1
|
Wang K, Deng P, Lin H, Sun W, Shen J. DNA-Based Conductors: From Materials Design to Ultra-Scaled Electronics. SMALL METHODS 2024:e2400694. [PMID: 39049716 DOI: 10.1002/smtd.202400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Photolithography has been the foundational fabrication paradigm in current high-performance electronics. However, due to the limitation in fabrication resolution, scaling beyond a 20-nm critical dimension for metal conductors presents a significant challenge for photolithography. Structural DNA nanotechnology emerges as a promising alternative to photolithography, allowing for the site-specific assembly of nano-materials at single-molecule resolution. Substantial progresses have been achieved in the ultra-scaled DNA-based conductors, exhibiting novel transport characteristics and small critical dimensions. This review highlights the structure-transport property relationship for various DNA-based conductors and their potential applications in quantum /semiconductor electronics, going beyond the conventional scope focusing mainly on the shape diversity of DNA-templated metals. Different material synthesis methods and their morphological impacts on the conductivities are discussed in detail, with particular emphasis on the conducting mechanisms, such as insulating, metallic conducting, quantum tunneling, and superconducting. Furthermore, the ionic gating effect of self-assembled DNA structures in electrolyte solutions is examined. This review also suggests potential solutions to address current challenges in DNA-based conductors, encouraging multi-disciplinary collaborations for the future development of this exciting area.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Pu Deng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Huili Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
- Zhangjiang Laboratory, Shanghai, 201210, China
| | - Jie Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Kemper U, Weizenmann N, Kielar C, Erbe A, Seidel R. Heavy Metal Stabilization of DNA Origami Nanostructures. NANO LETTERS 2024; 24:2429-2436. [PMID: 38363878 PMCID: PMC10905993 DOI: 10.1021/acs.nanolett.3c03751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
DNA origami is a powerful tool to fold 3-dimensional DNA structures with nanometer precision. Its usage, however, is limited as high ionic strength, temperatures below ∼60 °C, and pH values between 5 and 10 are required to ensure the structural integrity of DNA origami nanostructures. Here, we demonstrate a simple and effective method to stabilize DNA origami nanostructures against harsh buffer conditions using [PdCl4]2-. It provided the stabilization of different DNA origami nanostructures against mechanical compression, temperatures up to 100 °C, double-distilled water, and pH values between 4 and 12. Additionally, DNA origami superstructures and bound cargos are stabilized with yields of up to 98%. To demonstrate the general applicability of our approach, we employed our protocol with a Pd metallization procedure at elevated temperatures. In the future, we think that our method opens up new possibilities for applications of DNA origami nanostructures beyond their usual reaction conditions.
Collapse
Affiliation(s)
- Ulrich Kemper
- Molecular
Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Nicole Weizenmann
- Molecular
Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Charlotte Kielar
- Institute
of Ion Beam Physics and Materials Research and Department of Nanoelectronics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Insitute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Artur Erbe
- Institute
of Ion Beam Physics and Materials Research and Department of Nanoelectronics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Ralf Seidel
- Molecular
Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Kim D, Kim SJ, Jeong J, Han S, Kim H, Lee S, Choi I, Hong J, Jin JO, Lee JB. Multimodal Golden DNA Superstructures (GDSs) for Highly Efficient Photothermal Immunotherapy. ACS NANO 2024; 18:1744-1755. [PMID: 38174995 DOI: 10.1021/acsnano.3c12535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNA-templated metallization has emerged as an efficient strategy for creating nanoscale-metal DNA hybrid structures with a desirable conformation and function. Despite the potential of DNA-metal hybrids, their use as combinatory therapeutic agents has rarely been examined. Herein, we present a simple approach for fabricating a multipurpose DNA superstructure that serves as an efficient photoimmunotherapy agent. Specifically, we adsorb and locally concentrate Au ions onto DNA superstructures through induced local reduction, resulting in the formation of Au nanoclusters. The mechanical and optical properties of these metallic nanoclusters can be rationally controlled by their conformations and metal ions. The resulting golden DNA superstructures (GDSs) exhibit significant photothermal effects that induce cancer cell apoptosis. When sequence-specific immunostimulatory effects of DNA are combined, GDSs provide a synergistic effect to eradicate cancer and inhibit metastasis, demonstrating potential as a combinatory therapeutic agent for tumor treatment. Altogether, the DNA superstructure-templated metal casting system offers promising materials for future biomedical applications.
Collapse
Affiliation(s)
- Dajeong Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jaepil Jeong
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Sangwoo Han
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hyejin Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jun-O Jin
- Department of Microbiology, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
4
|
Xie M, Fang W, Qu Z, Hu Y, Zhang Y, Chao J, Shi J, Wang L, Wang L, Tian Y, Fan C, Liu H. High-entropy alloy nanopatterns by prescribed metallization of DNA origami templates. Nat Commun 2023; 14:1745. [PMID: 36990981 PMCID: PMC10060391 DOI: 10.1038/s41467-023-37333-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractHigh-entropy multimetallic nanopatterns with controlled morphology, composition and uniformity hold great potential for developing nanoelectronics, nanophotonics and catalysis. Nevertheless, the lack of general methods for patterning multiple metals poses a limit. Here, we develop a DNA origami-based metallization reaction system to prescribe multimetallic nanopatterns with peroxidase-like activities. We find that strong coordination between metal elements and DNA bases enables the accumulation of metal ions on protruding clustered DNA (pcDNA) that are prescribed on DNA origami. As a result of the condensation of pcDNA, these sites can serve as nucleation site for metal plating. We have synthesized multimetallic nanopatterns composed of up to five metal elements (Co, Pd, Pt, Ag and Ni), and obtained insights on elemental uniformity control at the nanoscale. This method provides an alternative pathway to construct a library of multimetallic nanopatterns.
Collapse
|
5
|
Kemper U, Ye J, Poppitz D, Gläser R, Seidel R. DNA Mold-Based Fabrication of Palladium Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206438. [PMID: 36960479 DOI: 10.1002/smll.202206438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
DNA origami molds allow a shape-controlled growth of metallic nanoparticles. So far, this approach is limited to gold and silver. Here, the fabrication of linear palladium nanostructures with controlled lengths and patterns is demonstrated. To obtain nucleation centers for a seeded growth, a synthesis procedure of palladium nanoparticles (PdNPs) using Bis(p-sulfonatophenyl)phenylphosphine (BSPP) both as reductant and stabilizer is developed to establish an efficient functionalization protocol of the particles with single-stranded DNA. Attaching the functionalized particles to complementary DNA strands inside DNA mold cavities supports subsequently a highly specific seeded palladium deposition. This provides rod-like PdNPs with diameters of 20-35 nm of grainy morphology. Using an annealing procedure and a post-reduction step with hydrogen, homogeneous palladium nanostructures can be obtained. With the adaptation of the procedure to palladium the capabilities of the mold-based tool-box are expanded. In the future, this may allow a facile adaptation of the mold approach to less noble metals including magnetic materials such as Ni and Co.
Collapse
Affiliation(s)
- Ulrich Kemper
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Jingjing Ye
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - David Poppitz
- Heterogeneous Catalysis, Institute of Chemical Technology, Universität Leipzig, 04103, Leipzig, Germany
| | - Roger Gläser
- Heterogeneous Catalysis, Institute of Chemical Technology, Universität Leipzig, 04103, Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Ranasinghe DR, Doerk G, Aryal BR, Pang C, Davis RC, Harb JN, Woolley AT. Block copolymer self-assembly to pattern gold nanodots for site-specific placement of DNA origami and attachment of nanomaterials. NANOSCALE 2023; 15:2188-2196. [PMID: 36633155 DOI: 10.1039/d2nr05045e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Directed placement of DNA origami could play a key role in future integrated nanoelectronic devices. Here we demonstrated the site-selective attachment of DNA origami on gold dots formed using a pattern transfer method through block copolymer self-assembly. First, a random copolymer brush layer is grafted on the Si surface and then poly (styrene-b-methylmethacrylate) block copolymer is spin-coated to give a hexagonal nanoarray after annealing. UV irradiation followed by acetic acid etching is used to remove the PMMA, creating cylindrical holes and then oxygen plasma etching removes the random copolymer layer inside those holes. Next, metal evaporation, followed by lift-off creates a gold dot array. We evaluated different ligand functionalization of Au dots, as well as DNA hybridization to attach DNA origami to the nanodots. DNA-coated Au nanorods are assembled on the DNA origami as a step towards creating nanowires and to facilitate electron microscopy characterization of the attachment of DNA origami on these Au nanodots. The DNA hybridization approach showed better DNA attachment to Au nanodots than localization by electrostatic interaction. This work contributes to the understanding of DNA-templated assembly, nanomaterials, and block copolymer nanolithography. Furthermore, the work shows potential for creating DNA-templated nanodevices and their placement in ordered arrays in future nanoelectronics.
Collapse
Affiliation(s)
| | - Gregory Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Basu R Aryal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Chao Pang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| | - Robert C Davis
- Department of Physics and Astronomy, Brigham Young University, Provo, UT, USA
| | - John N Harb
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
7
|
|
8
|
Makarov D, Volkov OM, Kákay A, Pylypovskyi OV, Budinská B, Dobrovolskiy OV. New Dimension in Magnetism and Superconductivity: 3D and Curvilinear Nanoarchitectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2101758. [PMID: 34705309 PMCID: PMC11469131 DOI: 10.1002/adma.202101758] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/16/2021] [Indexed: 06/13/2023]
Abstract
Traditionally, the primary field, where curvature has been at the heart of research, is the theory of general relativity. In recent studies, however, the impact of curvilinear geometry enters various disciplines, ranging from solid-state physics over soft-matter physics, chemistry, and biology to mathematics, giving rise to a plethora of emerging domains such as curvilinear nematics, curvilinear studies of cell biology, curvilinear semiconductors, superfluidity, optics, 2D van der Waals materials, plasmonics, magnetism, and superconductivity. Here, the state of the art is summarized and prospects for future research in curvilinear solid-state systems exhibiting such fundamental cooperative phenomena as ferromagnetism, antiferromagnetism, and superconductivity are outlined. Highlighting the recent developments and current challenges in theory, fabrication, and characterization of curvilinear micro- and nanostructures, special attention is paid to perspective research directions entailing new physics and to their strong application potential. Overall, the perspective is aimed at crossing the boundaries between the magnetism and superconductivity communities and drawing attention to the conceptual aspects of how extension of structures into the third dimension and curvilinear geometry can modify existing and aid launching novel functionalities. In addition, the perspective should stimulate the development and dissemination of research and development oriented techniques to facilitate rapid transitions from laboratory demonstrations to industry-ready prototypes and eventual products.
Collapse
Affiliation(s)
- Denys Makarov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksii M. Volkov
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Attila Kákay
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
| | - Oleksandr V. Pylypovskyi
- Helmholtz‐Zentrum Dresden ‐ Rossendorf e.V.Institute of Ion Beam Physics and Materials Research01328DresdenGermany
- Kyiv Academic UniversityKyiv03142Ukraine
| | - Barbora Budinská
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| | - Oleksandr V. Dobrovolskiy
- Superconductivity and Spintronics LaboratoryNanomagnetism and MagnonicsFaculty of PhysicsUniversity of ViennaVienna1090Austria
| |
Collapse
|
9
|
Xie M, Hu Y, Yin J, Zhao Z, Chen J, Chao J. DNA Nanotechnology-Enabled Fabrication of Metal Nanomorphology. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9840131. [PMID: 35935136 PMCID: PMC9275100 DOI: 10.34133/2022/9840131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
In recent decades, DNA nanotechnology has grown into a highly innovative and widely established field. DNA nanostructures have extraordinary structural programmability and can accurately organize nanoscale materials, especially in guiding the synthesis of metal nanomaterials, which have unique advantages in controlling the growth morphology of metal nanomaterials. This review started with the evolution in DNA nanotechnology and the types of DNA nanostructures. Next, a DNA-based nanofabrication technology, DNA metallization, was introduced. In this section, we systematically summarized the DNA-oriented synthesis of metal nanostructures with different morphologies and structures. Furthermore, the applications of metal nanostructures constructed from DNA templates in various fields including electronics, catalysis, sensing, and bioimaging were figured out. Finally, the development prospects and challenges of metal nanostructures formed under the morphology control by DNA nanotechnology were discussed.
Collapse
Affiliation(s)
- Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jue Yin
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ziwei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jing Chen
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
10
|
Islam MS, Wilkens GD, Wolski K, Zapotoczny S, Heddle JG. Chiral 3D DNA origami structures for ordered heterologous arrays. NANOSCALE ADVANCES 2021; 3:4685-4691. [PMID: 36134307 PMCID: PMC9418780 DOI: 10.1039/d1na00385b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/04/2021] [Indexed: 06/16/2023]
Abstract
The DNA origami technique allows the facile design and production of three-dimensional shapes from single template strands of DNA. These can act as functional devices with multiple potential applications but are constrained by practical limitations on size. Multi-functionality could be achieved by connecting together distinct DNA origami modules in an ordered manner. Arraying of non-identical, three-dimensional DNA origamis in an ordered manner is challenging due for example, to a lack of compatible rotational symmetries. Here we show that we can design and build ordered DNA structures using non-identical 3D building blocks by using DNA origami snub-cubes in left-handed and right-handed forms. These can be modified such that one form only binds to the opposite-handed form allowing regular arrays wherein building blocks demonstrate alternating chirality.
Collapse
Affiliation(s)
- Md Sirajul Islam
- Malopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A Kraków 30-387 Poland
| | - Gerrit David Wilkens
- Malopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A Kraków 30-387 Poland
- School of Molecular Medicine, Medical University of Warsaw Warszawa 02-091 Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 Kraków 30-387 Poland
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 Kraków 30-387 Poland
| | - Jonathan Gardiner Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University Gronostajowa 7A Kraków 30-387 Poland
| |
Collapse
|
11
|
Lee WK, Kwon K, Choi Y, Lee JS. Dynamic metallization of spherical DNA via conformational transition into gold nanostructures with controlled sizes and shapes. J Colloid Interface Sci 2021; 594:160-172. [PMID: 33761393 DOI: 10.1016/j.jcis.2021.02.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the reversible condensation properties of DNA, DNA metallization during controlled conformational transitions has been rarely investigated. We perform dynamic metallization of spherically condensed DNA nanoparticles (DNA NPs) via a globule-to-coil transition. A positively charged new Au3+ reagent is prepared via ligand-exchange of conventional complex Au3+ ions, which was used to synthesize spherically condensed DNA NPs simply based on the fundamental electrostatic and coordinative interactions between DNA and Au3+ions. Interestingly, the size of the Au3+-condensed DNA NPs (Au3+-DNA NPs) and the type of reducing agents lead to the formation of different Au nanostructures with unprecedented morphologies (cracked NPs, bowl-shaped NPs, and small NPs), owing to the controlled conformational changes in the Au3+-DNA NPs during metallization. The condensed DNA NPs play significant roles for Au nanostructures as (1) the dynamic template for the synthesis, (2) the reservoir and supply of Au3+ for the growth, and (3) the surface stabilizer. The synthesized Au nanostructures are remarkably stable against high ionic strength and exhibit catalytic activities and excellent SERS properties. This is the first study on the morphological control and concomitant dynamic metallization of spherically condensed DNA, proposing new synthetic routes for bioinorganic nanomaterials.
Collapse
Affiliation(s)
- Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kihun Kwon
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
12
|
Ye J, Aftenieva O, Bayrak T, Jain A, König TAF, Erbe A, Seidel R. Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100381. [PMID: 34085729 PMCID: PMC11469289 DOI: 10.1002/adma.202100381] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Advances in DNA nanotechnology allow the design and fabrication of highly complex DNA structures, uisng specific programmable interactions between smaller nucleic acid building blocks. To convey this concept to the fabrication of metallic nanoparticles, an assembly platform is developed based on a few basic DNA structures that can serve as molds. Programming specific interactions between these elements allows the assembly of mold superstructures with a range of different geometries. Subsequent seeded growth of gold within the mold cavities enables the synthesis of complex metal structures including tightly DNA-caged particles, rolling-pin- and dumbbell-shaped particles, as well as T-shaped and loop particles with high continuity. The method further supports the formation of higher-order assemblies of the obtained metal geometries. Based on electrical and optical characterizations, it is expected that the developed platform is a valuable tool for a self-assembly-based fabrication of nanoelectronic and nanooptic devices.
Collapse
Affiliation(s)
- Jingjing Ye
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| | - Olha Aftenieva
- Leibniz‐Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
| | - Türkan Bayrak
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
| | - Archa Jain
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
- Faculty of Electrical Engineering and Information TechnologyChair of Nanoelectronics TechnologiesTechnische Universität Chemnitz09107ChemnitzGermany
| | - Tobias A. F. König
- Leibniz‐Institut für Polymerforschung Dresden e. V.Hohe Straße 601069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| | - Artur Erbe
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf01328DresdenGermany
| | - Ralf Seidel
- Molecular Biophysics GroupPeter Debye Institute for Soft Matter PhysicsUniversität Leipzig04103LeipzigGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität DresdenHelmholtzstraße 1801069DresdenGermany
| |
Collapse
|
13
|
Zhang Y, Qu ZB, Jiang C, Liu Y, Pradeep Narayanan R, Williams D, Zuo X, Wang L, Yan H, Liu H, Fan C. Prescribing Silver Chirality with DNA Origami. J Am Chem Soc 2021; 143:8639-8646. [DOI: 10.1021/jacs.1c00363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yinan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Zhi-bei Qu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chu Jiang
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092, China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Raghu Pradeep Narayanan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Dewight Williams
- Eyring Materials Center, Office of Knowledge Enterprise Development, Arizona State University, Tempe, Arizona 85281, United States
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hao Yan
- Center for Molecular Design and Biomimetics, The Biodesign Institute, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85281, United States
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai 200092, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Fabrication and temperature-dependent electrical characterization of a C-shape nanowire patterned by a DNA origami. Sci Rep 2021; 11:1922. [PMID: 33479352 PMCID: PMC7820232 DOI: 10.1038/s41598-021-81178-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/23/2020] [Indexed: 11/08/2022] Open
Abstract
We introduce a method based on directed molecular self-assembly to manufacture and electrically characterise C-shape gold nanowires which clearly deviate from typical linear shape due to the design of the template guiding the assembly. To this end, gold nanoparticles are arranged in the desired shape on a DNA-origami template and enhanced to form a continuous wire through electroless deposition. C-shape nanowires with a size below 150nm on a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\hbox {SiO}_2}/\hbox {Si}$$\end{document}SiO2/Si substrate are contacted with gold electrodes by means of electron beam lithography. Charge transport measurements of the nanowires show hopping, thermionic and tunneling transports at different temperatures in the 4.2K to 293K range. The different transport mechanisms indicate that the C-shape nanowires consist of metallic segments which are weakly coupled along the wires.
Collapse
|
15
|
Ranasinghe DR, Aryal BR, Westover TR, Jia S, Davis RC, Harb JN, Schulman R, Woolley AT. Seeding, Plating and Electrical Characterization of Gold Nanowires Formed on Self-Assembled DNA Nanotubes. Molecules 2020; 25:E4817. [PMID: 33092123 PMCID: PMC7587963 DOI: 10.3390/molecules25204817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Self-assembly nanofabrication is increasingly appealing in complex nanostructures, as it requires fewer materials and has potential to reduce feature sizes. The use of DNA to control nanoscale and microscale features is promising but not fully developed. In this work, we study self-assembled DNA nanotubes to fabricate gold nanowires for use as interconnects in future nanoelectronic devices. We evaluate two approaches for seeding, gold and palladium, both using gold electroless plating to connect the seeds. These gold nanowires are characterized electrically utilizing electron beam induced deposition of tungsten and four-point probe techniques. Measured resistivity values for 15 successfully studied wires are between 9.3 × 10-6 and 1.2 × 10-3 Ωm. Our work yields new insights into reproducible formation and characterization of metal nanowires on DNA nanotubes, making them promising templates for future nanowires in complex electronic circuitry.
Collapse
Affiliation(s)
- Dulashani R. Ranasinghe
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (D.R.R.); (B.R.A.)
| | - Basu R. Aryal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (D.R.R.); (B.R.A.)
| | - Tyler R. Westover
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA; (T.R.W.); (R.C.D.)
| | - Sisi Jia
- Johns Hopkins Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA; (S.J.); (R.S.)
| | - Robert C. Davis
- Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA; (T.R.W.); (R.C.D.)
| | - John N. Harb
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Rebecca Schulman
- Johns Hopkins Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA; (S.J.); (R.S.)
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (D.R.R.); (B.R.A.)
| |
Collapse
|
16
|
Ye J, Weichelt R, Kemper U, Gupta V, König TAF, Eychmüller A, Seidel R. Casting of Gold Nanoparticles with High Aspect Ratios inside DNA Molds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003662. [PMID: 32875721 DOI: 10.1002/smll.202003662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 06/11/2023]
Abstract
DNA nanostructures provide a powerful platform for the programmable assembly of nanomaterials. Here this approach is extended to synthesize rod-like gold nanoparticles in a full DNA controlled manner. The approach is based on DNA molds containing elongated cavities. Gold is deposited inside the molds using a seeded-growth procedure. By carefully exploring the growth parameters it is shown that gold nanostructures with aspect ratios of up to 7 can be grown from single seeds. The highly anisotropic growth is in this case controlled only by the rather soft and porous DNA walls. The optimized seeded growth procedure provides a robust and simple routine to achieve continuous gold nanostructures using DNA templating.
Collapse
Affiliation(s)
- Jingjing Ye
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Richard Weichelt
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
- Physical Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Ulrich Kemper
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Vaibhav Gupta
- Institute for Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden, e.V., Hohe Str. 6, Dresden, 01069, Germany
| | - Tobias A F König
- Institute for Physical Chemistry and Polymer Physics, Leibniz-Institut für Polymerforschung Dresden, e.V., Hohe Str. 6, Dresden, 01069, Germany
| | - Alexander Eychmüller
- Physical Chemistry and Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Ralf Seidel
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| |
Collapse
|
17
|
Jajcevic K, Sugihara K. Lipid Nanotubes as an Organic Template for an Electrically Conductive Gold Nanostructure Network. J Phys Chem B 2020; 124:5761-5769. [PMID: 32479085 DOI: 10.1021/acs.jpcb.0c03805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We demonstrate an approach to fabricate a gold nanowire network that presents a macroscopic electrical conductivity based on a lipid nanotube (LNT) template with attached gold nanoparticles. The poor electrical conductivity that we have previously faced was overcome by centrifugation and resuspension of gold nanoparticle solution for removing stabilizing agents, which increased the density of gold nanoparticles on the LNTs. An additional electroless metal plating further enhanced their contacts at nanoscale. Thanks to these procedures, the sheet resistance was improved by 11 orders of magnitude. As a proof of principle, transparent conductive films were fabricated with these gold nanowires, which exhibited sheet resistance of maximum 70 Ω/□ and transmittance of 50-75% in visible light.
Collapse
Affiliation(s)
- Kristina Jajcevic
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | - Kaori Sugihara
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan
| |
Collapse
|
18
|
|
19
|
Westover TR, Aryal BR, Ranasinghe DR, Uprety B, Harb JN, Woolley AT, Davis RC. Impact of Polymer-Constrained Annealing on the Properties of DNA Origami-Templated Gold Nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6661-6667. [PMID: 32456432 DOI: 10.1021/acs.langmuir.0c00594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA origami-templated fabrication enables bottom-up fabrication of nanoscale structures from a variety of functional materials, including metal nanowires. We studied the impact of low-temperature annealing on the morphology and conductance of DNA-templated nanowires. Nanowires were formed by selective seeding of gold nanorods on DNA origami and gold electroless plating of the seeded structures. At low annealing temperatures (160 °C for seeded-only and 180 °C for plated), the wires broke up and separated into multiple, isolated islands. Through the use of polymer-constrained annealing, the island formation in plated wires was suppressed up to annealing temperatures of 210 °C. Four-point electrical measurements showed that the wires remained conductive after a polymer-constrained annealing at 200 °C.
Collapse
Affiliation(s)
- Tyler R Westover
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| | - Basu R Aryal
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dulashani R Ranasinghe
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Bibek Uprety
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - John N Harb
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, United States
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Robert C Davis
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
20
|
Ramakrishnan S, Schärfen L, Hunold K, Fricke S, Grundmeier G, Schlierf M, Keller A, Krainer G. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation. NANOSCALE 2019; 11:16270-16276. [PMID: 31455950 DOI: 10.1039/c9nr04460d] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA origami structures have developed into versatile tools in molecular sciences and nanotechnology. Currently, however, many potential applications are hindered by their poor stability, especially under denaturing conditions. Here we present and evaluate two simple approaches to enhance DNA origami stability. In the first approach, we elevated the melting temperature of nine critical staple strands by merging the oligonucleotides with adjacent sequences. In the second approach, we increased the global stability by enzymatically ligating all accessible staple strand ends directly. By monitoring the gradual urea-induced denaturation of a prototype triangular DNA origami modified by these approaches using atomic force microscopy, we show that rational redesign of a few, critical staple strands leads to a considerable increase in overall stability at high denaturant concentration and elevated temperatures. In addition, enzymatic ligation yields DNA nanostructures with superior stability at up to 37 °C and in the presence of 6 M urea without impairing their shape. This bio-orthogonal approach is readily adaptable to other DNA origami structures without the need for synthetic nucleotide modifications when structural integrity under harsh conditions is required.
Collapse
Affiliation(s)
- Saminathan Ramakrishnan
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Leonard Schärfen
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Kristin Hunold
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Sebastian Fricke
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Michael Schlierf
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | - Georg Krainer
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany.
| |
Collapse
|
21
|
Li N, Shang Y, Han Z, Wang T, Wang ZG, Ding B. Fabrication of Metal Nanostructures on DNA Templates. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13835-13852. [PMID: 30480424 DOI: 10.1021/acsami.8b16194] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Metal nanoarchitectures fabrication based on DNA assembly has attracted a good deal of attention. DNA nanotechnology enables precise organization of nanoscale objects with extraordinary structural programmability. The spatial addressability of DNA nanostructures and sequence-dependent recognition allow functional elements to be precisely positioned; thus, novel functional materials that are difficult to produce using conventional methods could be fabricated. This review focuses on the recent development of the fabrication strategies toward manipulating the shape and morphology of metal nanoparticles and nanoassemblies based on the rational design of DNA structures. DNA-mediated metallization, including DNA-templated conductive nanowire fabrication and sequence-selective metal deposition, etc., is briefly introduced. The modifications of metal nanoparticles (NPs) with DNA and subsequent construction of heterogeneous metal nanoarchitectures are highlighted. Importantly, DNA-assembled dynamic metal nanostructures that are responsive to different stimuli are also discussed as they allow the design of smart and dynamic materials. Meanwhile, the prospects and challenges of these shape-and morphology-controlled strategies are summarized.
Collapse
Affiliation(s)
- Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Zihong Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Ting Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for NanoScience and Technology , 11 Bei Yi Tiao, Zhong Guan Cun , Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
22
|
Aryal BR, Westover TR, Ranasinghe DR, Calvopiña DG, Uprety B, Harb JN, Davis RC, Woolley AT. Four-Point Probe Electrical Measurements on Templated Gold Nanowires Formed on Single DNA Origami Tiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15069-15077. [PMID: 30176148 DOI: 10.1021/acs.langmuir.8b02225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bottom-up nanofabrication is increasingly making use of self-assembled DNA to fabricate nanowires and potential integrated circuits, although yields of such electronic nanostructures are inadequate, as is the ability to reliably make electrical measurements on them. In this paper, we report improved yields and unprecedented conductivity measurements for Au nanowires created on DNA origami tile substrates. We created several different self-assembled Au nanowire arrangements on DNA origami tiles that are approximately 70 nm × 90 nm, through anisotropic growth of Au nanorods attached to specific sites. Modifications to the tile design increased yields of the final desired nanostructures as much as 6-fold. In addition, we measured the conductivity of Au nanowires created on these DNA tiles (∼130 nm long, 10 nm diameter, and 40 nm spacing between measurement points) with a four-point measurement technique that utilized electron beam induced metal deposition to form probe electrodes. These nanowires formed on single DNA origami tiles were electrically conductive, having resistivities as low as 4.24 × 10-5 Ω m. This work demonstrates the creation and measurement of inorganic nanowires on single DNA origami tiles as a promising path toward future bottom-up fabrication of nanoelectronics.
Collapse
Affiliation(s)
- Basu R Aryal
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Tyler R Westover
- Department of Physics and Astronomy , Brigham Young University , Provo , Utah 84602 , United States
| | - Dulashani R Ranasinghe
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Diana G Calvopiña
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| | - Bibek Uprety
- Department of Chemical Engineering , Brigham Young University , Provo , Utah 84602 , United States
| | - John N Harb
- Department of Chemical Engineering , Brigham Young University , Provo , Utah 84602 , United States
| | - Robert C Davis
- Department of Physics and Astronomy , Brigham Young University , Provo , Utah 84602 , United States
| | - Adam T Woolley
- Department of Chemistry and Biochemistry , Brigham Young University , Provo , Utah 84602 , United States
| |
Collapse
|
23
|
Brassat K, Ramakrishnan S, Bürger J, Hanke M, Doostdar M, Lindner JKN, Grundmeier G, Keller A. On the Adsorption of DNA Origami Nanostructures in Nanohole Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14757-14765. [PMID: 29754490 DOI: 10.1021/acs.langmuir.8b00793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
DNA origami nanostructures are versatile substrates for the controlled arrangement of molecular capture sites with nanometer precision and thus have many promising applications in single-molecule bioanalysis. Here, we investigate the adsorption of DNA origami nanostructures in nanohole arrays which represent an important class of biosensors and may benefit from the incorporation of DNA origami-based molecular probes. Nanoholes with well-defined diameter that enable the adsorption of single DNA origami triangles are fabricated in Au films on Si wafers by nanosphere lithography. The efficiency of directed DNA origami adsorption on the exposed SiO2 areas at the bottoms of the nanoholes is evaluated in dependence of various parameters, i.e., Mg2+ and DNA origami concentrations, buffer strength, adsorption time, and nanohole diameter. We observe that the buffer strength has a surprisingly strong effect on DNA origami adsorption in the nanoholes and that multiple DNA origami triangles with 120 nm edge length can adsorb in nanoholes as small as 120 nm in diameter. We attribute the latter observation to the low lateral mobility of once adsorbed DNA origami on the SiO2 surface, in combination with parasitic adsorption to the Au film. Although parasitic adsorption can be suppressed by modifying the Au film with a hydrophobic self-assembled monolayer, the limited surface mobility of the adsorbed DNA origami still leads to poor localization accuracy in the nanoholes and results in many DNA origami crossing the boundary to the Au film even under optimized conditions. We discuss possible ways to minimize this effect by varying the composition of the adsorption buffer, employing different fabrication conditions, or using other substrate materials for nanohole array fabrication.
Collapse
|
24
|
Wang ZG, Li N, Wang T, Ding B. Surface-Guided Chemical Processes on Self-Assembled DNA Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14954-14962. [PMID: 29884022 DOI: 10.1021/acs.langmuir.8b01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solid-liquid interfaces have been of great significance in the activation of chemical reactions via restricting the conformation or orientation of the reactants. Self-assembled DNA nanostructures encoded with tremendous chemical and physical information provide an efficient platform to unravel and regulate mechanisms of surface chemical processes. In this review, we discuss the surface addressability, morphological features, and charged properties of DNA nanostructures as well as the recognition, catalytic, and dynamic properties of DNA molecules. We highlight the synergies between the surface properties of DNA nanostructures and the molecular features of DNA strands, which is a key to the synthesis of conductive polymer nanomaterials with well-defined shapes or electronic/optical properties. We also focus on the control over the substrate channeling pathways of enzyme networks or metal nucleation on DNA nanostructures toward the production of specifically emissive metal nanoclusters. In the end, we provide an outlook of future possible directions based on the rational design of DNA-based self-assembly, including dynamic energy transfer, stimuli-responsive synthesis, and programmable activation of the mechanophores on the surfaces of DNA nanostructures.
Collapse
Affiliation(s)
- Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Na Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Ting Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
25
|
Bayrak T, Jagtap NS, Erbe A. Review of the Electrical Characterization of Metallic Nanowires on DNA Templates. Int J Mol Sci 2018; 19:E3019. [PMID: 30282940 PMCID: PMC6213931 DOI: 10.3390/ijms19103019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 01/29/2023] Open
Abstract
The use of self-assembly techniques may open new possibilities in scaling down electronic circuits to their ultimate limits. Deoxyribonucleic acid (DNA) nanotechnology has already demonstrated that it can provide valuable tools for the creation of nanostructures of arbitrary shape, therefore presenting an ideal platform for the development of nanoelectronic circuits. So far, however, the electronic properties of DNA nanostructures are mostly insulating, thus limiting the use of the nanostructures in electronic circuits. Therefore, methods have been investigated that use the DNA nanostructures as templates for the deposition of electrically conducting materials along the DNA strands. The most simple such structure is given by metallic nanowires formed by deposition of metals along the DNA nanostructures. Here, we review the fabrication and the characterization of the electronic properties of nanowires, which were created using these methods.
Collapse
Affiliation(s)
- Türkan Bayrak
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), TU Dresden, 01062 Dresden, Germany.
| | - Nagesh S Jagtap
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | - Artur Erbe
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
- Cluster of Excellence Center for Advancing Electronics Dresden (cfaed), TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
26
|
Ramakrishnan S, Ijäs H, Linko V, Keller A. Structural stability of DNA origami nanostructures under application-specific conditions. Comput Struct Biotechnol J 2018; 16:342-349. [PMID: 30305885 PMCID: PMC6169152 DOI: 10.1016/j.csbj.2018.09.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
With the introduction of the DNA origami technique, it became possible to rapidly synthesize almost arbitrarily shaped molecular nanostructures at nearly stoichiometric yields. The technique furthermore provides absolute addressability in the sub-nm range, rendering DNA origami nanostructures highly attractive substrates for the controlled arrangement of functional species such as proteins, dyes, and nanoparticles. Consequently, DNAorigami nanostructures have found applications in numerous areas of fundamental and applied research, ranging from drug delivery to biosensing to plasmonics to inorganic materials synthesis. Since many of those applications rely on structurally intact, well-definedDNA origami shapes, the issue of DNA origami stability under numerous application-relevant environmental conditions has received increasing interest in the past few years. In this mini-review we discuss the structural stability, denaturation, and degradation of DNA origami nanostructures under different conditions relevant to the fields of biophysics and biochemistry, biomedicine, and materials science, and the methods to improve their stability for desired applications.
Collapse
Affiliation(s)
- Saminathan Ramakrishnan
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| | - Heini Ijäs
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
- University of Jyväskylä, Department of Biological and Environmental Science, P. O. Box 35, FI-40014 Jyväskylä, Finland
| | - Veikko Linko
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, FI-00076 Aalto, Finland
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
| |
Collapse
|
27
|
Kollmann F, Ramakrishnan S, Shen B, Grundmeier G, Kostiainen MA, Linko V, Keller A. Superstructure-Dependent Loading of DNA Origami Nanostructures with a Groove-Binding Drug. ACS OMEGA 2018; 3:9441-9448. [PMID: 31459078 PMCID: PMC6644410 DOI: 10.1021/acsomega.8b00934] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 05/26/2023]
Abstract
DNA origami nanostructures are regarded as powerful and versatile vehicles for targeted drug delivery. So far, DNA origami-based drug delivery strategies mostly use intercalation of the therapeutic molecules between the base pairs of the DNA origami's double helices for drug loading. The binding of nonintercalating drugs to DNA origami nanostructures, however, is less studied. Therefore, in this work, we investigate the interaction of the drug methylene blue (MB) with different DNA origami nanostructures under conditions that result in minor groove binding. We observe a noticeable effect of DNA origami superstructure on the binding affinity of MB. In particular, non-B topologies as for instance found in designs using the square lattice with 10.67 bp/turn may result in reduced binding affinity because groove binding efficiency depends on groove dimensions. Also, mechanically flexible DNA origami shapes that are prone to structural fluctuations may exhibit reduced groove binding, even though they are based on the honeycomb lattice with 10.5 bp/turn. This can be attributed to the induction of transient over- and underwound DNA topologies by thermal fluctuations. These issues should thus be considered when designing DNA origami nanostructures for drug delivery applications that employ groove-binding drugs.
Collapse
Affiliation(s)
- Fabian Kollmann
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger
Str. 100, 33098 Paderborn, Germany
| | - Saminathan Ramakrishnan
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger
Str. 100, 33098 Paderborn, Germany
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Guido Grundmeier
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger
Str. 100, 33098 Paderborn, Germany
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Veikko Linko
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger
Str. 100, 33098 Paderborn, Germany
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Adrian Keller
- Technical
and Macromolecular Chemistry, Paderborn
University, Warburger
Str. 100, 33098 Paderborn, Germany
| |
Collapse
|
28
|
Stern A, Eidelshtein G, Zhuravel R, Livshits GI, Rotem D, Kotlyar A, Porath D. Highly Conductive Thin Uniform Gold-Coated DNA Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800433. [PMID: 29726045 DOI: 10.1002/adma.201800433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Over the past decades, DNA, the carrier of genetic information, has been used by researchers as a structural template material. Watson-Crick base pairing enables the formation of complex 2D and 3D structures from DNA through self-assembly. Various methods have been developed to functionalize these structures for numerous utilities. Metallization of DNA has attracted much attention as a means of forming conductive nanostructures. Nevertheless, most of the metallized DNA wires reported so far suffer from irregularity and lack of end-to-end electrical connectivity. An effective technique for formation of thin gold-coated DNA wires that overcomes these drawbacks is developed and presented here. A conductive atomic force microscopy setup, which is suitable for measuring tens to thousands of nanometer long molecules and wires, is used to characterize these DNA-based nanowires. The wires reported here are the narrowest gold-coated DNA wires that display long-range conductivity. The measurements presented show that the conductivity is limited by defects, and that thicker gold coating reduces the number of defects and increases the conductive length. This preparation method enables the formation of molecular wires with dimensions and uniformity that are much more suitable for DNA-based molecular electronics.
Collapse
Affiliation(s)
- Avigail Stern
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Gennady Eidelshtein
- Department of Biochemistry, George S. Wise Faculty of Life Sciences and Nanotechnology Center, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Roman Zhuravel
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Gideon I Livshits
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Dvir Rotem
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alexander Kotlyar
- Department of Biochemistry, George S. Wise Faculty of Life Sciences and Nanotechnology Center, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Danny Porath
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
29
|
Bayrak T, Helmi S, Ye J, Kauert D, Kelling J, Schönherr T, Weichelt R, Erbe A, Seidel R. DNA-Mold Templated Assembly of Conductive Gold Nanowires. NANO LETTERS 2018; 18:2116-2123. [PMID: 29482327 DOI: 10.1021/acs.nanolett.8b00344] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We introduce a new concept for the solution-based fabrication of conductive gold nanowires using DNA templates. To this end, we employ DNA nanomolds, inside which electroless gold deposition is initiated by site-specific attached seeds. Using programmable interfaces, individual molds self-assemble into micrometer-long mold superstructures. During subsequent internal gold deposition, the mold walls constrain the metal growth, such that highly homogeneous nanowires with 20-30 nm diameters are obtained. Wire contacting using electron-beam lithography and electrical conductance characterization at temperatures between 4.2 K and room temperature demonstrate that metallic conducting wires were produced, although for part of the wires, the conductance is limited by boundaries between gold grains. Using different mold designs, our synthesis scheme will, in the future, allow the fabrication of complex metal structures with programmable shapes.
Collapse
Affiliation(s)
| | - Seham Helmi
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics , Universität Leipzig , 04103 Leipzig , Germany
| | - Jingjing Ye
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics , Universität Leipzig , 04103 Leipzig , Germany
| | - Dominik Kauert
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics , Universität Leipzig , 04103 Leipzig , Germany
| | | | | | | | | | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics , Universität Leipzig , 04103 Leipzig , Germany
| |
Collapse
|
30
|
Tokura Y, Harvey S, Xu X, Chen C, Morsbach S, Wunderlich K, Fytas G, Wu Y, Ng DYW, Weil T. Polymer tube nanoreactors via DNA-origami templated synthesis. Chem Commun (Camb) 2018; 54:2808-2811. [PMID: 29492501 PMCID: PMC5885267 DOI: 10.1039/c7cc09620h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/14/2018] [Indexed: 11/21/2022]
Abstract
We describe the stepwise synthesis of precise polymeric objects programmed by a 3D DNA tube transformed from a common 2D DNA tile as a precise biotemplate for atom transfer radical polymerization. The catalytic interior space of the DNA tube was utilized for synthesizing a bio-inspired polymer, polydopamine.
Collapse
Affiliation(s)
- Yu Tokura
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
- Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Sean Harvey
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
| | - Xuemei Xu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Luoyu Road 1037 , 430074 Hongshan , Wuhan , P. R. China
| | - Chaojian Chen
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
- Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Svenja Morsbach
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
| | - Katrin Wunderlich
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
| | - George Fytas
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
| | - Yuzhou Wu
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Luoyu Road 1037 , 430074 Hongshan , Wuhan , P. R. China
| | - David Y. W. Ng
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
| | - Tanja Weil
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany . ;
- Inorganic Chemistry I , Ulm University , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| |
Collapse
|
31
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
32
|
Uprety B, Jensen J, Aryal BR, Davis RC, Woolley AT, Harb JN. Directional Growth of DNA-Functionalized Nanorods to Enable Continuous, Site-Specific Metallization of DNA Origami Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10143-10152. [PMID: 28876958 DOI: 10.1021/acs.langmuir.7b01659] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This work examines the anisotropic electroless plating of DNA-functionalized gold nanorods attached to a DNA origami template to fabricate continuous metal structures of rectanglar, square, and T shapes. DNA origami, a versatile method for assembling a variety of 2- and 3-D nanostructures, is utilized to construct the DNA breadboard template used for this study. Staple strands on selective sites of the breadboard template are extended with an additional nucleotide sequence for the attachment of DNA-functionalized gold nanorods to the template via base pairing. The nanorod-seeded DNA templates are then introduced into an electroless gold plating solution to determine the extent to which the anisotropic growth of the nanorods is able to fill the gaps between seeds to create continuous structures. Our results show that the DNA-functionalized nanorods grow anisotropically during plating at a rate that is approximately 4 times faster in the length direction than in the width direction to effectively fill gaps of up to 11-13 nm in length. The feasibility of using this directional growth at specific sites to enable the fabrication of continuous metal nanostructures with diameters as thin as 10 nm is demonstrated and represents important progress toward the creation of devices and systems based on self-assembled biological templates.
Collapse
Affiliation(s)
- Bibek Uprety
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - John Jensen
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Basu R Aryal
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Robert C Davis
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Adam T Woolley
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - John N Harb
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| |
Collapse
|
33
|
Hong F, Zhang F, Liu Y, Yan H. DNA Origami: Scaffolds for Creating Higher Order Structures. Chem Rev 2017; 117:12584-12640. [DOI: 10.1021/acs.chemrev.6b00825] [Citation(s) in RCA: 645] [Impact Index Per Article: 92.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fan Hong
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Zhang
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Yan Liu
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Hao Yan
- The Biodesign Institute and
School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
34
|
Uprety B, Westover T, Stoddard M, Brinkerhoff K, Jensen J, Davis RC, Woolley AT, Harb JN. Anisotropic Electroless Deposition on DNA Origami Templates To Form Small Diameter Conductive Nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:726-735. [PMID: 28075137 DOI: 10.1021/acs.langmuir.6b04097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
An improved method for the metallization of DNA origami is examined in this work. DNA origami, a simple and robust method for creating a wide variety of nanostructured shapes and patterns, provides an enabling template for bottom-up fabrication of next-generation nanodevices. Selective metallization of these DNA templates is needed to make nanoelectronic devices. Here, we demonstrate a metallization process that uses gold nanorod seeds followed by anisotropic plating to provide improved morphology and greater control of the final metallized width of the structure. In our approach, gold nanorods are attached to an origami template to create a seed layer. Electroless gold deposition is then used to fill the gaps between seeds in order to create continuous, conductive nanowires. Importantly, growth during electroless deposition occurs preferentially in the length direction at a rate that is approximately 4 times the growth rate in the width direction, which enables fabrication of narrow, continuous wires. The electrical properties of 49 nanowires with widths ranging from 13 to 29 nm were characterized, and resistivity values as low as 8.9 × 10-7 Ω·m were measured. The anisotropic metallization process presented here represents important progress toward the creation of nanoelectronic devices by molecularly directed placement of functional components onto self-assembled biological templates.
Collapse
Affiliation(s)
- Bibek Uprety
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Tyler Westover
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Michael Stoddard
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Kamron Brinkerhoff
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - John Jensen
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Robert C Davis
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - Adam T Woolley
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| | - John N Harb
- Department of Chemical Engineering, ‡Department of Chemistry and Biochemistry, and §Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, United States
| |
Collapse
|
35
|
Teschome B, Facsko S, Schönherr T, Kerbusch J, Keller A, Erbe A. Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10159-10165. [PMID: 27626925 DOI: 10.1021/acs.langmuir.6b01961] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA origami nanostructures have been used extensively as scaffolds for numerous applications such as for organizing both organic and inorganic nanomaterials, studying single molecule reactions, and fabricating photonic devices. Yet, little has been done toward the integration of DNA origami nanostructures into nanoelectronic devices. Among other challenges, the technical difficulties in producing well-defined electrical contacts between macroscopic electrodes and individual DNA origami-based nanodevices represent a serious bottleneck that hinders the thorough characterization of such devices. Therefore, in this work, we have developed a method to electrically contact individual DNA origami-based metallic nanowires using electron beam lithography. We then characterize the charge transport of such nanowires in the temperature range from room temperature down to 4.2 K. The room temperature charge transport measurements exhibit ohmic behavior, whereas at lower temperatures, multiple charge transport mechanisms such as tunneling and thermally assisted transport start to dominate. Our results confirm that charge transport along metallized DNA origami nanostructures may deviate from pure metallic behavior due to several factors including partial metallization, seed inhomogeneities, impurities, and weak electronic coupling among AuNPs. Besides, this study further elucidates the importance of variable temperature measurements for determining the dominant charge transport mechanisms for conductive nanostructures made by self-assembly approaches.
Collapse
Affiliation(s)
- Bezu Teschome
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , 01328 Dresden, Germany
- Technische Universität Dresden, Mommsenstraße 13, 01069 Dresden, Germany
| | - Stefan Facsko
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , 01328 Dresden, Germany
| | - Tommy Schönherr
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , 01328 Dresden, Germany
| | - Jochen Kerbusch
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , 01328 Dresden, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, University of Paderborn , Warburger Str. 100, 33098 Paderborn, Germany
| | - Artur Erbe
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf , 01328 Dresden, Germany
| |
Collapse
|
36
|
Affiliation(s)
- Andrew Houlton
- School of Chemistry, Newcastle University, Newcastle, NE1 7RU, UK
| |
Collapse
|
37
|
Shen B, Tapio K, Linko V, Kostiainen MA, Toppari JJ. Metallic Nanostructures Based on DNA Nanoshapes. NANOMATERIALS 2016; 6:nano6080146. [PMID: 28335274 PMCID: PMC5224615 DOI: 10.3390/nano6080146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 01/10/2023]
Abstract
Metallic nanostructures have inspired extensive research over several decades, particularly within the field of nanoelectronics and increasingly in plasmonics. Due to the limitations of conventional lithography methods, the development of bottom-up fabricated metallic nanostructures has become more and more in demand. The remarkable development of DNA-based nanostructures has provided many successful methods and realizations for these needs, such as chemical DNA metallization via seeding or ionization, as well as DNA-guided lithography and casting of metallic nanoparticles by DNA molds. These methods offer high resolution, versatility and throughput and could enable the fabrication of arbitrarily-shaped structures with a 10-nm feature size, thus bringing novel applications into view. In this review, we cover the evolution of DNA-based metallic nanostructures, starting from the metallized double-stranded DNA for electronics and progress to sophisticated plasmonic structures based on DNA origami objects.
Collapse
Affiliation(s)
- Boxuan Shen
- Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland.
| | - Kosti Tapio
- Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P.O. Box 16100, Aalto 00076, Finland.
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Biotechnology and Chemical Technology, Aalto University, P.O. Box 16100, Aalto 00076, Finland.
| | - Jari Jussi Toppari
- Nanoscience Center, Department of Physics, University of Jyväskylä, P.O. Box 35, Jyväskylä 40014, Finland.
| |
Collapse
|
38
|
Geometrical assembly of ultrastable protein templates for nanomaterials. Nat Commun 2016; 7:11771. [PMID: 27249579 PMCID: PMC4895442 DOI: 10.1038/ncomms11771] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 04/28/2016] [Indexed: 11/15/2022] Open
Abstract
The fabrication of nanoscale devices requires architectural templates on which to position functional molecules in complex arrangements. Protein scaffolds are particularly promising templates for nanomaterials due to inherent molecular recognition and self-assembly capabilities combined with genetically encoded functionalities. However, difficulties in engineering protein quaternary structure into stable and well-ordered shapes have hampered progress. Here we report the development of an ultrastable biomolecular construction kit for the assembly of filamentous proteins into geometrically defined templates of controllable size and symmetry. The strategy combines redesign of protein–protein interaction specificity with the creation of tunable connector proteins that govern the assembly and projection angles of the filaments. The functionality of these nanoarchitectures is illustrated by incorporation of nanoparticles at specific locations and orientations to create hybrid materials such as conductive nanowires. These new structural components facilitate the manufacturing of nanomaterials with diverse shapes and functional properties over a wide range of processing conditions. Protein nanotechnology for the fabrication of protein-based nanoscale devices is gaining momentum but assembling well-defined three-dimensional shapes is still challenging. Here, the authors use an existing prefoldin assembled system to design a template for the construction of geometrically constrained structures.
Collapse
|
39
|
Hassanien R, Almaky MM, Houlton A, Horrocks BR. Preparation and electrical properties of a copper-conductive polymer hybrid nanostructure. RSC Adv 2016. [DOI: 10.1039/c6ra20325f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Conductive copper–polymer hybrid nanowires prepared by templating on DNA.
Collapse
Affiliation(s)
- Reda Hassanien
- Department of Chemistry
- Faculty of Science
- Assiut University
- Egypt
| | - Mahdi M. Almaky
- Department of Chemistry
- Faculty of Science
- Sebha University
- Sebha
- Libya
| | - Andrew Houlton
- Chemical Nanoscience Laboratory
- School of Chemistry
- Newcastle University
- UK
| | | |
Collapse
|
40
|
Baumann V, Habeeb Muhammed MA, Blanch AJ, Dey P, Rodríguez-Fernández J. Biomolecules in Metal and Semiconductor Nanoparticle Growth. Isr J Chem 2015. [DOI: 10.1002/ijch.201500031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Huang J, Lin L, Sun D, Chen H, Yang D, Li Q. Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 2015; 44:6330-74. [PMID: 26083903 DOI: 10.1039/c5cs00133a] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This critical review focuses on recent advances in the bio-inspired synthesis of metal nanomaterials (MNMs) using microorganisms, viruses, plants, proteins and DNA molecules as well as their applications in various fields. Prospects in the design of bio-inspired MNMs for novel applications are also discussed.
Collapse
Affiliation(s)
- Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, and National Laboratory for Green Chemical Productions of Alcohols, Ethers, and Esters, Xiamen University, Xiamen, P. R. China.
| | | | | | | | | | | |
Collapse
|
42
|
Wang L, Arrabito G. Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst 2015; 140:5821-48. [DOI: 10.1039/c5an00861a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA nanotechnology allows for the realization of novel multiplexed assays in bioanalytical sciences.
Collapse
Affiliation(s)
- L. Wang
- Department of Chemical Science and Technologies & NAST Center
- University of Rome Tor Vergata
- 00133 Rome
- Italy
| | - G. Arrabito
- Department of Electronic Engineering
- University of Rome Tor Vergata
- Rome
- Italy
| |
Collapse
|
43
|
Gopinath A, Rothemund PWK. Optimized assembly and covalent coupling of single-molecule DNA origami nanoarrays. ACS NANO 2014; 8:12030-40. [PMID: 25412345 DOI: 10.1021/nn506014s] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Artificial DNA nanostructures, such as DNA origami, have great potential as templates for the bottom-up fabrication of both biological and nonbiological nanodevices at a resolution unachievable by conventional top-down approaches. However, because origami are synthesized in solution, origami-templated devices cannot easily be studied or integrated into larger on-chip architectures. Electrostatic self-assembly of origami onto lithographically defined binding sites on Si/SiO2 substrates has been achieved, but conditions for optimal assembly have not been characterized, and the method requires high Mg2+ concentrations at which most devices aggregate. We present a quantitative study of parameters affecting origami placement, reproducibly achieving single-origami binding at 94±4% of sites, with 90% of these origami having an orientation within ±10° of their target orientation. Further, we introduce two techniques for converting electrostatic DNA-surface bonds to covalent bonds, allowing origami arrays to be used under a wide variety of Mg2+-free solution conditions.
Collapse
Affiliation(s)
- Ashwin Gopinath
- Departments of †Bioengineering, ‡Computer Science, and §Computation & Neural Systems, California Institute of Technology , Pasadena, California 91125, United States
| | | |
Collapse
|
44
|
Gates EP, Dearden AM, Woolley AT. DNA‐templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Crit Rev Anal Chem 2014; 44:354-70. [DOI: 10.1080/10408347.2014.910636] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
45
|
Watson SMD, Galindo MA, Horrocks BR, Houlton A. Mechanism of Formation of Supramolecular DNA-Templated Polymer Nanowires. J Am Chem Soc 2014; 136:6649-55. [DOI: 10.1021/ja500439v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Scott M. D. Watson
- Chemical
Nanoscience Laboratories,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Miguel A. Galindo
- Chemical
Nanoscience Laboratories,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Benjamin R. Horrocks
- Chemical
Nanoscience Laboratories,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU United Kingdom
| | - Andrew Houlton
- Chemical
Nanoscience Laboratories,
School of Chemistry, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU United Kingdom
| |
Collapse
|
46
|
Uprety B, Gates EP, Geng Y, Woolley AT, Harb JN. Site-specific metallization of multiple metals on a single DNA origami template. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1134-1141. [PMID: 24410066 DOI: 10.1021/la403617r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work examines the selective deposition of two different metals on a single DNA origami template that was designed and assembled to direct the deposition. As a result, we were able to direct copper and gold to predesignated locations on the template, as verified by both compositional and morphological data, to form a heterogeneous Cu-Au junction. Seeding and deposition were performed in sequential steps. An enabling aspect of this work was the use of an organic layer or "chemical mask" to prevent unwanted deposition during the deposition of the second metal. In light of recent efforts in the field, the ability to localize components of different composition and structure to specific sections of a DNA template represents an important step forward in the fabrication of nanostructures based on DNA templates.
Collapse
Affiliation(s)
- Bibek Uprety
- Department of Chemical Engineering and ‡Department of Chemistry and Biochemistry, Brigham Young University , Provo, Utah 84602, United States
| | | | | | | | | |
Collapse
|
47
|
Teshome B, Facsko S, Keller A. Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces. NANOSCALE 2014; 6:1790-1796. [PMID: 24352681 DOI: 10.1039/c3nr04627c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The controlled positioning of DNA nanostructures on technologically relevant surfaces represents a major goal along the route toward the full-scale integration of DNA-based materials into nanoelectronic and sensor devices. Previous attempts to arrange DNA nanostructures into defined arrays mostly relied on top-down lithographic patterning techniques combined with chemical surface functionalization. Here we combine two bottom-up techniques for nanostructure fabrication, i.e., self-organized nanopattern formation and DNA origami self-assembly, in order to demonstrate the electrostatic self-alignment of DNA nanotubes on topographically patterned silicon surfaces. Self-organized nanoscale ripple patterns with periodicities ranging from 20 nm to 50 nm are fabricated by low-energy ion irradiation and serve as substrates for DNA origami adsorption. Electrostatic interactions with the charged surface oxide during adsorption direct the DNA origami nanotubes to the ripple valleys and align them parallel to the ripples. By optimizing the pattern dimensions and the Debye length of the adsorption buffer, we obtain an alignment yield of ∼70%. Since this novel and versatile approach does not rely on any chemical functionalization of the surface or the DNA nanotubes, it can be applied to virtually any substrate material and any top-down or bottom-up nanopatterning technique. This technique thus may enable the wafer-scale fabrication of ordered arrays of functional DNA-based nanowires.
Collapse
Affiliation(s)
- Bezuayehu Teshome
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany.
| | | | | |
Collapse
|
48
|
Liu J, Uprety B, Gyawali S, Woolley AT, Myung NV, Harb JN. Fabrication of DNA-templated Te and Bi2Te3 nanowires by galvanic displacement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11176-11184. [PMID: 23901791 DOI: 10.1021/la402678j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper demonstrates the use of galvanic displacement to form continuous tellurium-based nanowires on DNA templates, enabling the conversion of metals, which can be deposited site-specifically, into other materials needed for device fabrication. Specifically, galvanic displacement reaction of copper and nickel nanowires is used to fabricate tellurium and bismuth telluride nanowires on λ-DNA templates. The method is simple, rapid, highly selective, and applicable to a number of different materials. In this study, continuous Ni and Cu nanowires are formed on DNA templates by seeding with Ag followed by electroless plating of the desired metal. These wires are then displaced by a galvanic displacement reaction where either Te or Bi2Te3 is deposited from an acidic solution containing HTeO2(+) ions or a combination of HTeO2(+) and Bi(3+) ions, and the metal wire is simultaneously dissolved due to oxidation. Both tellurium and bismuth telluride wires can be formed from nickel templates. In contrast, copper templates only form tellurium nanowires under the conditions considered. Therefore, the composition of the metal being displaced can be used to influence the chemistry of the resulting nanowire. Galvanic displacement of metals deposited on DNA templates has the potential to enable site-specific fabrication of a variety of materials and, thereby, make an important contribution to the advancement of useful devices via self-assembled nanotemplates.
Collapse
Affiliation(s)
- Jianfei Liu
- Department of Chemical Engineering, Brigham Young University, Provo, Utah 84602, USA
| | | | | | | | | | | |
Collapse
|