1
|
Nazari S, Abdelrasoul A. Surface Zwitterionization of HemodialysisMembranesfor Hemocompatibility Enhancement and Protein-mediated anti-adhesion: A Critical Review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
2
|
Kuchinka J, Willems C, Telyshev DV, Groth T. Control of Blood Coagulation by Hemocompatible Material Surfaces-A Review. Bioengineering (Basel) 2021; 8:215. [PMID: 34940368 PMCID: PMC8698751 DOI: 10.3390/bioengineering8120215] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Hemocompatibility of biomaterials in contact with the blood of patients is a prerequisite for the short- and long-term applications of medical devices such as cardiovascular stents, artificial heart valves, ventricular assist devices, catheters, blood linings and extracorporeal devices such as artificial kidneys (hemodialysis), extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass. Although lower blood compatibility of materials and devices can be handled with systemic anticoagulation, its side effects, such as an increased bleeding risk, make materials that have a better hemocompatibility highly desirable, particularly in long-term applications. This review provides a short overview on the basic mechanisms of blood coagulation including plasmatic coagulation and blood platelets, as well as the activation of the complement system. Furthermore, a survey on concepts for tailoring the blood response of biomaterials to improve the hemocompatibility of medical devices is given which covers different approaches that either inhibit interaction of material surfaces with blood components completely or control the response of the coagulation system, blood platelets and leukocytes.
Collapse
Affiliation(s)
- Janna Kuchinka
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, 124498 Moscow, Russia;
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
3
|
Jana A, Das M, Balla VK. In vitro and in vivo degradation assessment and preventive measures of biodegradable Mg alloys for biomedical applications. J Biomed Mater Res A 2021; 110:462-487. [PMID: 34418295 DOI: 10.1002/jbm.a.37297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Magnesium (Mg) and its alloys have been widely explored as a potential biodegradable implant material. However, the fast degradation of Mg-based alloys under physiological environment has hindered their widespread use for implant applications till date. The present review focuses on in vitro and in vivo degradation of biodegradable Mg alloys, and preventive measures for biomedical applications. Initially, the corrosion assessment approaches to predict the degradation behavior of Mg alloys are discussed along with the measures to control rapid corrosion. Furthermore, this review attempts to explore the correlation between in vitro and in vivo corrosion behavior of different Mg alloys. It was found that the corrosion depends on experimental conditions, materials and the results of different assessment procedures hardly matches with each other. It has been demonstrated the corrosion rate of magnesium can be tailored by alloying elements, surface treatments and heat treatments. Various researches also studied different biocompatible coatings such as dicalcium phosphate dihydrate (DCPD), β-tricalcium phosphate (β-TCP), hydroxyapatite (HA), polycaprolactone (PCL), polylactic acid (PLA), and so on, on Mg alloys to suppress rapid degradation and examine their influence on new bone regeneration as well. This review shows the need for a standard method of corrosion assessment to predict the in vivo corrosion rate based on in vitro data, and thus reducing the in vivo experimentation.
Collapse
Affiliation(s)
- Anuradha Jana
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mitun Das
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vamsi Krishna Balla
- Bioceramics & Coating Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Hong T, Cao PF, Zhao S, Li B, Smith C, Lehmann M, Erwin AJ, Mahurin SM, Venna SR, Sokolov AP, Saito T. Tailored CO2-philic Gas Separation Membranes via One-Pot Thiol–ene Chemistry. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00497] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Peng-Fei Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | | | - Bingrui Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Connor Smith
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michelle Lehmann
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Andrew J. Erwin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shannon M. Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Surendar R. Venna
- National Energy Technology Laboratory/AECOM, 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236, United States
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
5
|
Fabrication of chitosan/heparinized graphene oxide multilayer coating to improve corrosion resistance and biocompatibility of magnesium alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109947. [PMID: 31499970 DOI: 10.1016/j.msec.2019.109947] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/27/2019] [Accepted: 07/04/2019] [Indexed: 11/20/2022]
Abstract
Due to its good biodegradability and mechanical properties, magnesium alloys are considered as the ideal candidate for the cardiovascular stents. However, the rapid degradation in human physiological environment and the poor biocompatibility seriously limit its application for biomaterials. In the present study, a chitosan/heparinized graphene oxide (Chi/HGO) multilayer coating was constructed on the AZ31B magnesium alloy surface using layer-by-layer (LBL) method to improve the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectrum (RAMAN), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) showed that a dense and compact Chi/HGO multilayer coating was fabricated on the magnesium alloy surface. The results of potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), pH value changes and magnesium ion release suggested that the multilayer coating can significantly enhance the corrosion resistance of the magnesium alloy. Moreover, the Chi/HGO multilayer coating could not only significantly reduce the hemolysis rate and platelet adhesion, but also promote the adhesion and proliferation of endothelial cells. Therefore, the Chi/HGO multilayer coating can simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys.
Collapse
|
6
|
Oshibe N, Marukawa E, Yoda T, Harada H. Degradation and interaction with bone of magnesium alloy WE43 implants: A long-term follow-up in vivo rat tibia study. J Biomater Appl 2019; 33:1157-1167. [DOI: 10.1177/0885328218822050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this in vivo study was to examine the degradation and biocompatibility of the WE43 magnesium alloy containing magnesium yttrium, rare earth elements, and zirconium over a one-year long-term follow-up period. Additionally, we compared anodized WE43 implants with monolithic ones and clarified the effect of the anodization. WE43 cylindrical implants with and without anodization (length, 10 mm; diameter, 0.3 mm) were transplanted into the rat tibia. In both groups, the development of corrosion and the change in implant volume were evaluated by in vivo micro-computed tomography until 12 months, and the bone tissue reaction was observed histologically. In the monolithic WE43 implants, hydrogen gas was evident until 14 days and the volume loss was 36.3% after 12 months. In the anodized WE43 implants, the development of hydrogen gas was inhibited and the volume loss was 27.7% after 12 months. The anodized WE43 implants showed a significantly slower corrosion process in the early phase. Therefore, these implants may require a prolonged period to degrade completely and may even resist complete degradation. At one year post surgery, bone maturation progressed and lamellar bone structure developed around the implant in both groups. In conclusion, the WE43 implants showed good long-term stability and biocompatibility in bone tissue.
Collapse
Affiliation(s)
- Narumi Oshibe
- Maxillofacial surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eriko Marukawa
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Yoda
- Maxillofacial surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Harada
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Ye SH, Chen Y, Mao Z, Gu X, Shankarraman V, Hong Y, Shanov V, Wagner WR. Biodegradable Zwitterionic Polymer Coatings for Magnesium Alloy Stents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1421-1429. [PMID: 30056712 DOI: 10.1021/acs.langmuir.8b01623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Degradable metallic stents, most commonly composed of Mg-based alloys, are of interest as an alternative to traditional metallic stents for application in cardiac and peripheral vasculature. Two major design challenges with such stents are control of the corrosion rate and acute presentation of a nonthrombogenic surface to passing blood. In this study, several types of sulfobetaine (SB)-bearing biodegradable polyurethanes were developed and assessed as physical, chemical, and combination-type coatings for a model degradable Mg alloy, AZ31. For physical coatings, poly(ester sulfobetaine)urethane ureas, PESBUUs were synthesized using variable monomers that allowed the incorporation of a varying extent of carboxyl groups. Introduction of the carboxyl groups was associated with faster polymer degradation time. Simple physical coating of PESBUUs reduced macro- and microscopic thrombogenic deposition together with good stability of the coating attachment compared to a control coating of polylactic- co-glycolic acid. For PESBUUs incorporating carboxyl groups (PESBUUs-COOH), these groups could be converted to siloxane groups (PESBUUs-Si), thus creating polymers that could be surface reacted with the oxidized or phytic acid treated AZ31 surface. Chemical (silanization) attachment of these polymers reduced underlying alloy corrosion rates, but following the salination reaction with physical coating most reduced corrosion rates and protected the surface better from the consequences of oxidation occurring under the coating, such as blistering. The application of a multilayered coating approach using a sulfobetaine-based biodegradable elastomer thus offers options for degradable metallic stent design where thromboresistance is desired in combination with a means to control both polymeric coating degradation rates and underlying alloy corrosion rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vesselin Shanov
- Department of Bioengineering , University of Texas at Arlington , Arlington , Texas 76019 , United States
- College of Engineering and Applied Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | | |
Collapse
|
8
|
Lipinski MJ, Acampado E, Cheng Q, Adams L, Torii S, Gai J, Torguson R, Hellinga DG, Joner M, Harder C, Zumstein P, Finn AV, Kolodgie FD, Virmani R, Waksman R. Comparison of acute thrombogenicity for magnesium versus stainless steel stents in a porcine arteriovenous shunt model. EUROINTERVENTION 2019; 14:1420-1427. [DOI: 10.4244/eij-d-17-00958] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Choi JB, Jang YS, Mi Byeon S, Hwa Jang J, Kim YK, Bae TS, Lee MH. Effect of composite coating with poly-dopamine/PCL on the corrosion resistance of magnesium. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1455678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ji Bong Choi
- Deptartment of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Yong Seok Jang
- Deptartment of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Seon Mi Byeon
- Dental Clinic of Ebarun, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Jong Hwa Jang
- Department of Dental Hygiene, Health Science, Dankook University 119, Cheonan-si, Chungnam, Republic of Korea
| | - Yu Kyoung Kim
- Deptartment of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Tae Sung Bae
- Deptartment of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Min Ho Lee
- Deptartment of Dental Biomaterials and Institute of Biodegradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
10
|
Martínez-Galdámez M, Lamin SM, Lagios KG, Liebig T, Ciceri EF, Chapot R, Stockx L, Chavda S, Kabbasch C, Faragò G, Nordmeyer H, Boulanger T, Piano M, Boccardi EP. Treatment of intracranial aneurysms using the pipeline flex embolization device with shield technology: angiographic and safety outcomes at 1-year follow-up. J Neurointerv Surg 2018; 11:396-399. [PMID: 30262655 PMCID: PMC6582709 DOI: 10.1136/neurintsurg-2018-014204] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/25/2018] [Accepted: 08/29/2018] [Indexed: 11/04/2022]
Abstract
PURPOSE The Pipeline Embolization Device (PED) is a routine first-line treatment option for intracranial aneurysms (IAs). The Pipeline Flex Embolization Device with Shield Technology (Pipeline Shield) is an updated version of the PED which has been modified to include a surface phosphorylcholine biocompatible polymer. Its early technical success and safety have been reported previously. Here, we assessed the long-term safety and efficacy of the Pipeline Shield for the treatment of IAs. MATERIALS AND METHODS The Pipeline Flex Embolization Device with Shield Technology (PFLEX) study was a prospective, single-arm, multicenter study for the treatment of unruptured IAs using the Pipeline Shield. The primary endpoint was a major stroke in the territory supplied by the treated artery or neurologic death at 1-year post-procedure. Angiographic outcomes were also assessed by an independent radiology laboratory at 6 months and 1 year. RESULTS Fifty patients (mean age, 53 years; 82% female) with 50 unruptured IAs were treated. Mean aneurysm diameter was 8.82±6.15 mm. Of the target aneurysms, 38/50 (76%) were small (<10 mm), 11/50 (22%) were large (≥10 and<25 mm), and 1/50 (2%) was giant (≥25 mm). Forty-seven (94%) were located in the internal carotid artery and three (6%) in the vertebral artery. At 1-year post-procedure, no major strokes or neurologic deaths were reported, and complete occlusion was achieved in 27/33 (81.8%). There were no instances of aneurysm recurrence or retreatment. CONCLUSIONS Our 1-year follow-up concerning angiographic and safety outcomes corroborate previous evidence that the Pipeline Shield is a safe and effective treatment for IAs. TRIAL REGISTRATION NUMBER NCT02390037.
Collapse
Affiliation(s)
- Mario Martínez-Galdámez
- Department of Interventional Neuroradiology/Endovascular Neurosurgery, Fundación Jiménez-Díaz, Madrid, Spain
| | | | - Konstantinos G Lagios
- Department of Interventional Neuroradiology, Hellenic Air Force Hospital, Goudi, Greece
| | - Thomas Liebig
- Department of Neuroradiology, Institut für Neuroradiologie, Charite, Berlin, Germany
| | - Elisa F Ciceri
- Department of Interventional Neuroradiology, Foundation Neurological Institution 'C Besta', Milan, Italy.,Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Rene Chapot
- Department of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany
| | - Luc Stockx
- Department of Neuroradiology, Ziekenhuizen Oost-Limburg, Genk, Belgium
| | | | - Christoph Kabbasch
- Department of Neuroradiology, Institut für Neuroradiologie, Charite, Berlin, Germany
| | - Giuseppe Faragò
- Department of Interventional Neuroradiology, Foundation Neurological Institution 'C Besta', Milan, Italy
| | - Hannes Nordmeyer
- Department of Neuroradiology, Alfried Krupp Krankenhaus, Essen, Germany
| | - Thierry Boulanger
- Department of Neuroradiology, Ziekenhuizen Oost-Limburg, Genk, Belgium
| | - Mariangela Piano
- Department of Neuroradiology, Ospedale Niguarda Ca' Granda, Milan, Italy
| | - Edoardo P Boccardi
- Department of Neuroradiology, Ospedale Niguarda Ca' Granda, Milan, Italy
| |
Collapse
|
11
|
Pan CJ, Hou Y, Wang YN, Liu T, Gong T, Lin YB, Wang LR, Ye W. Biofunctionalisation of magnesium alloys by successive immobilisation of poly(ethylene glycol), fibronectin and heparin. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2017. [DOI: 10.1680/jbibn.16.00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In the present study, with the aim of improving their corrosion resistance, anticoagulation and cytocompatibility with endothelial cells, a magnesium alloy (AZ31B) was modified by the alkali heat treatment followed by the immobilisation of the dopamine layer. Subsequently, molecules of poly(ethylene glycol) (PEG) and fibronectin or fibronectin–heparin complexes were successively immobilised on the dopamine-modified surface. After the surface modification, the hydrophilicity of magnesium alloy was obviously improved. The corrosion resistance of the magnesium alloy was improved through alkali heat treatment, and the immobilisation of dopamine and PEG can further reduce the corrosion rate. However, the corrosion resistance of the magnesium alloy was slightly reduced by the grafting of fibronectin or fibronectin–heparin complex. Furthermore, the modified samples showed improved hemocompatibility and good cytocompatibility with the endothelial cells on the fibronectin or fibronectin–heparin-modified surfaces. Therefore, the corrosion resistance, anticoagulation and cytocompatibility of the magnesium alloy can be enhanced by alkali heat treatment and subsequent immobilisation of biomolecules. The method of this study can be used for surface modification of magnesium alloys to impart these with better corrosion resistance, blood compatibility and cytocompatibility with endothelial cells simultaneously.
Collapse
Affiliation(s)
- Chang-Jiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Yu Hou
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Ya-Nan Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Tao Gong
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Yue-Bin Lin
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Ling-Ren Wang
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Wei Ye
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
12
|
Singh V, Wu CJ, Sheng YJ, Tsao HK. Self-Propulsion and Shape Restoration of Aqueous Drops on Sulfobetaine Silane Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6182-6191. [PMID: 28551998 DOI: 10.1021/acs.langmuir.7b01120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The motion of droplets on typical surfaces is generally halted by contact line pinning associated with contact angle hysteresis. In this study, it was shown that, on a zwitterionic sulfobetaine silane (SBSi)-coated surface, aqueous drops with appropriate solutes can demonstrate hysteresis-free behavior, whereas a pure water drop shows spontaneous spreading. By adding solutes such as polyethylene glycol, 2(2-butoxy ethoxy) ethanol, or sodium n-dodecyl sulfate, an aqueous drop with a small contact angle (disappearance of spontaneous spreading) was formed on SBSi surfaces. The initial drop shape was readily relaxed back to a circular shape (hysteresis-free behavior), even upon severe disturbances. Moreover, it was interesting to observe the self-propulsion of such a drop on horizontal SBSi surfaces in the absence of externally provided stimuli. The self-propelled drop tends to follow a random trajectory, and the continuous movement can last for at least 10 min. This self-propelled random motion can be attributed to the combined effects of the hysteresis-free surface and the Marangoni stress. The former comes from the total wetting property of the surface, while the latter originates from surface tension gradient due to fluctuating evaporation rates along the drop border.
Collapse
Affiliation(s)
- Vickramjeet Singh
- Department of Chemical and Materials Engineering, National Central University , Jhongli 320, Taiwan
| | - Cyuan-Jhang Wu
- Department of Chemical and Materials Engineering, National Central University , Jhongli 320, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University , Taipei 106, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University , Jhongli 320, Taiwan
| |
Collapse
|
13
|
Feng L, Zhu S, Zhang W, Mei K, Wang H, Feng S. Preparation and Characterization of Functional Alkoxysilanes via Catalyst-Free Aza-Michael Reaction. ChemistrySelect 2017. [DOI: 10.1002/slct.201700492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Linglong Feng
- Key Laboratory of Special Functional Aggregated Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Siyu Zhu
- Key Laboratory of Special Functional Aggregated Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Wenyu Zhang
- Key Laboratory of Special Functional Aggregated Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Kai Mei
- Key Laboratory of Special Functional Aggregated Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Hua Wang
- Key Laboratory of Special Functional Aggregated Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| | - Shengyu Feng
- Key Laboratory of Special Functional Aggregated Materials; Ministry of Education; School of Chemistry and Chemical Engineering; Shandong University; Jinan 250100 People's Republic of China
| |
Collapse
|
14
|
Patil AJ, Jackson O, Fulton LB, Hong D, Desai PA, Kelleher SA, Chou DT, Tan S, Kumta PN, Beniash E. Anticorrosive Self-Assembled Hybrid Alkylsilane Coatings for Resorbable Magnesium Metal Devices. ACS Biomater Sci Eng 2017; 3:518-529. [DOI: 10.1021/acsbiomaterials.6b00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Avinash J. Patil
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Center
for Craniofacial Regeneration, University of Pittsburgh, 501 Salk
Pavilion, 335 Sutherland Drive, Pittsburgh, Pennsylvania15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology
Drive,Suite 300, Pittsburgh, Pennsylvania 15219, United States
| | - Olivia Jackson
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Laura B. Fulton
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Dandan Hong
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Center
for Craniofacial Regeneration, University of Pittsburgh, 501 Salk
Pavilion, 335 Sutherland Drive, Pittsburgh, Pennsylvania15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology
Drive,Suite 300, Pittsburgh, Pennsylvania 15219, United States
| | - Palak A. Desai
- Department
of Biological Sciences, Dietrich School of Arts and Sciences, University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen A. Kelleher
- Department
of Biology, Oberlin College, Science Center K123, 119 Woodland
Street, Oberlin, Ohio 44074, United States
| | - Da-Tren Chou
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Susheng Tan
- Department
of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 1238 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Petersen
Institute for NanoScience and Engineering (PINSE), University of Pittsburgh, Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Prashant N. Kumta
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department
of Oral Biology, School of Dental Medicine, University of Pittsburgh, 347 Salk Hall, 3501 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
- Center
for Craniofacial Regeneration, University of Pittsburgh, 501 Salk
Pavilion, 335 Sutherland Drive, Pittsburgh, Pennsylvania15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology
Drive,Suite 300, Pittsburgh, Pennsylvania 15219, United States
- Department
of Chemical and Petroleum Engineering, University of Pittsburgh, 940 Benedum
Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Elia Beniash
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 302 Benedum Hall, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department
of Oral Biology, School of Dental Medicine, University of Pittsburgh, 347 Salk Hall, 3501 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
- Center
for Craniofacial Regeneration, University of Pittsburgh, 501 Salk
Pavilion, 335 Sutherland Drive, Pittsburgh, Pennsylvania15261, United States
- McGowan
Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology
Drive,Suite 300, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
15
|
Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app7010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Gu X, Mao Z, Ye SH, Koo Y, Yun Y, Tiasha TR, Shanov V, Wagner WR. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Colloids Surf B Biointerfaces 2016; 144:170-179. [DOI: 10.1016/j.colsurfb.2016.03.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/24/2016] [Accepted: 03/31/2016] [Indexed: 01/16/2023]
|
17
|
Liu J, Zheng B, Wang P, Wang X, Zhang B, Shi Q, Xi T, Chen M, Guan S. Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17842-17858. [PMID: 27331417 DOI: 10.1021/acsami.6b05038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bioabsorbable magnesium alloys are becoming prominent as temporary functional implants, as they avoid the risks generated by permanent metallic implants such as persistent inflammation and late restenosis. Nevertheless, the overfast corrosion of Mg alloys under physiological conditions hinders their wider application as medical implant materials. Here we investigate a simple one-step process to introduce a cross-linked 3-amino-propyltrimethoxysilane (APTES) silane physical barrier layer on the surface of Mg-Zn-Y-Nd alloys prior to electrostatic spraying with rapamycin-eluting poly(lactic-co-glycolic acid) (PLGA) layer. Surface microstructure was characterized by scanning electron microscope and Fourier transform infrared spectroscopy. Nanoscratch test verified the superior adhesion strength of PLGA coating in the group pretreated with APTES. Electrochemical tests combined with long-term immersion results suggested that the preferable in vitro anticorrosion behavior could be achieved by dense APTES barrier. Cell morphology and proliferation data demonstrated that APTES pretreated group resulted in remarkably preferable compatibility for both human umbilical vein endothelial cells and vascular smooth muscle cells. On the basis of excellent in vitro mechenical property, the animal study on the APTES pretreated Mg-Zn-Y-Nd stent implanted into porcine coronary arteries confirmed benign tissue compatibility as well as re-endothelialization without thrombogenesis or in-stent restenosis at six-month followup.
Collapse
Affiliation(s)
- Jing Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Bo Zheng
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Pei Wang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xingang Wang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Bin Zhang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Qiuping Shi
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Tingfei Xi
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
- Shenzhen Research Institute, Peking University , Shenzhen 518055, China
| | - Ming Chen
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450002, China
| |
Collapse
|
18
|
Rahim MI, Tavares A, Evertz F, Kieke M, Seitz JM, Eifler R, Weizbauer A, Willbold E, Jürgen Maier H, Glasmacher B, Behrens P, Hauser H, Mueller PP. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model. J Biomed Mater Res B Appl Biomater 2016; 105:1622-1635. [DOI: 10.1002/jbm.b.33704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Ana Tavares
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Florian Evertz
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Marc Kieke
- Institute for Inorganic Chemistry, Leibniz University of Hannover; Callinstrasse 9 30167 Hannover Germany
| | - Jan-Marten Seitz
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
- Department of Materials Science and Engineering; Michigan Technological University; 1400 Townsend Dr. Houghton Michigan 49931
| | - Rainer Eifler
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
| | - Andreas Weizbauer
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School; Feodor-Lynen-Strasse 31 30625 Hannover Germany
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery; Hannover Medical School; Anna-von-Borries-Strasse 1-7 30625 Hannover Germany
| | - Elmar Willbold
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School; Feodor-Lynen-Strasse 31 30625 Hannover Germany
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery; Hannover Medical School; Anna-von-Borries-Strasse 1-7 30625 Hannover Germany
| | - Hans Jürgen Maier
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry, Leibniz University of Hannover; Callinstrasse 9 30167 Hannover Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Peter P. Mueller
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| |
Collapse
|
19
|
Liu Z, Shi C, Li Y, Song Y, Xu Q. Fluorescent genipin cross-linked REDV-conjugated polymeric microbubbles for human vascular endothelial cell (HVEC) targeting. RSC Adv 2016. [DOI: 10.1039/c6ra00992a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fluorescent polymeric microbubbles conjugated with REDV peptides were fabricated to achieve HVECs active targeting. The degradation, cytotoxicity and targeting features endowed them potential candidates in early molecular diagnosis for cardiovascular diseases.
Collapse
Affiliation(s)
- Zhe Liu
- Wenzhou Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou 325011
- China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou 325011
- China
| | - Yihong Li
- Wenzhou Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou 325011
- China
| | - Yuanhui Song
- Wenzhou Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou 325011
- China
| | - Qien Xu
- Wenzhou Institute of Biomaterials and Engineering
- Wenzhou Medical University
- Wenzhou 325011
- China
| |
Collapse
|
20
|
Liu L, Lee ME, Kang P, Choi MG. Revisit to Synthesis of Allyl- and Propargyl-Phosphorylcholines: Crystal Structure of Allyl-Phosphorylcholine. PHOSPHORUS SULFUR 2015. [DOI: 10.1080/10426507.2014.996878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Lei Liu
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Research and Education Center for Advanced Silicon Materials, Yonsei University, Wonju, Gangwondo, Republic of Korea
| | - Myong Euy Lee
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Research and Education Center for Advanced Silicon Materials, Yonsei University, Wonju, Gangwondo, Republic of Korea
| | - Philjae Kang
- Department of Chemistry and Molecular Structure Laboratory, Yonsei University, Seoul, Republic of Korea
| | - Moon-Gun Choi
- Department of Chemistry and Molecular Structure Laboratory, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Marukawa E, Tamai M, Takahashi Y, Hatakeyama I, Sato M, Higuchi Y, Kakidachi H, Taniguchi H, Sakamoto T, Honda J, Omura K, Harada H. Comparison of magnesium alloys and poly-l-lactide screws as degradable implants in a canine fracture model. J Biomed Mater Res B Appl Biomater 2015; 104:1282-9. [DOI: 10.1002/jbm.b.33470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/27/2015] [Accepted: 05/22/2015] [Indexed: 01/02/2023]
Affiliation(s)
- Eriko Marukawa
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; 1-5-45 Yushima Bunkyo-ku Tokyo 113-8549 Japan
| | - Masato Tamai
- Medical Technology Research Department Medical Technology R&D Division; Olympus Corporation; 2-3 Kuboyama-cho Hachioji Tokyo 192-8512 Japan
| | - Yukinobu Takahashi
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; 1-5-45 Yushima Bunkyo-ku Tokyo 113-8549 Japan
| | - Ichiro Hatakeyama
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; 1-5-45 Yushima Bunkyo-ku Tokyo 113-8549 Japan
| | - Masaru Sato
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; 1-5-45 Yushima Bunkyo-ku Tokyo 113-8549 Japan
| | - Yusuke Higuchi
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; 1-5-45 Yushima Bunkyo-ku Tokyo 113-8549 Japan
| | - Hiroshi Kakidachi
- Medical Technology Research Department Medical Technology R&D Division; Olympus Corporation; 2-3 Kuboyama-cho Hachioji Tokyo 192-8512 Japan
| | - Hirofumi Taniguchi
- Medical Technology Research Department Medical Technology R&D Division; Olympus Corporation; 2-3 Kuboyama-cho Hachioji Tokyo 192-8512 Japan
| | - Takamitsu Sakamoto
- Medical Technology Research Department Medical Technology R&D Division; Olympus Corporation; 2-3 Kuboyama-cho Hachioji Tokyo 192-8512 Japan
| | - Jun Honda
- Medical Technology Research Department Medical Technology R&D Division; Olympus Corporation; 2-3 Kuboyama-cho Hachioji Tokyo 192-8512 Japan
| | - Ken Omura
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; 1-5-45 Yushima Bunkyo-ku Tokyo 113-8549 Japan
| | - Hiroyuki Harada
- Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University; 1-5-45 Yushima Bunkyo-ku Tokyo 113-8549 Japan
| |
Collapse
|
22
|
Mao L, Shen L, Chen J, Wu Y, Kwak M, Lu Y, Xue Q, Pei J, Zhang L, Yuan G, Fan R, Ge J, Ding W. Enhanced bioactivity of Mg-Nd-Zn-Zr alloy achieved with nanoscale MgF2 surface for vascular stent application. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5320-30. [PMID: 25705919 DOI: 10.1021/am5086885] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Magnesium (Mg) alloys have revolutionized the application of temporary load-bearing implants as they meet both engineering and medical requirements. However, rapid degradation of Mg alloys under physiological conditions remains the major obstacle hindering the wider use of Mg-based implants. Here we developed a simple method of preparing a nanoscale MgF2 film on Mg-Nd-Zn-Zr (denoted as JDBM) alloy, aiming to reduce the corrosion rate as well as improve the biological response. The corrosion rate of JDBM alloy exposed to artificial plasma is reduced by ∼20% from 0.337 ± 0.021 to 0.269 ± 0.043 mm·y(-1) due to the protective effect of the MgF2 film with a uniform and dense physical structure. The in vitro cytocompatibility test of MgF2-coated JDBM using human umbilical vein endothelial cells indicates enhanced viability, growth, and proliferation as compared to the naked substrate, and the MgF2 film with a nanoscale flakelike feature of ∼200-300 nm presents a much more favorable environment for endothelial cell adhesion, proliferation, and alignment. Furthermore, the animal experiment via implantation of MgF2-coated JDBM stent to rabbit abdominal aorta confirms excellent tissue compatibility of the well re-endothelialized stent with no sign of thrombogenesis and restenosis in the stented vessel.
Collapse
Affiliation(s)
- Lin Mao
- National Engineering Research Center of Light Alloys Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ye SH, Arazawa DT, Zhu Y, Shankarraman V, Malkin AD, Kimmel JD, Gamble LJ, Ishihara K, Federspiel WJ, Wagner WR. Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2463-71. [PMID: 25669307 PMCID: PMC4391648 DOI: 10.1021/la504907m] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer.
Collapse
Affiliation(s)
- Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - David T. Arazawa
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Yang Zhu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Venkat Shankarraman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Alexander D. Malkin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Jeremy D. Kimmel
- ALung Technologies, Inc., Pittsburgh, Pennsylvania 15203, United States
| | - Lara J. Gamble
- Department of Bioengineering and NESAC/BIO, University of Washington, Seattle, Washington 98195, United States
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - William J. Federspiel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- ALung Technologies, Inc., Pittsburgh, Pennsylvania 15203, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
24
|
Liu L, Lee SJ, Lee ME, Kang P, Choi MG. Syntheses of phosphorylcholine-substituted silsesquioxanes via thiol-ene ‘click’ reaction. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
25
|
Park JK, Kim DG, Bae IH, Lim KS, Jeong MH, Choi C, Choi SK, Kim SC, Nah JW. Blood-compatible and biodegradable polymer-coated drug-eluting stent. Macromol Res 2015. [DOI: 10.1007/s13233-015-3023-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Study on the blood compatibility and biodegradation properties of magnesium alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:204-10. [DOI: 10.1016/j.msec.2014.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/16/2014] [Accepted: 11/10/2014] [Indexed: 01/17/2023]
|
27
|
Liu L, Park SJ, Park JH, Lee ME. Facile syntheses of alkoxysilanated phosphorylcholines as surface modifiers: CuAAC and thiol-ene “click” reactions. RSC Adv 2015. [DOI: 10.1039/c4ra15716h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alkoxysilanated PCs were synthesizedviaCuAAC and thiol-ene “click” reactions and used as surface modifiers on silica beads.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry & Medical Chemistry
- College of Science and Technology
- Research & Education Center for Advanced Silicon Materials
- Yonsei University
- Wonju
| | - Sung Jin Park
- Department of Chemistry & Medical Chemistry
- College of Science and Technology
- Research & Education Center for Advanced Silicon Materials
- Yonsei University
- Wonju
| | - Ji-hyun Park
- Department of Chemistry & Medical Chemistry
- College of Science and Technology
- Research & Education Center for Advanced Silicon Materials
- Yonsei University
- Wonju
| | - Myong Euy Lee
- Department of Chemistry & Medical Chemistry
- College of Science and Technology
- Research & Education Center for Advanced Silicon Materials
- Yonsei University
- Wonju
| |
Collapse
|
28
|
Sun J, Zhu Y, Meng L, Wei W, Li Y, Liu X, Zheng Y. Controlled release and corrosion protection by self-assembled colloidal particles electrodeposited onto magnesium alloys. J Mater Chem B 2015; 3:1667-1676. [DOI: 10.1039/c4tb01683a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Self-assembled nanoparticles loaded with bioactive agents were electrodeposited to provide the magnesium alloy with controlled release and corrosion resistance properties.
Collapse
Affiliation(s)
- Jiadi Sun
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Ye Zhu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Long Meng
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Wei Wei
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Yang Li
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Xiaoya Liu
- Key Laboratory of Food Colloids and Biotechnology
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- People's Republic of China
| |
Collapse
|
29
|
Synthesis and application of moisture-stable methallylsilanated phosphorylcholine as a surface modifier. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.09.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Wu L, Zhao L, Dong J, Ke W, Chen N. Potentiostatic Conversion of Phosphate Mineral Coating on AZ31 Magnesium Alloy in 0.1MK2HPO4 Solution. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.08.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Zhang Y, Forsyth M, Hinton BRW. The effect of treatment temperature on corrosion resistance and hydrophilicity of an ionic liquid coating for Mg-based stents. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18989-18997. [PMID: 25317893 DOI: 10.1021/am506825d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mg alloys are attractive candidate materials for biodegradable stents. However, there are few commercially available Mg-based stents in clinical use because Mg alloys generally undergo rapid localized corrosion in the body. In this study, we report a new surface coating for Mg alloy AZ31 based on a low-toxicity ionic liquid (IL), tributyl(methyl)phosphonium diphenyl phosphate (P1,4,4,4 dpp), to control its corrosion rate. Emphasis is placed on the effect of treatment temperature. We showed that enhancing the treatment temperature provided remarkable improvements in the performances of both corrosion resistance and biocompatibility. Increasing treatment temperature resulted in a thicker (although still nanometer scale) and more homogeneous IL film on the surface. Scanning electron microscopy and optical profilometry observations showed that there were many large, deep pits formed on the surface of bare AZ31 after 2 h of immersion in simulated body fluid (SBF). The IL coating (particularly when formed at 100 °C for 1 h) significantly suppressed the formation of these pits on the surface, making corrosion occur more uniformly. The P1,4,4,4 dpp IL film formed at 100 °C was more hydrophilic than the bare AZ31 surface, which was believed to be beneficial for avoiding the deposition of the proteins and cells on the surface and therefore improving the biocompatibility of AZ31 in blood. The interaction mechanism between this IL and AZ31 was also investigated using ATR-FTIR, which showed that both anion and cation of this IL were present in the film, and there was a chemical interaction between dpp(-) anion and the surface of AZ31 during the film formation.
Collapse
Affiliation(s)
- Yafei Zhang
- Institute for Frontier Materials, Deakin University , Burwood, Victoria 3125, Australia
| | | | | |
Collapse
|
32
|
Atomic layer deposition enhanced grafting of phosphorylcholine on stainless steel for intravascular stents. Colloids Surf B Biointerfaces 2014; 121:238-47. [DOI: 10.1016/j.colsurfb.2014.06.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/05/2014] [Accepted: 06/09/2014] [Indexed: 01/06/2023]
|
33
|
Zhao S, Chen Y, Liu B, Chen M, Mao J, He H, Zhao Y, Huang N, Wan G. A dual‐task design of corrosion‐controlling and osteo‐compatible hexamethylenediaminetetrakis‐ (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application. J Biomed Mater Res A 2014; 103:1640-52. [DOI: 10.1002/jbm.a.35301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/22/2014] [Accepted: 08/01/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Sheng Zhao
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| | - Yingqi Chen
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| | - Bo Liu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| | - Meiyun Chen
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| | - Jinlong Mao
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| | - Hairuo He
- Chemistry DepartmentHollins UniversityRoanoke Virginia24020‐1707
| | - Yuancong Zhao
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| | - Nan Huang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of MaterialsMinistry of Education, College of Materials Science and Engineering, Southwest Jiaotong UniversityChengdu610031 China
| |
Collapse
|
34
|
Tan Z, Wu C, Zhang M, Lv W, Qiu J, Liu C. Phosphorus-containing polymers from tetrakis-(hydroxymethyl)phosphonium sulfateiii. A new hydrolysis-resistant tris(allyloxymethyl)phosphine oxide and its thiol-ene reaction under ultraviolet irradiation. RSC Adv 2014. [DOI: 10.1039/c4ra06080f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
35
|
Liu X, Yuan L, Li D, Tang Z, Wang Y, Chen G, Chen H, Brash JL. Blood compatible materials: state of the art. J Mater Chem B 2014; 2:5718-5738. [PMID: 32262016 DOI: 10.1039/c4tb00881b] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Devices that function in contact with blood are ubiquitous in clinical medicine and biotechnology. These devices include vascular grafts, coronary stents, heart valves, catheters, hemodialysers, heart-lung bypass systems and many others. Blood contact generally leads to thrombosis (among other adverse outcomes), and no material has yet been developed which remains thrombus-free indefinitely and in all situations: extracorporeally, in the venous circulation and in the arterial circulation. In this article knowledge on blood-material interactions and "thromboresistant" materials is reviewed. Current approaches to the development of thromboresistant materials are discussed including surface passivation; incorporation and/or release of anticoagulants, antiplatelet agents and thrombolytic agents; and mimicry of the vascular endothelium.
Collapse
Affiliation(s)
- Xiaoli Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Barthélémy B, Maheux S, Devillers S, Kanoufi F, Combellas C, Delhalle J, Mekhalif Z. Synergistic effect on corrosion resistance of Phynox substrates grafted with surface-initiated ATRP (co)polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-hydroxyethyl methacrylate (HEMA). ACS APPLIED MATERIALS & INTERFACES 2014; 6:10060-10071. [PMID: 24915233 DOI: 10.1021/am500725d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phynox is of high interest for biomedical applications due to its biocompatibility and corrosion resistance. However, some Phynox applications require specific surface properties. These can be imparted with suitable surface functionalizations of its oxide layer. The present work investigates the surface-initiated atom transfer radical polymerization (ATRP) of 2-methacryloyoxyethyl phosphorylcholine (MPC), 2-hydroxyethyl methacrylate (HEMA), and ATRP copolymerization of (HEMA-co-MPC) (block and statistic copolymerization with different molar ratios) on grafted Phynox substrates modified with 11-(2-bromoisobutyrate)-undecyl-1-phosphonic acid (BUPA) as initiator. It is found that ATRP (co)polymerization of these monomers is feasible and forms hydrophilic layers, while improving the corrosion resistance of the system.
Collapse
Affiliation(s)
- Bastien Barthélémy
- Laboratory of Chemistry and Electrochemistry of Surfaces (CES) University of Namur , 61 Rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Ryan Stanfield J, Bamberg S. Durability evaluation of biopolymer coating on titanium alloy substrate. J Mech Behav Biomed Mater 2014; 35:9-17. [DOI: 10.1016/j.jmbbm.2014.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
38
|
Willumeit R, Möhring A, Feyerabend F. Optimization of cell adhesion on mg based implant materials by pre-incubation under cell culture conditions. Int J Mol Sci 2014; 15:7639-50. [PMID: 24857908 PMCID: PMC4057696 DOI: 10.3390/ijms15057639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/20/2014] [Accepted: 04/16/2014] [Indexed: 01/05/2023] Open
Abstract
Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture.
Collapse
Affiliation(s)
- Regine Willumeit
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Anneke Möhring
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| | - Frank Feyerabend
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Max-Planck-Str. 1, Geesthacht 21502, Germany.
| |
Collapse
|
39
|
Lowe AB. Thiol–ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 2014. [DOI: 10.1039/c4py00339j] [Citation(s) in RCA: 579] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This contribution serves as an update to a previous review (Polym. Chem.2010,1, 17–36) and highlights recent applications of thiol–ene ‘click’ chemistry as an efficient tool for both polymer/materials synthesis as well as modification.
Collapse
Affiliation(s)
- Andrew B. Lowe
- School of Chemical Engineering
- Centre for Advanced Macromolecular Design
- UNSW Australia
- University of New South Wales
- Kensington Sydney, Australia
| |
Collapse
|