Technology, The University of Texas at Austin , 105 E. 24th St., Stop A5300, Austin, Texas 78712-0165 United States
| |
Collapse
|
48
|
Yoo JJ, Kim J, Crooks RM. Direct electrochemical detection of individual collisions between magnetic microbead/silver nanoparticle conjugates and a magnetized ultramicroelectrode. Chem Sci 2015; 6:6665-6671. [PMID: 28757965 PMCID: PMC5506620 DOI: 10.1039/c5sc02259b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/20/2015] [Indexed: 12/18/2022] Open
Abstract
Here, we report on the electrochemical detection of individual collisions between a conjugate consisting of silver nanoparticles (AgNPs) linked to conductive magnetic microbeads (cMμBs) via DNA hybridization and a magnetized electrode. The important result is that the presence of the magnetic field increases the flux of the conjugate to the electrode surface, and this in turn increases the collision frequency and improves the limit of detection (20 aM). In addition, the magnitude of the charge associated with the collisions is greatly enhanced in the presence of the magnetic field. The integration of DNA into the detection protocol potentially provides a means for using electrochemical collisions for applications in biological and chemical sensing.
Collapse
Affiliation(s)
- Jason J Yoo
- Department of Chemistry , The Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St. Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1 512-475-8674
| | - Joohoon Kim
- Department of Chemistry , Research Institute for Basic Sciences , Kyung Hee University , Seoul 130-701 , South Korea
| | - Richard M Crooks
- Department of Chemistry , The Center for Nano- and Molecular Science and Technology , The University of Texas at Austin , 105 E. 24th St. Stop A5300 , Austin , TX 78712-1224 , USA . ; Tel: +1 512-475-8674
| |
Collapse
|
49
|
Robinson DA, Yoo JJ, Castañeda AD, Gu B, Dasari R, Crooks RM, Stevenson KJ. Increasing the Collision Rate of Particle Impact Electroanalysis with Magnetically Guided Pt-Decorated Iron Oxide Nanoparticles. ACS NANO 2015; 9:7583-7595. [PMID: 26168795 DOI: 10.1021/acsnano.5b02892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An integrated microfluidic/magnetophoretic methodology was developed for improving signal response time and detection limits for the chronoamperometric observation of discrete nanoparticle/electrode interactions by electrocatalytic amplification. The strategy relied on Pt-decorated iron oxide nanoparticles which exhibit both superparamagnetism and electrocatalytic activity for the oxidation of hydrazine. A wet chemical synthetic approach succeeded in the controlled growth of Pt on the surface of FeO/Fe3O4 core/shell nanocubes, resulting in highly uniform Pt-decorated iron oxide hybrid nanoparticles with good dispersibility in water. The unique mechanism of hybrid nanoparticle formation was investigated by electron microscopy and spectroscopic analysis of isolated nanoparticle intermediates and final products. Discrete hybrid nanoparticle collision events were detected in the presence of hydrazine, an electrochemical indicator probe, using a gold microband electrode integrated into a microfluidic channel. In contrast with related systems, the experimental nanoparticle/electrode collision rate correlates more closely with simple theoretical approximations, primarily due to the accuracy of the nanoparticle tracking analysis method used to quantify nanoparticle concentrations and diffusion coefficients. Further modification of the microfluidic device was made by applying a tightly focused magnetic field to the detection volume to attract the magnetic nanoprobes to the microband working electrode, thereby resulting in a 6-fold increase to the relative frequency of chronoamperometric signals corresponding to discrete nanoparticle impact events.
Collapse
Affiliation(s)
- Donald A Robinson
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jason J Yoo
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alma D Castañeda
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brett Gu
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Radhika Dasari
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Richard M Crooks
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Keith J Stevenson
- Department of Chemistry, Center for Nano- and Molecular Science and Technology, Texas Materials Institute, and Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
50
|
Batchelor-McAuley C, Kätelhön E, Barnes EO, Compton RG, Laborda E, Molina A. Recent Advances in Voltammetry. ChemistryOpen 2015; 4:224-60. [PMID: 26246984 PMCID: PMC4522172 DOI: 10.1002/open.201500042] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/10/2022] Open
Abstract
Recent progress in the theory and practice of voltammetry is surveyed and evaluated. The transformation over the last decade of the level of modelling and simulation of experiments has realised major advances such that electrochemical techniques can be fully developed and applied to real chemical problems of distinct complexity. This review focuses on the topic areas of: multistep electrochemical processes, voltammetry in ionic liquids, the development and interpretation of theories of electron transfer (Butler-Volmer and Marcus-Hush), advances in voltammetric pulse techniques, stochastic random walk models of diffusion, the influence of migration under conditions of low support, voltammetry at rough and porous electrodes, and nanoparticle electrochemistry. The review of the latter field encompasses both the study of nanoparticle-modified electrodes, including stripping voltammetry and the new technique of 'nano-impacts'.
Collapse
Affiliation(s)
- Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Enno Kätelhön
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Edward O Barnes
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of OxfordSouth Parks Road, Oxford, OX1 3QZ, UK
| | - Eduardo Laborda
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Universidad de Murcia30100, Murcia, Spain
| | - Angela Molina
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence ‘Campus Mare Nostrum’, Universidad de Murcia30100, Murcia, Spain
| |
Collapse
|