1
|
Tam NW, Schullian O, Cipitria A, Dimova R. Nonspecific membrane-matrix interactions influence diffusivity of lipid vesicles in hydrogels. Biophys J 2024; 123:638-650. [PMID: 38332584 PMCID: PMC10938137 DOI: 10.1016/j.bpj.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 02/05/2024] [Indexed: 02/10/2024] Open
Abstract
The diffusion of extracellular vesicles and liposomes in vivo is affected by different tissue environmental conditions and is of great interest in the development of liposome-based therapeutics and drug-delivery systems. Here, we use a bottom-up biomimetic approach to better isolate and study steric and electrostatic interactions and their influence on the diffusivity of synthetic large unilamellar vesicles in hydrogel environments. Single-particle tracking of these extracellular vesicle-like particles in agarose hydrogels as an extracellular matrix model shows that membrane deformability and surface charge affect the hydrogel pore spaces that vesicles have access to, which determines overall diffusivity. Moreover, we show that passivation of vesicles with PEGylated lipids, as often used in drug-delivery systems, enhances diffusivity, but that this effect cannot be fully explained with electrostatic interactions alone. Finally, we compare our experimental findings with existing computational and theoretical work in the field to help explain the nonspecific interactions between diffusing particles and gel matrix environments.
Collapse
Affiliation(s)
- Nicky W Tam
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Otto Schullian
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany; Free University of Berlin, Department of Physics, Berlin, Germany
| | - Amaia Cipitria
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany; Group of Bioengineering in Regeneration and Cancer, Biogipuzkoa Health Research Institute, San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
| |
Collapse
|
2
|
Karal MAS, Billah MM, Ahmed M, Ahamed MK. A review on the measurement of the bending rigidity of lipid membranes. SOFT MATTER 2023; 19:8285-8304. [PMID: 37873600 DOI: 10.1039/d3sm00882g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This review provides an overview of the latest developments in both experimental and simulation techniques used to assess the bending rigidity of lipid membranes. It places special emphasis on experimental methods that utilize model vesicles to manipulate lipid compositions and other experimental parameters to determine the bending rigidity of the membrane. It also describes two commonly used simulation methods for estimating bending rigidity. The impact of various factors on membrane bending rigidity is summarized, including cholesterol, lipids, salt concentration, surface charge, membrane phase state, peptides, proteins, and polyethylene glycol. These factors are shown to influence the bending rigidity, contributing to a better understanding of the biophysical properties of membranes and their role in biological processes. Furthermore, the review discusses future directions and potential advancements in this research field, highlighting areas where further investigation is required.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
| | - Md Masum Billah
- Department of Physics, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Marzuk Ahmed
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Md Kabir Ahamed
- Radiation, Transport and Waste Safety Division, Bangladesh Atomic Energy Regulatory Authority, Agargaon, Dhaka 1207, Bangladesh
| |
Collapse
|
3
|
Hariharan K, Mehta T, Shah J, Dave H, Sami A, Omri A. Localized Delivery of Erlotinib Using Liposomal Gel Formulations for the Treatment of Oral Squamous Cell Carcinoma. Int J Pharm 2023:123144. [PMID: 37330155 DOI: 10.1016/j.ijpharm.2023.123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Oral cancer accounts for more than 350000 cases worldwide with 90% of them being oral squamous cell carcinomas (OSCC). The current treatment modalities of chemoradiation have poor outcomes along with harmful effects to neighbouring healthy tissues. The present study aimed to deliver Erlotinib (ERB), locally at the site of tumor arising in the oral cavity. ERB was encapsulated in liposomal formulations (ERB Lipo) and optimized using full factorial, 32 experimental design. The optimized batch was then coated with chitosan to obtain CS-ERB Lipo and were characterized further. Both liposomal ERB formulations had size less than 200nm and PDI less than 0.4. Zeta potential was upto -50mV for ERB Lipo and upto + 25mV for CS-ERB Lipo indicating stable formulation. Liposomal formulations were freeze dried and loaded into gel to study in-vitro release and chemotherapeutic evaluation. CS-ERB Lipo showed sustained release upto 36 h from gel as compared to control formulation. In-vitro cell viability studies showed potent anti-cancer activity on KB-cells. In-vivo studies showed better pharmacological efficacy in terms of tumor volume reduction for ERB LIPO gel (49.19%) and CS-ERB Lipo gel (55.27%) as compared to plain ERB Gel (38.88%) applied locally. Histology also revealed that formulation could alleviate dysplasia condition to hyperplasia. The locoregional therapy of ERB Lipo gel and CS-ERB Lipo gel thus show promising outcome in improving pre-malignant and early-stage oral cavity cancers.
Collapse
Affiliation(s)
- Kartik Hariharan
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Heena Dave
- Institute of Science, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Ontario, Canada
| |
Collapse
|
4
|
Debnath K, Heras KL, Rivera A, Lenzini S, Shin JW. Extracellular vesicle-matrix interactions. NATURE REVIEWS. MATERIALS 2023; 8:390-402. [PMID: 38463907 PMCID: PMC10919209 DOI: 10.1038/s41578-023-00551-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 03/12/2024]
Abstract
The extracellular matrix in microenvironments harbors a variety of signals to control cellular functions and the materiality of tissues. Most efforts to synthetically reconstitute the matrix by biomaterial design have focused on decoupling cell-secreted and polymer-based cues. Cells package molecules into nanoscale lipid membrane-bound extracellular vesicles and secrete them. Thus, extracellular vesicles inherently interact with the meshwork of the extracellular matrix. In this Review, we discuss various aspects of extracellular vesicle-matrix interactions. Cells receive feedback from the extracellular matrix and leverage intracellular processes to control the biogenesis of extracellular vesicles. Once secreted, various biomolecular and biophysical factors determine whether extracellular vesicles are locally incorporated into the matrix or transported out of the matrix to be taken up by other cells or deposited into tissues at a distal location. These insights can be utilized to develop engineered biomaterials where EV release and retention can be precisely controlled in host tissue to elicit various biological and therapeutic outcomes.
Collapse
Affiliation(s)
- Koushik Debnath
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kevin Las Heras
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy (UPV/EHU)
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Ambar Rivera
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60608, USA
| | - Stephen Lenzini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Wei X, Liu S, Cao Y, Wang Z, Chen S. Polymers in Engineering Extracellular Vesicle Mimetics: Current Status and Prospective. Pharmaceutics 2023; 15:pharmaceutics15051496. [PMID: 37242738 DOI: 10.3390/pharmaceutics15051496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The maintenance of a high delivery efficiency by traditional nanomedicines during cancer treatment is a challenging task. As a natural mediator for short-distance intercellular communication, extracellular vesicles (EVs) have garnered significant attention owing to their low immunogenicity and high targeting ability. They can load a variety of major drugs, thus offering immense potential. In order to overcome the limitations of EVs and establish them as an ideal drug delivery system, polymer-engineered extracellular vesicle mimics (EVMs) have been developed and applied in cancer therapy. In this review, we discuss the current status of polymer-based extracellular vesicle mimics in drug delivery, and analyze their structural and functional properties based on the design of an ideal drug carrier. We anticipate that this review will facilitate a deeper understanding of the extracellular vesicular mimetic drug delivery system, and stimulate the progress and advancement of this field.
Collapse
Affiliation(s)
- Xinyue Wei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifeng Cao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhen Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Sundoc Pharmaceutical Science and Tech Co., Ltd., Hangzhou 310051, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Shakeel M, Kiani MH, Sarwar HS, Akhtar S, Rauf A, Ibrahim IM, Ajalli N, Shahnaz G, Rahdar A, Díez-Pascual AM. Emulgel-loaded mannosylated thiolated chitosan-coated silver nanoparticles for the treatment of cutaneous leishmaniasis. Int J Biol Macromol 2023; 227:1293-1304. [PMID: 36470432 DOI: 10.1016/j.ijbiomac.2022.11.326] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Topical treatment of cutaneous leishmaniasis holds great promise for decreasing drug associated side effects and improving efficacy. This study was aimed to develop mannosylated thiolated chitosan-coated silver nanoparticles (MTCAg) loaded emulgel for the treatment of cutaneous leishmaniasis. MTC-Ag were synthesized via a chemical reduction method and were loaded into the emulgel. The nanoparticles had a zeta potential of +19.8 mV, an average particle size of 115 nm and a narrow polydispersity index of 0.26. In-vitro release profiles showed controlled release of silver ions from both the MTC-Ag and the emulgel-loaded MTC-Ag nanoparticles after 24 h. An ex-vivo retention study indicated 5 times higher retention of silver by the emulgel-loaded MTC-Ag than by the MTC-Ag nanoparticles. The in-vitro anti-leishmanial assay revealed that MTC-Ag had an excellent inhibitory effect on intracellular amastigotes, leading to ~90 % inhibition at the highest concentration tested. A 4-fold reduction in the IC50 value was found for MTC-Ag compared to blank Ag nanoparticles. Cytotoxicity assay showed 83 % viability of macrophages for MTC-Ag and 30 % for Ag nanoparticles at a concentration of 80 μg/mL, demonstrating the improved biocompatibility of the polymeric nanoparticles. Drug release and retention studies corroborate the great potential of MTC-Ag-loaded emulgel for the treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Iqra University, H-9 Campus, Islamabad 44000, Pakistan
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Sohail Akhtar
- Department of Entomology, University College of Agriculture & Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Aisha Rauf
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ibrahim M Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, 1417935840, Iran
| | - Gul Shahnaz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, 538-98615 Zabol, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
7
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharov AV, Amerhanova SK, Voloshina AD, Zueva IV, Petrov KA, Zakharova LY. Therapy of Organophosphate Poisoning via Intranasal Administration of 2-PAM-Loaded Chitosomes. Pharmaceutics 2022; 14:pharmaceutics14122846. [PMID: 36559339 PMCID: PMC9781263 DOI: 10.3390/pharmaceutics14122846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes. The formation of monodispersed and stable nanosized particles with a hydrodynamic diameter of up to 130 nm was shown using dynamic light scattering. The addition of the polymers recharged the liposome surface (from -15 mV to +20 mV), which demonstrates the successful deposition of Cs on the vesicles. In vitro spectrophotometric analysis showed a slow release of substrates (RhB and 2-PAM) from the nanocontainers, while the concentration and Cs type did not significantly affect the chitosome permeability. Flow cytometry and fluorescence microscopy qualitatively and quantitatively demonstrated the penetration of the developed chitosomes into normal Chang liver and M-HeLa cervical cancer cells. At the final stage, the ability of the formulated 2-PAM to reactivate brain AChE was assessed in a model of paraoxon-induced poisoning in an in vivo test. Intranasal administration of 2-PAM-containing chitosomes allows it to reach the degree of enzyme reactivation up to 35 ± 4%.
Collapse
|
8
|
Ramirez CAB, Carriero MM, Leomil FSC, Moro de Sousa RL, de Miranda A, Mertins O, Mathews PD. Complexation of a Polypeptide-Polyelectrolytes Bioparticle as a Biomaterial of Antibacterial Activity. Pharmaceutics 2022; 14:2746. [PMID: 36559240 PMCID: PMC9786851 DOI: 10.3390/pharmaceutics14122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The development of biomaterials to enable application of antimicrobial peptides represents a strategy of high and current interest. In this study, a bioparticle was produced by the complexation between an antimicrobial polypeptide and the biocompatible and biodegradable polysaccharides chitosan-N-arginine and alginate, giving rise to a colloidal polyelectrolytic complex of pH-responsive properties. The inclusion of the polypeptide in the bioparticle structure largely increases the binding sites of complexation during the bioparticles production, leading to its effective incorporation. After lyophilization, detailed evaluation of colloidal structure of redispersed bioparticles evidenced nano or microparticles with size, polydispersity and zeta potential dependent on pH and ionic strength, and the dependence was not withdrawn with the polypeptide inclusion. Significant increase of pore edge tension in giant vesicles evidenced effective interaction of the polypeptide-bioparticle with lipid model membrane. Antibacterial activity against Aeromonas dhakensis was effective at 0.1% and equal for the isolated polypeptide and the same complexed in bioparticle, which opens perspectives to the composite material as an applicable antibacterial system.
Collapse
Affiliation(s)
- Carlos A. B. Ramirez
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Mateus M. Carriero
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Fernanda S. C. Leomil
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Ricardo L. Moro de Sousa
- Department of Veterinary Medicine, University of Sao Paulo (USP), Pirassununga 13635-900, Brazil
| | - Antonio de Miranda
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Omar Mertins
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| | - Patrick D. Mathews
- Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil
| |
Collapse
|
9
|
Chiappisi L, Hoffmann I, Gradzielski M. Membrane stiffening in Chitosan mediated multilamellar vesicles of alkyl ether carboxylates. J Colloid Interface Sci 2022; 627:160-167. [PMID: 35842966 DOI: 10.1016/j.jcis.2022.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 10/17/2022]
Abstract
HYPOTHESIS Membrane undulations are known to strongly affect the stability of uni- and multilamellar vesicles formed by surfactants or phospholipids. Herein, based on the same arguments, we hypothesise that the properties of polyelectrolyte mediated surfactant multilamellar vesicles, in particular the multiplicity - i.e. the number of layers forming the vesicle - depend on the dynamics of the membrane. EXPERIMENTS Small-angle neutron scattering (SANS) and neutron spin-echo (NSE) were used to probe the structure and the dynamics of the multilayered vesicles formed in mixtures of the biopolymer chitosan and oppositely charged alkyl ether carboxylates. The neutron scattering data are complemented by static and dynamic light scattering experiments. Experiments were performed in polyelectrolyte excess conditions, and at a pH close to the pKa of the surfactant. FINDINGS The structural investigation shows very clearly that multilayered surfactant/polyelectrolyte vesicles are formed in the investigated mixtures. Only 3 to 5 layers form, on average, one vesicle, as similarly found in mixtures of chitosan and phospholipid vesicles. NSE shows that the surfactant membrane becomes stiffer upon complexation with chitosan, and that the fluctuation of the layers is strongly coupled in time and space. Such strong coupling and the increase in overall stiffness is associated with a high entropic cost. Accordingly, the combined SANS and NSE study points out that the low multiplicity found in multilayered vesicles involving the rigid polysaccharide chitosan arises from the strongly coupled dynamics of the membrane layers.
Collapse
Affiliation(s)
- Leonardo Chiappisi
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Strasse des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany; Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs 38042 Grenoble Cedex 9, France.
| | - Ingo Hoffmann
- Institut Max von Laue - Paul Langevin, 71 avenue des Martyrs 38042 Grenoble Cedex 9, France.
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Strasse des 17. Juni 124, Sekr. TC7, Technische Universität Berlin, D-10623 Berlin, Germany.
| |
Collapse
|
10
|
The Use of Chitosan-Coated Nanovesicles in Repairing Alcohol-Induced Damage of Liver Cells in Mice. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58060762. [PMID: 35744025 PMCID: PMC9229649 DOI: 10.3390/medicina58060762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/28/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022]
Abstract
Background and Objectives In the past few decades, the studies concerning the natural polysaccharide chitosan have been centered on a new direction: its hepatoprotective action. The aim of our study was to evaluate the influence of previously designed chitosan lipid vesicles on the liver damage induced by alcohol consumption in mice. Materials and Methods The study involved the oral administration of substances in one daily dose as follows: Group 1 (control): water; Group 2 (control alcohol): 5% alcohol in water; Group 3 (CHIT): 0.1 mL/10 g body weight chitosan solution in animals treated with alcohol; Group 4 (CHIT-ves): 0.1 mL/10 g body chitosan vesicles in animals treated with alcohol; Group 5 (AcA): 200 mg/kg body ascorbic acid in animals treated with alcohol. In order to evaluate liver damage after alcohol consumption, the following hematological parameters were tested: the activity of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase; serum values of urea and creatinine; the phagocytic capacity of polymorphonuclear neutrophilsin peripheral blood;serum opsonic capacity;bactericidal capacity of peritoneal macrophages; and the activity of malondialdehyde, glutathione peroxidase, superoxide dismutase and lactate dehydrogenase. Results and Conclusions The treatment with chitosan vesicles decreased liver enzyme activity and reduced the oxidative stress disturbances in alcoholic mice, thus repairing the hepatic functional and structural damages. These beneficial activities of chitosan vesicles were comparable with ascorbic acid effects in alcoholic mice.
Collapse
|
11
|
Chachanidze R, Xie K, Massaad H, Roux D, Leonetti M, de Loubens C. Structural characterization of the interfacial self-assembly of chitosan with oppositely charged surfactant. J Colloid Interface Sci 2022; 616:911-920. [DOI: 10.1016/j.jcis.2022.01.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/06/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
|
12
|
Cao Y, Dong X, Chen X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022; 14:pharmaceutics14040778. [PMID: 35456613 PMCID: PMC9026371 DOI: 10.3390/pharmaceutics14040778] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Liposomes are highly advantageous platforms for drug delivery. To improve the colloidal stability and avoid rapid uptake by the mononuclear phagocytic system of conventional liposomes while controlling the release of encapsulated agents, modification of liposomes with well-designed polymers to modulate the physiological, particularly the interfacial properties of the drug carriers, has been intensively investigated. Briefly, polymers are incorporated into liposomes mainly using “grafting” or “coating”, defined according to the configuration of polymers at the surface. Polymer-modified liposomes preserve the advantages of liposomes as drug-delivery carriers and possess specific functionality from the polymers, such as long circulation, precise targeting, and stimulus-responsiveness, thereby resulting in improved pharmacokinetics, biodistribution, toxicity, and therapeutic efficacy. In this review, we summarize the progress in polymer-modified liposomes for drug delivery, focusing on the change in physiological properties of liposomes and factors influencing the overall therapeutic efficacy.
Collapse
Affiliation(s)
- Yifeng Cao
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Correspondence: (Y.C.); (X.C.)
| | - Xinyan Dong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China;
| | - Xuepeng Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
- Correspondence: (Y.C.); (X.C.)
| |
Collapse
|
13
|
Lombardo D, Kiselev MA. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. Pharmaceutics 2022; 14:pharmaceutics14030543. [PMID: 35335920 PMCID: PMC8955843 DOI: 10.3390/pharmaceutics14030543] [Citation(s) in RCA: 129] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Liposomes are nano-sized spherical vesicles composed of an aqueous core surrounded by one (or more) phospholipid bilayer shells. Owing to their high biocompatibility, chemical composition variability, and ease of preparation, as well as their large variety of structural properties, liposomes have been employed in a large variety of nanomedicine and biomedical applications, including nanocarriers for drug delivery, in nutraceutical fields, for immunoassays, clinical diagnostics, tissue engineering, and theranostics formulations. Particularly important is the role of liposomes in drug-delivery applications, as they improve the performance of the encapsulated drugs, reducing side effects and toxicity by enhancing its in vitro- and in vivo-controlled delivery and activity. These applications stimulated a great effort for the scale-up of the formation processes in view of suitable industrial development. Despite the improvements of conventional approaches and the development of novel routes of liposome preparation, their intrinsic sensitivity to mechanical and chemical actions is responsible for some critical issues connected with a limited colloidal stability and reduced entrapment efficiency of cargo molecules. This article analyzes the main features of the formation and fabrication techniques of liposome nanocarriers, with a special focus on the structure, parameters, and the critical factors that influence the development of a suitable and stable formulation. Recent developments and new methods for liposome preparation are also discussed, with the objective of updating the reader and providing future directions for research and development.
Collapse
Affiliation(s)
- Domenico Lombardo
- Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
- Correspondence: ; Tel.: +39-090-39762222
| | - Mikhail A. Kiselev
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia;
- Department of Nuclear Physics, Dubna State University, 141980 Dubna, Moscow Region, Russia
- Physics Department, Lomonosov Moscow State University, 119991 Moscow, Moscow Region, Russia
| |
Collapse
|
14
|
Liposomal-Based Formulations: A Path from Basic Research to Temozolomide Delivery Inside Glioblastoma Tissue. Pharmaceutics 2022; 14:pharmaceutics14020308. [PMID: 35214041 PMCID: PMC8875825 DOI: 10.3390/pharmaceutics14020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.
Collapse
|
15
|
Ibrahim SS, Abo Elseoud OG, Mohamedy MH, Amer MM, Mohamed YY, Elmansy SA, Kadry MM, Attia AA, Fanous RA, Kamel MS, Solyman YA, Shehata MS, George MY. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology 2021; 197:108738. [PMID: 34339751 DOI: 10.1016/j.neuropharm.2021.108738] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
Many cancer survivors suffer from chemotherapy-induced cognitive impairment known as 'Chemobrain'. Doxorubicin -topoisomerase II inhibitor- is widely used in breast cancer, hematological cancers and other neoplasms. However, it is reported to precipitate cognitive impairment in cancer patients via inducing oxidative stress and inflammatory response. Chrysin -5,7 dihydroxyflavone- has promising antioxidant, anti-inflammatory and anticancer properties, but suffers low bioavailability owing to its poor solubility and extensive metabolism. In the present study, chrysin was successfully formulated as transfersomal lipid vesicles and chitosan composite vesicles (CCV) exhibiting a nanometric size range, high drug entrapment efficiency, and controlled release over a 72h period. Intranasal administration of optimized chrysin formulations at a reduced dose of 0.5 mg/kg improved doxorubicin-induced memory impairment in rats evidenced by behavioral testing, inhibition of acetylcholinesterase activity and oxidative stress markers; catalase, reduced glutathione, lipid peroxidation and hydrogen peroxide. This could reduce caspase-3 expression inhibiting apoptosis. Moreover, chrysin formulations were able to inhibit doxorubicin-induced Tol-like receptor 4 (TLR4) and p65 subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) protein expression which in turn, reduced procaspase-1, Cysteinyl Aspartate Protease-1 (caspase-1) and Interleukin-1β (IL-1β) protein expression via inhibiting Nod-like receptor pyrin containing 3 (NLRP3) inflammasome. Collectively, our findings suggest the enhanced therapeutic potential of chrysin when formulated as transfersomes and CCV against chemotherapy-induced chemobrain via hindering acetylcholinesterase, oxidative stress and TLR4-NF-kB(p65)-NLRP3 pathways.
Collapse
Affiliation(s)
- Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Omar G Abo Elseoud
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed H Mohamedy
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Amer
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Youssef Y Mohamed
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shehab A Elmansy
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed M Kadry
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed A Attia
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ragy A Fanous
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mahmoud S Kamel
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Youssef A Solyman
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mazen S Shehata
- Drug Design Program, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt.
| |
Collapse
|
16
|
Tampucci S, Castagna A, Monti D, Manera C, Saccomanni G, Chetoni P, Zucchetti E, Barbagallo M, Fazio L, Santin M, Ranieri A. Tyrosol-Enriched Tomatoes by Diffusion across the Fruit Peel from a Chitosan Coating: A Proposal of Functional Food. Foods 2021; 10:foods10020335. [PMID: 33557256 PMCID: PMC7915486 DOI: 10.3390/foods10020335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 01/10/2023] Open
Abstract
Chitosan is receiving increasing attention from the food industry for being a biodegradable, non-toxic, antimicrobial biopolymer able to extend the shelf life of, and preserve the quality of, fresh food. However, few studies have investigated the ability of chitosan-based coatings to allow the diffusion of bioactive compounds into the food matrix to improve its nutraceutical quality. This research is aimed at testing whether a hydrophilic molecule (tyrosol) could diffuse from the chitosan-tyrosol coating and cross the tomato peel. To this end, in vitro permeation tests using excised tomato peel and an in vivo application of chitosan-tyrosol coating on tomato fruit, followed by tyrosol quantification in intact fruit, peel and flesh during a seven-day storage at room temperature, were performed. Both approaches demonstrated the ability of tyrosol to permeate across the fruit peel. Along with a decreased tyrosol content in the peel, its concentration within the flesh was increased, indicating an active transfer of tyrosol into this tissue. This finding, together with the maintenance of constant tyrosol levels during the seven-day storage period, is very promising for the use of chitosan formulations to produce functional tomato fruit.
Collapse
Affiliation(s)
- Silvia Tampucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.T.); (D.M.); (C.M.); (G.S.); (P.C.); (E.Z.); (M.B.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy;
| | - Antonella Castagna
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy;
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy; (L.F.); (M.S.)
- Correspondence: ; Tel.: +39-050-221-6608
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.T.); (D.M.); (C.M.); (G.S.); (P.C.); (E.Z.); (M.B.)
| | - Clementina Manera
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.T.); (D.M.); (C.M.); (G.S.); (P.C.); (E.Z.); (M.B.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy;
| | - Giuseppe Saccomanni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.T.); (D.M.); (C.M.); (G.S.); (P.C.); (E.Z.); (M.B.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy;
| | - Patrizia Chetoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.T.); (D.M.); (C.M.); (G.S.); (P.C.); (E.Z.); (M.B.)
| | - Erica Zucchetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.T.); (D.M.); (C.M.); (G.S.); (P.C.); (E.Z.); (M.B.)
| | - Mariacristina Barbagallo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.T.); (D.M.); (C.M.); (G.S.); (P.C.); (E.Z.); (M.B.)
| | - Laura Fazio
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy; (L.F.); (M.S.)
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy; (L.F.); (M.S.)
| | - Annamaria Ranieri
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy;
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56126 Pisa, Italy; (L.F.); (M.S.)
| |
Collapse
|
17
|
Affiliation(s)
- Chandra Has
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
18
|
Allah Panahi M, Tahmasebi Z, Abbasian V, Amiri M, Moradi AR. Role of pH level on the morphology and growth rate of myelin figures. BIOMEDICAL OPTICS EXPRESS 2020; 11:5565-5574. [PMID: 33149971 PMCID: PMC7587248 DOI: 10.1364/boe.401834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
The myelin figure (MF) is one of the basic structures of lipids, and the study of their formation and the effect of various parameters on their growth is useful in understanding several biological processes. In this paper, we address the influence of the pH degree of the surrounding medium on MF dynamics. We introduce a tunable shearing digital holographic microscopy arrangement to obtain quantitative and volumetric information about the complex growth of MFs. Our results show that (1) the time evolution of relative length and volume changes of MFs follows a power-law, (2) the acidity facilitates the growth rate, and (3) the acidic environment causes the formation of thicker MFs.
Collapse
Affiliation(s)
- Marzieh Allah Panahi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- These authors contributed equally to this work
| | - Zahra Tahmasebi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- These authors contributed equally to this work
| | - Vahid Abbasian
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
- These authors contributed equally to this work
| | - Mohammad Amiri
- Department of Physics, Bu-Ali Sina University (BASU), Hamedan 65175-4161, Iran
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
| |
Collapse
|
19
|
Membrane interactions in drug delivery: Model cell membranes and orthogonal techniques. Adv Colloid Interface Sci 2020; 281:102177. [PMID: 32417568 DOI: 10.1016/j.cis.2020.102177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/05/2020] [Accepted: 05/07/2020] [Indexed: 01/22/2023]
Abstract
To generate the desired effect in the human body, the active pharmaceutical ingredient usually needs to interact with a receptor located on the cell membrane or inside the cell. Thus, understanding membrane interactions is of great importance when it comes to the development and testing of new drug molecules or new drug delivery systems. Nowadays, there is a tremendous selection of both model cell membranes and of techniques that can be used to characterize interactions between selected model cell membranes and a drug molecule, an excipient, or a drug delivery system. Having such a wide selection of model cell membranes and techniques available makes it sometimes challenging to select the optimal combination for a specific study. Furthermore, it is difficult to compare results obtained using different model cell membranes and techniques, and not all in vitro studies translate as well to an estimation of the in vivo biological activity or understanding of mode of action. This review provides an overview of the available lipid bilayer-based model cell membranes and of the most widely employed techniques for studying membrane interactions. Finally, the need for employing complimentary characterization techniques in order to acquire more reliable and in-depth information is highlighted.
Collapse
|
20
|
James HP, Jadhav S. Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles. Colloids Surf B Biointerfaces 2020; 188:110782. [DOI: 10.1016/j.colsurfb.2020.110782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
21
|
Karal MAS, Ahmed M, Levadny V, Belaya M, Ahamed MK, Rahman M, Shakil MM. Electrostatic interaction effects on the size distribution of self-assembled giant unilamellar vesicles. Phys Rev E 2020; 101:012404. [PMID: 32069606 DOI: 10.1103/physreve.101.012404] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 12/26/2022]
Abstract
The influence of electrostatic conditions (salt concentration of the solution and vesicle surface charge density) on the size distribution of self-assembled giant unilamellar vesicles (GUVs) is considered. The membranes of GUVs are synthesized by a mixture of dioleoylphosphatidylglycerol and dioleoylphosphatidylcholine in a physiological buffer using the natural swelling method. The experimental results are presented in the form of a set of histograms. The log-normal distribution is used for statistical treatment of results. It is obtained that the decrease of salt concentration and the increase of vesicle surface charge density of the membranes increase the average size of the GUV population. To explain the experimental results, a theory using the Helmholtz free energy of the system describing the GUV vesiculation is developed. The size distribution histograms and average size of GUVs under various conditions are fitted with the proposed theory. It is shown that the variation of the bending modulus due to changing of electrostatic parameters of the system is the main factor causing a change in the average size of GUVs.
Collapse
Affiliation(s)
- Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Victor Levadny
- Theoretical Problem Center of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow 117977, Russia
| | - Marina Belaya
- Department of Mathematics of Russian State University for the Humanities, Moscow GSP-3 125993, Russia
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Mostafizur Rahman
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Mostofa Shakil
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
22
|
Interaction of a Polyarginine Peptide with Membranes of Different Mechanical Properties. Biomolecules 2019; 9:biom9100625. [PMID: 31635304 PMCID: PMC6843195 DOI: 10.3390/biom9100625] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 01/18/2023] Open
Abstract
The membrane translocation efficiency of cell penetrating peptides (CPPs) has been largely studied, and poly-arginines have been highlighted as particularly active CPPs, especially upon negatively charged membranes. Here we inquire about the influence of membrane mechanical properties in poly-arginine adsorption, penetration and translocation, as well as the subsequent effect on the host membrane. For this, we selected anionic membranes exhibiting different rigidity and fluidity, and exposed them to the nona-arginine KR9C. Three different membrane compositions were investigated, all of them having 50% of the anionic lipid 1,2-dioleoyl-sn-glycero-3-phospho-(1’-rac-glycerol) (DOPG), thus, ensuring a high affinity of the peptide for membrane surfaces. The remaining 50% was a saturated PC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC), an unsaturated PC (1,2-dioleoyl-sn-glycero-3-phosphocholine, DOPC) or a mixture of DOPC with cholesterol. Peptide-membrane interactions were studied using four complementary models for membranes: Langmuir monolayers, Large Unilamellar Vesicles, Black Lipid Membranes and Giant Unilamellar Vesicles. The patterns of interaction of KR9C varied within the different membrane compositions. The peptide strongly adsorbed on membranes with cholesterol, but did not incorporate or translocate them. KR9C stabilized phase segregation in DPPC/DOPG films and promoted vesicle rupture. DOPC/DOPG appeared like the better host for peptide translocation: KR9C adsorbed, inserted and translocated these membranes without breaking them, despite softening was observed.
Collapse
|
23
|
Scott HL, Skinkle A, Kelley EG, Waxham MN, Levental I, Heberle FA. On the Mechanism of Bilayer Separation by Extrusion, or Why Your LUVs Are Not Really Unilamellar. Biophys J 2019; 117:1381-1386. [PMID: 31586522 DOI: 10.1016/j.bpj.2019.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/18/2019] [Accepted: 09/10/2019] [Indexed: 11/18/2022] Open
Abstract
Extrusion through porous filters is a widely used method for preparing biomimetic model membranes. Of primary importance in this approach is the efficient production of single bilayer (unilamellar) vesicles that eliminate the influence of interlamellar interactions and strictly define the bilayer surface area available to external reagents such as proteins. Submicroscopic vesicles produced using extrusion are widely assumed to be unilamellar, and large deviations from this assumption would impact interpretations from many model membrane experiments. Using three probe-free methods-small angle X-ray and neutron scattering and cryogenic electron microscopy-we report unambiguous evidence of extensive multilamellarity in extruded vesicles composed of neutral phosphatidylcholine lipids, including for the common case of neutral lipids dispersed in physiological buffer and extruded through 100-nm diameter pores. In such preparations, only ∼35% of lipids are externally accessible and this fraction is highly dependent on preparation conditions. Charged lipids promote unilamellarity as does decreasing solvent ionic strength, indicating the importance of electrostatic interactions in determining the lamellarity of extruded vesicles. Smaller extrusion pore sizes also robustly increase the fraction of unilamellar vesicles, suggesting a role for membrane bending. Taken together, these observations suggest a mechanistic model for extrusion, wherein the formation of unilamellar vesicles involves competition between bilayer bending and adhesion energies. The findings presented here have wide-ranging implications for the design and interpretation of model membrane studies, especially ensemble-averaged observations relying on the assumption of unilamellarity.
Collapse
Affiliation(s)
- Haden L Scott
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Allison Skinkle
- Department of Biosciences, Rice University, Houston, Texas; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas.
| | - Frederick A Heberle
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee; Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas.
| |
Collapse
|
24
|
Lira RB, Robinson T, Dimova R, Riske KA. Highly Efficient Protein-free Membrane Fusion: A Giant Vesicle Study. Biophys J 2019; 116:79-91. [PMID: 30579564 PMCID: PMC6342729 DOI: 10.1016/j.bpj.2018.11.3128] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Membrane fusion is a ubiquitous process in biology and is a prerequisite for many intracellular delivery protocols relying on the use of liposomes as drug carriers. Here, we investigate in detail the process of membrane fusion and the role of opposite charges in a protein-free lipid system based on cationic liposomes (LUVs, large unilamellar vesicles) and anionic giant unilamellar vesicles (GUVs) composed of different palmitoyloleoylphosphatidylcholine (POPC)/palmitoyloleoylphosphatidylglycerol (POPG) molar ratios. By using a set of optical-microscopy- and microfluidics-based methods, we show that liposomes strongly dock to GUVs of pure POPC or low POPG fraction (up to 10 mol%) in a process mainly associated with hemifusion and membrane tension increase, commonly leading to GUV rupture. On the other hand, docked LUVs quickly and very efficiently fuse with negative GUVs of POPG fractions at or above 20 mol%, resulting in dramatic GUV area increase in a charge-dependent manner; the vesicle area increase is deduced from GUV electrodeformation. Importantly, both hemifusion and full fusion are leakage-free. Fusion efficiency is quantified by the lipid transfer from liposomes to GUVs using fluorescence resonance energy transfer (FRET), which leads to consistent results when compared to fluorescence-lifetime-based FRET. We develop an approach to deduce the final composition of single GUVs after fusion based on the FRET efficiency. The results suggest that fusion is driven by membrane charge and appears to proceed up to charge neutralization of the acceptor GUV.
Collapse
Affiliation(s)
- Rafael B Lira
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil; Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Tom Robinson
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil.
| |
Collapse
|
25
|
Dias AM, dos Santos Cabrera MP, Lima AMF, Taboga SR, Vilamaior PSL, Tiera MJ, de Oliveira Tiera VA. Insights on the antifungal activity of amphiphilic derivatives of diethylaminoethyl chitosan against Aspergillus flavus. Carbohydr Polym 2018; 196:433-444. [DOI: 10.1016/j.carbpol.2018.05.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
|
26
|
Matsuzaki T, Ito H, Chevyreva V, Makky A, Kaufmann S, Okano K, Kobayashi N, Suganuma M, Nakabayashi S, Yoshikawa HY, Tanaka M. Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Phys Chem Chem Phys 2018; 19:19937-19947. [PMID: 28721420 DOI: 10.1039/c7cp02771k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Physical interactions of four major green tea catechin derivatives with cell membrane models were systemically investigated. Catechins with the galloyl moiety caused the aggregation of small unilamellar vesicles and an increase in the surface pressure of lipid monolayers, while those without did not. Differential scanning calorimetry revealed that, in a low concentration regime (≤10 μM), catechin molecules are not significantly incorporated into the hydrophobic core of lipid membranes as substitutional impurities. Partition coefficient measurements revealed that the galloyl moiety of catechin and the cationic quaternary amine of lipids dominate the catechin-membrane interaction, which can be attributed to the combination of electrostatic and cation-π interactions. Finally, we shed light on the mechanical consequence of catechin-membrane interactions using the Fourier-transformation of the membrane fluctuation. Surprisingly, the incubation of cell-sized vesicles with 1 μM galloyl catechins, which is comparable to the level in human blood plasma after green tea consumption, significantly increased the bending stiffness of the membranes by a factor of more than 60, while those without the galloyl moiety had no detectable influence. Atomic force microscopy and circular dichroism spectroscopy suggest that the membrane stiffening is mainly attributed to the adsorption of galloyl catechin aggregates to the membrane surfaces. These results contribute to our understanding of the physical and thus the generic functions of green tea catechins in therapeutics, such as cancer prevention.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Chemistry, Saitama University, Sakura-ku, Saitama, 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Robson AL, Dastoor PC, Flynn J, Palmer W, Martin A, Smith DW, Woldu A, Hua S. Advantages and Limitations of Current Imaging Techniques for Characterizing Liposome Morphology. Front Pharmacol 2018; 9:80. [PMID: 29467660 PMCID: PMC5808202 DOI: 10.3389/fphar.2018.00080] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/24/2018] [Indexed: 11/13/2022] Open
Abstract
There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.
Collapse
Affiliation(s)
- Annie-Louise Robson
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Paul C Dastoor
- Centre for Organic Electronics, University of Newcastle, Callaghan, NSW, Australia
| | - Jamie Flynn
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - William Palmer
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Antony Martin
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Ameha Woldu
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Susan Hua
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
28
|
Doktorova M, Harries D, Khelashvili G. Determination of bending rigidity and tilt modulus of lipid membranes from real-space fluctuation analysis of molecular dynamics simulations. Phys Chem Chem Phys 2018. [PMID: 28627570 DOI: 10.1039/c7cp01921a] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have recently developed a novel computational methodology (termed RSF for Real-Space Fluctuations) to quantify the bending rigidity and tilt modulus of lipid membranes from real-space analysis of fluctuations in the tilt and splay degrees of freedom as sampled in molecular dynamics (MD) simulations. In this article, we present a comprehensive study that combines results from the application of the RSF method to a wide range of lipid bilayer systems that encompass membranes of different fluidities and sizes, including lipids with saturated and unsaturated lipid tails, single and multi-component lipid systems, as well as non-standard lipids such as the four-tailed cardiolipin. By comparing the material properties calculated with the RSF method to those obtained from experimental data and from other computational methodologies, we rigorously demonstrate the validity of our approach and show its robustness. This should allow for future applications of even more complex lipidic assemblies, whose material properties are not tractable by other computational techniques. In addition, we discuss the relationship between different definitions of the tilt modulus appearing in current literature to address some important unresolved discrepancies in the field.
Collapse
Affiliation(s)
- M Doktorova
- Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | | | | |
Collapse
|
29
|
Martins DB, Nasário FD, Silva-Gonçalves LC, de Oliveira Tiera VA, Arcisio-Miranda M, Tiera MJ, dos Santos Cabrera MP. Chitosan derivatives targeting lipid bilayers: Synthesis, biological activity and interaction with model membranes. Carbohydr Polym 2018; 181:1213-1223. [DOI: 10.1016/j.carbpol.2017.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/21/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
30
|
Mathews PD, Fernandes Patta ACM, Gonçalves JV, Gama GDS, Garcia ITS, Mertins O. Targeted Drug Delivery and Treatment of Endoparasites with Biocompatible Particles of pH-Responsive Structure. Biomacromolecules 2018; 19:499-510. [PMID: 29283560 DOI: 10.1021/acs.biomac.7b01630] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomaterials conceived for vectorization of bioactives are currently considered for biomedical, biological, and environmental applications. We have produced a pH-sensitive biomaterial composed of natural source alginate and chitosan polysaccharides for application as a drug delivery system via oral administration. The composite particle preparation was in situ monitored by means of isothermal titration calorimetry. The strong interaction established between the macromolecules during particle assembly led to 0.60 alginate/chitosan effective binding sites with an intense exothermic effect and negative enthalpy variation on the order of a thousand kcal/mol. In the presence of model drugs mebendazole and ivermectin, with relatively small and large structures, respectively, mebendazole reduced the amount of chitosan monomers available to interact with alginate by 27%, which was not observed for ivermectin. Nevertheless, a state of intense negative Gibbs energy and large entropic decrease was achieved, providing evidence that formation of particles is thermodynamically driven and favored. Small-angle X-ray scattering provided further evidence of similar surface aspects independent of the presence of drug. The physical responses of the particles to pH variation comprise partial hydration, swelling, and the predominance of positive surface charge in strong acid medium, whereas ionization followed by deprotonation leads to compaction and charge reversal rather than new swelling in mild and slightly acidic mediums, respectively. In vivo performance was evaluated in the treatment of endoparasites in Corydoras fish. Systematically with a daily base oral administration, particles significantly reduced the infections over 15 days of treatment. The experiments provide evidence that utilizing particles granted and boosted the action of the antiparasitic drugs, leading to substantial reduction or elimination of infection. Hence, the pH-responsive particles represent a biomaterial with prominent characteristics that is promising for the development of targeted oral drug delivery.
Collapse
Affiliation(s)
- Patrick D Mathews
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Ana C M Fernandes Patta
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Joao V Gonçalves
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Gabriella Dos Santos Gama
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| | - Irene Teresinha Santos Garcia
- Department of Physical-Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul , Porto Alegre 91501-970, Brazil
| | - Omar Mertins
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo , Sao Paulo 04023-062, Brazil
| |
Collapse
|
31
|
McGeachy AC, Dalchand N, Caudill ER, Li T, Doğangün M, Olenick LL, Chang H, Pedersen JA, Geiger FM. Interfacial electrostatics of poly(vinylamine hydrochloride), poly(diallyldimethylammonium chloride), poly-l-lysine, and poly-l-arginine interacting with lipid bilayers. Phys Chem Chem Phys 2018; 20:10846-10856. [DOI: 10.1039/c7cp07353d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Charge densities of cationic polymers adsorbed to lipid bilayers are estimated from SHG spectroscopy and QCM-D measurements.
Collapse
Affiliation(s)
- A. C. McGeachy
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - N. Dalchand
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - E. R. Caudill
- Department of Chemistry
- University of Wisconsin-Madison
- Madison
- USA
| | - T. Li
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - M. Doğangün
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - L. L. Olenick
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - H. Chang
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | - J. A. Pedersen
- Department of Chemistry
- University of Wisconsin-Madison
- Madison
- USA
- Environmental Chemistry and Technology Program
| | - F. M. Geiger
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| |
Collapse
|
32
|
Hembach L, Cord-Landwehr S, Moerschbacher BM. Enzymatic production of all fourteen partially acetylated chitosan tetramers using different chitin deacetylases acting in forward or reverse mode. Sci Rep 2017; 7:17692. [PMID: 29255209 PMCID: PMC5735187 DOI: 10.1038/s41598-017-17950-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022] Open
Abstract
Some of the most abundant biomolecules on earth are the polysaccharides chitin and chitosan of which especially the oligomeric fractions have been extensively studied regarding their biological activities. However, most of these studies have not been able to assess the activity of a single, defined, partially acetylated chitosan oligosaccharide (paCOS). Instead, they have typically analyzed chemically produced, rather poorly characterized mixtures, at best with a single, defined degree of polymerization (DP) and a known average degree of acetylation (DA), as no pure and well-defined paCOS are currently available. We here present data on the enzymatic production of all 14 possible partially acetylated chitosan tetramers, out of which four were purified (>95%) regarding DP, DA, and pattern of acetylation (PA). We used bacterial, fungal, and viral chitin deacetylases (CDAs), either to partially deacetylate the chitin tetramer; or to partially re-N-acetylate the glucosamine tetramer. Both reactions proceeded with surprisingly strong and enzyme-specific regio-specificity. These pure and fully defined chitosans will allow to investigate the particular influence of DP, DA, and PA on the biological activities of chitosans, improving our basic understanding of their modes of action, e.g. their molecular perception by patter recognition receptors, but also increasing their usefulness in industrial applications.
Collapse
Affiliation(s)
- Lea Hembach
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Stefan Cord-Landwehr
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Bruno M Moerschbacher
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany.
| |
Collapse
|
33
|
Steinkühler J, Agudo-Canalejo J, Lipowsky R, Dimova R. Modulating Vesicle Adhesion by Electric Fields. Biophys J 2017; 111:1454-1464. [PMID: 27705768 PMCID: PMC5052469 DOI: 10.1016/j.bpj.2016.08.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/27/2016] [Accepted: 08/22/2016] [Indexed: 01/14/2023] Open
Abstract
We introduce an experimental setup for modulating adhesion of giant unilamellar vesicles to a planar substrate. Adhesion is induced by the application of an external potential to a transparent indium tin oxide-coated electrode (the substrate), which enables single-vesicle studies. We demonstrate tunable and reversible adhesion of negatively charged vesicles. The adhesion energy at different potentials is calculated from the vesicle shape assessed with confocal microscopy. Two approaches for these estimates are employed: one based on the whole contour of the vesicle and a second based on the contact curvature of the membrane in the vicinity of the substrate. Both approaches agree well with each other and show that the adhering vesicles are in the weak adhesion regime for the range of explored external potentials. Using fluorescence quenching assays, we detect that, in the adhering membrane segment, only the outer bilayer leaflet of the vesicle is depleted of negatively charged fluorescent lipids, while the inner leaflet remains unaffected. We show that depletion of negatively charged lipids is consistent Poisson-Boltzmann theory, taking into account charge regulation from lipid mobility. Finally, we also show that lipid diffusion is not significantly affected in the adhering membrane segment. We believe that the approaches introduced here for modulating and assessing vesicle adhesion have many potential applications in the field of single-vesicle studies and research on membrane adhesion.
Collapse
Affiliation(s)
- Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Jaime Agudo-Canalejo
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
| |
Collapse
|
34
|
Manconi M, Manca ML, Valenti D, Escribano E, Hillaireau H, Fadda AM, Fattal E. Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin. Int J Pharm 2017; 525:203-210. [DOI: 10.1016/j.ijpharm.2017.04.044] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 04/18/2017] [Indexed: 11/30/2022]
|
35
|
Lu BS, Gupta SP, Belička M, Podgornik R, Pabst G. Modulation of Elasticity and Interactions in Charged Lipid Multibilayers: Monovalent Salt Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13546-13555. [PMID: 27993014 PMCID: PMC5180256 DOI: 10.1021/acs.langmuir.6b03614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/22/2016] [Indexed: 05/18/2023]
Abstract
We have studied the electrostatic screening effect of NaCl solutions on the interactions between anionic lipid bilayers in the fluid lamellar phase using a Poisson-Boltzmann-based mean-field approach with constant charge and constant potential limiting charge regulation boundary conditions. The full DLVO potential, including the electrostatic, hydration and van der Waals interactions, was coupled to thermal bending fluctuations of the membranes via a variational Gaussian Ansatz. This allowed us to analyze the coupling between the osmotic pressure and the fluctuation amplitudes and compare them both simultaneously with their measured dependence on the bilayer separation, determined by the small-angle X-ray scattering experiments. High-structural resolution analysis of the scattering data revealed no significant changes of membrane structure as a function of salt concentration. Parsimonious description of our results is consistent with the constant charge limit of the general charge regulation phenomenology, with fully dissociated lipid charge groups, together with a 6-fold reduction of the membranes' bending rigidity upon increasing NaCl concentration.
Collapse
Affiliation(s)
- Bing-Sui Lu
- Department
of Theoretical Physics, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
- School
of Physical and Mathematical Sciences, Nanyang
Technological University, 21 Nanyang Link, 637371 Singapore
- E-mail:
| | - Santosh Prasad Gupta
- Institute
of Molecular Biosciences, Biophysics Division,University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010 Graz, Austria
- BioTechMed-Graz, A-8010 Graz, Austria
| | - Michal Belička
- Institute
of Molecular Biosciences, Biophysics Division,University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010 Graz, Austria
- BioTechMed-Graz, A-8010 Graz, Austria
| | - Rudolf Podgornik
- Department
of Theoretical Physics, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
- E-mail:
| | - Georg Pabst
- Institute
of Molecular Biosciences, Biophysics Division,University of Graz, NAWI Graz, Humboldtstraße 50/III, A-8010 Graz, Austria
- BioTechMed-Graz, A-8010 Graz, Austria
- E-mail: . Phone: +43 316 380 4989
| |
Collapse
|
36
|
Park MC, Sukumar P, Kim SK, Kang JY, Manz A, Kim TS. Selective and vertical microfabrication of lipid tubule arrays on glass substrates using template-guided gentle hydration. LAB ON A CHIP 2016; 16:4732-4741. [PMID: 27813541 DOI: 10.1039/c6lc01095d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Generally, asymmetric tubular lipid structures have been formed under the specific condition of gentle hydration or by using hydrodynamic and/or electrical elongation of vesicular lipid structures. Small-size lipid tubes are, however, very difficult to allocate or align in the vertical direction on the specific site of the substrate and, therefore, the ability to produce them selectively and in large quantities as an array form is limited. Herein, we propose an easy and novel method to fabricate selective and vertical lipid tube arrays using template-guided gentle hydration of dried lipid films without any external forces. A lipid solution was drop-dispensed onto a porous membrane and dried to form a lipid film. Then, the lipid-coated porous membrane was transferred to a glass substrate by using a UV-cured polymer layer to achieve tight bonding. Upon swelling with an appropriate buffer, expansion forces due to osmotic pressure during the gentle hydration process were highly constrained to confined pores, thereby resulting in the nucleation of tube-like lipid structures through the pores. Interestingly, according to the aspect ratio of pores (ARpore, pore length/pore diameter), different shapes of lipid structures, including vesicular, oval, and tube-like, were generated, which indicates the importance of the ARpore, as well as the pore diameter, during fabrication of tubular lipid structures. Also, this approach was easily modified with 1% chitosan to enhance the stability of the lipid tubes (>30 min in life time), by lipid coating twice and by using unsaturated lipids to increase tube length (>30 μm in length). Therefore, in the future, the simple but robust template-guided gentle hydration method will be a useful tool for fabricating addressable and engineered lipid tube arrays as a sensory unit.
Collapse
Affiliation(s)
- Min Cheol Park
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Pavithra Sukumar
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sang Kyung Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ji Yoon Kang
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Andreas Manz
- Korea Institute of Science and Technology in Europe, 66123 Saarbrücken, Germany
| | - Tae Song Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea. and Department of Biomedical Engineering, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
37
|
Mathews PD, Mertins O. Dispersion of chitosan in liquid crystalline lamellar phase: Production of biofriendly hydrogel of nano cubic topology. Carbohydr Polym 2016; 157:850-857. [PMID: 27987999 DOI: 10.1016/j.carbpol.2016.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/28/2016] [Accepted: 10/23/2016] [Indexed: 02/04/2023]
Abstract
Bicontinuous cubic phases were produced with introduction of chitosan in phospholipid/water hydrogel, providing composites of defined molecular organization. The ratio of lipid/water was constant and swelling of lipids bilayer is delimited by incorporation of polymer molecules into the structure. By means of synchrotron small angle X-ray scattering we identified topologies of coexisting cubic phases. The expected liquid crystalline Lα lamellar phase was suppressed by 0.2wt% chitosan leading to formation of diamond Pn3m and gyroid Ia3d cubic topology, with close lattice distances. An increment to 0.4wt% chitosan caused large increase in Pn3m lattice distance. However a higher 0.6wt% evolved this phase to a newly acquired primitive Im3m topology. The structuring process of the three-dimensional complex network is principally governed by demands of chitosan physical requirements over lipids bilayers interfacial curvature. The composite hydrogel of specific topologies presents reduced time release of gallic acid and may find application as new material for time-sustained delivery of bioactive compounds.
Collapse
Affiliation(s)
- Patrick D Mathews
- Department of Animal Biology, Institute of Biology, State University of Campinas, 13083-970 Campinas, Brazil.
| | - Omar Mertins
- Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, 04023-062 Sao Paulo, Brazil.
| |
Collapse
|
38
|
Mendes AC, Shekarforoush E, Engwer C, Beeren SR, Gorzelanny C, Goycoolea FM, Chronakis IS. Co-assembly of chitosan and phospholipids into hybrid hydrogels. PURE APPL CHEM 2016. [DOI: 10.1515/pac-2016-0708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractNovel hybrid hydrogels were formed by adding chitosan (Ch) to phospholipids (P) self-assembled particles in lactic acid. The effect of the phospholipid concentration on the hydrogel properties was investigated and was observed to affect the rate of hydrogel formation and viscoelastic properties. A lower concentration of phospholipids (0.5% wt/v) in the mixture, facilitates faster network formation as observed by Dynamic Light Scattering, with lower elastic modulus than the hydrogels formed with higher phospholipid content. The nano-porous structure of Ch/P hydrogels, with a diameter of 260±20 nm, as observed by cryo-scanning electron microscopy, facilitated the penetration of water and swelling. Cell studies revealed suitable biocompatibility of the Ch/P hydrogels that can be used within life sciences applications.
Collapse
Affiliation(s)
- Ana C. Mendes
- 1Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Søltofts plads 227, 2800 Kgs. Lyngby, Denmark
| | - Elhamalsadat Shekarforoush
- 1Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Søltofts plads 227, 2800 Kgs. Lyngby, Denmark
| | - Christoph Engwer
- 2Institute for Biology and Biotechnology of Plants (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
| | - Sophie R. Beeren
- 3DTU-Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Christian Gorzelanny
- 4Experimental Dermatology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Francisco M. Goycoolea
- 2Institute for Biology and Biotechnology of Plants (IBBP), Westfälische Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
| | - Ioannis S. Chronakis
- 1Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Søltofts plads 227, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
39
|
NH125 kills methicillin-resistant Staphylococcus aureus persisters by lipid bilayer disruption. Future Med Chem 2016; 8:257-69. [PMID: 26910612 DOI: 10.4155/fmc.15.189] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND NH125, a known WalK inhibitor kills MRSA persisters. However, its precise mode of action is still unknown. METHODS & RESULTS The mode of action of NH125 was investigated by comparing its spectrum of antimicrobial activity and its effects on membrane permeability and giant unilamellar vesicles (GUVs) with walrycin B, a WalR inhibitor and benzyldimethylhexadecylammonium chloride (16-BAC), a cationic surfactant. NH125 killed persister cells of a variety of Staphylococcus aureus strains. Similar to 16-BAC, NH125 killed MRSA persisters by inducing rapid membrane permeabilization and caused the rupture of GUVs, whereas walrycin B did not kill MRSA persisters or induce membrane permeabilization and did not affect GUVs. CONCLUSION NH125 kills MRSA persisters by interacting with and disrupting membranes in a detergent-like manner.
Collapse
|
40
|
Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Xia W, Xia S. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7277-7285. [PMID: 26173584 DOI: 10.1021/acs.jafc.5b01422] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study was conducted to elucidate the conformational dependence of the modulating ability of chitosan, a positively charged biopolymer, on a new type of liposome composed of mixed lipids including egg yolk phosphatidylcholine (EYPC) and nonionic surfactant (Tween 80). Analysis of the dynamic and structure of bilayer membrane upon interaction with chitosan by fluorescence and electron paramagnetic resonance techniques demonstrated that, in addition to providing a physical barrier for the membrane surface, the adsorption of chitosan extended and crimped chains rigidified the lipid membrane. However, the decrease in relative microviscosity and order parameter suggested that the presence of chitosan coils disturbed the membrane organization. It was also noted that the increase of fluidity in the lipid bilayer center was not pronounced, indicating the shallow penetration of coils into the hydrophobic interior of bilayer. Microscopic observations revealed that chitosan adsorption not only affected the morphology of liposomes but also modulated the particle aggregation and fusion. Especially, a number of very heterogeneous particles were visualized, which tended to confirm the role of chitosan coils as a "polymeric surfactant". In addition to particle deformation, the membrane permeability was also tuned. These findings may provide a new perspective to understand the physiological functionality of biopolymer and design biopolymer-liposome composite structures as delivery systems for bioactive components.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Yating Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Shabbar Abbas
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| |
Collapse
|
41
|
Mertins O, Mathews PD, Gomide AB, Baptista MS, Itri R. Effective protection of biological membranes against photo-oxidative damage: Polymeric antioxidant forming a protecting shield over the membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2180-7. [PMID: 26055894 DOI: 10.1016/j.bbamem.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/15/2023]
Abstract
We have prepared a chitosan polymer modified with gallic acid in order to develop an efficient protection strategy biological membranes against photodamage. Lipid bilayers were challenged with photoinduced damage by photosensitization with methylene blue, which usually causes formation of hydroperoxides, increasing area per lipid, and afterwards allowing leakage of internal materials. The damage was delayed by a solution of gallic acid in a concentration dependent manner, but further suppressed by the polymer at very low concentrations. The membrane of giant unilamellar vesicles was covered with this modified macromolecule leading to a powerful shield against singlet oxygen and thus effectively protecting the lipid membrane from oxidative stress. The results have proven the discovery of a promising strategy for photo protection of biological membranes.
Collapse
Affiliation(s)
- Omar Mertins
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, Brazil; Applied Physics Department, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R 187, 05508-900 São Paulo, Brazil.
| | - Patrick D Mathews
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Botucatu 862, 04023-062 São Paulo, Brazil
| | - Andreza B Gomide
- Applied Physics Department, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R 187, 05508-900 São Paulo, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Prof. Lineu Prestes 748, 05508-900 São Paulo, Brazil
| | - Rosangela Itri
- Applied Physics Department, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R 187, 05508-900 São Paulo, Brazil.
| |
Collapse
|
42
|
Chiappisi L, Gradzielski M. Co-assembly in chitosan-surfactant mixtures: thermodynamics, structures, interfacial properties and applications. Adv Colloid Interface Sci 2015; 220:92-107. [PMID: 25865361 DOI: 10.1016/j.cis.2015.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/23/2023]
Abstract
In this review, different aspects characterizing chitosan-surfactant mixtures are summarized and compared. Chitosan is a bioderived cationic polysaccharide that finds wide-ranged applications in various field, e.g., medical or food industry, in which synergistic effects with surfactant can play a fundamental role. In particular, the behavior of chitosan interacting with strong and weak anionic, nonionic as well as cationic surfactants is reviewed. We put a focus on oppositely charged systems, as they exhibit the most interesting features. In that context, we discuss the thermodynamic description of the interaction and in particular the structural changes as they occur as a function of the mixed systems and external parameters. Moreover, peculiar properties of chitosan coated phospholipid vesicles are summarized. Finally, their co-assembly at interfaces is briefly reviewed. Despite the behavior of the mentioned systems might strongly differ, resulting in a high variety of properties, few general rules can be pointed out which improve the understanding of such complex systems.
Collapse
|
43
|
Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Xia S, Chang D. Insights into chitosan multiple functional properties: the role of chitosan conformation in the behavior of liposomal membrane. Food Funct 2015; 6:3702-11. [DOI: 10.1039/c5fo00256g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions of chitosan with liposomes correlate with multiple functionalities. Chitosan chains can self-aggregate above a critical aggregation concentration. The physical properties of liposomes are affected by chitosan conformation. Chitosan displays “polymeric surfactant property” in the form of coils.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yating Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Shabbar Abbas
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Dawei Chang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| |
Collapse
|
44
|
Chiappisi L, Prévost S, Grillo I, Gradzielski M. From crab shells to smart systems: chitosan-alkylethoxy carboxylate complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10608-10616. [PMID: 25115198 DOI: 10.1021/la502569p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, self-assembly of alkyl ethylene oxide carboxylates and the biopolymer chitosan into supramolecular structures with various shapes is presented. Our investigations were done at pH 4.0, where the chitosan is almost fully charged and the surfactants are partially deprotonated. By changing the alkyl chain length and the number of ethylenoxide units very different water-soluble complexes can be obtained, ranging from globular micelles incorporated in a chitosan network to formation of ordered multiwalled vesicles. The structural characteristics of these complexes can be finely controlled by the mixing ratio of chitosan and surfactant, i.e., simply by the solutions composition. For instance, the vesicle wall thickness can be varied between 5 and 50 nm just by varying the mixing ratio. Accordingly, we expect this system to be an outstanding carrier for hydrophilic compounds with tunable release time option. Moreover, an easy route for preparation of chitosan-based complexes in the solid state with controlled mesoscopic order is presented. This work opens the way to prepare biofriendly materials on the basis of chitosan and mild anionic surfactants which are rather versatile with respect to their structure and properties, allowing for preparation of complexes with highly variable structures in both aqueous and solid phase. Formation of such different structures can be exploited for preparation of carriers, which are able to transport hydrophilic as well as hydrophobic molecules. Furthermore, as chitosan is well known to exhibit antibacterial and anti-inflammatory properties, different applications of these complexes can be indicated, i.e., as drug delivery systems or as coatings for medical implants.
Collapse
Affiliation(s)
- Leonardo Chiappisi
- Stranski Laboratorium für Physikalische Chemie und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin , Straße des 17, Juni 124, Sekretariat TC 7, D-10623 Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Dimova R. Recent developments in the field of bending rigidity measurements on membranes. Adv Colloid Interface Sci 2014; 208:225-34. [PMID: 24666592 DOI: 10.1016/j.cis.2014.03.003] [Citation(s) in RCA: 333] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 12/19/2022]
Abstract
This review gives a brief overview of experimental approaches used to assess the bending rigidity of membranes. Emphasis is placed on techniques based on the use of giant unilamellar vesicles. We summarize the effect on the bending rigidity of membranes as a function of membrane composition, presence of various inclusions in the bilayer and molecules and ions in the bathing solutions. Examples for the impact of temperature, cholesterol, some peptides and proteins, sugars and salts are provided and the literature data are discussed critically. Future directions, open questions and possible developments in this research field are also included.
Collapse
Affiliation(s)
- Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| |
Collapse
|
46
|
Mertins O, Dimova R. Insights on the interactions of chitosan with phospholipid vesicles. Part I: Effect of polymer deprotonation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14545-14551. [PMID: 24168397 DOI: 10.1021/la403218c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interactions between the polysaccharide chitosan and negatively charged phospholipid liposomes were studied as a function of compositional and environmental conditions. Using isothermal titration calorimetry, different levels of deprotonation of chitosan in acidic solutions were attained with titration of the fully protonated polymer at pH 4.48 into solutions with increasing pH. The process was found to be highly endothermic. We then examined the interaction of the polymer with vesicles in solutions of different pH. Even when partially deprotonated, the chitosan chains retain their affinity to the negatively charged liposomes. However, the stronger adsorption results in lower organization of the chains over the membrane.
Collapse
Affiliation(s)
- Omar Mertins
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam, Germany
| | | |
Collapse
|