1
|
Chen G, Zhao L, Cheng J, Chen M, Wang J, Ding W, Lei H. Prediction of Nanoscale Water Meniscus Shape between Deliquescent KDP Crystal Optics and AFM Probe for Water-Dissolution Repairing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18548-18557. [PMID: 38054931 DOI: 10.1021/acs.langmuir.3c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
KDP (KH2PO4) crystal optics are the key elements for megajoule laser facilities. Nanoscale surface defects would cause laser-induced damage when the optics are irradiated by a high-fluence laser (over 10 J/cm2). Dip-pen nanolithography (DPN) could be used to repair the nanoscale surface defects in the KDP optics by the water meniscus. The high humidity required for high-efficiency and soft KDP surfaces penetrated by the AFM probe brings challenges for accurately predicting the water meniscus shape to evaluate the effectiveness of the DPN water-dissolution repairing. The multisolutions of the Young-Laplace and Kelvin equations also lead to the wrong water meniscus shape. A theoretical model that takes the high humidity and the penetration of the AFM probes into account is developed. The parametrization Young-Laplace equations are adopted for the zero contact angle of the water films, and the AFM probe is treated as the combination of the cone and sphere for the water meniscus whose size is larger than the AFM tip radius under high humidity. The penetration of the AFM probe is modeled by Hertz theory. Both the water films (3.3 nm thickness at 99% relative humidity) and indentations (1.46 nm depth at 300 nN contact force) are non-negligible for the nanoscale water meniscus between the KDP surface and the AFM probe. Moreover, the rough-fine two-step method is proposed to lock the correct solution of the Young-Laplace and Kelvin equations. The effectiveness of the proposed model is verified by comparison with reported ESEM images and pull-off forces. In addition, the overgrowth dots on the KDP surface are compared with the water meniscus. The linear growth of the water meniscus would cause the linear growth of the overgrowth dot, which proves the proposed model could be used to guide the DPN water-dissolution repairing for the nanoscale surface defects in the KDP optics.
Collapse
Affiliation(s)
- Guang Chen
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Linjie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Jian Cheng
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Mingjun Chen
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Jinghe Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Wenyu Ding
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Hongqin Lei
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Karna NK, Wohlert J, Hjorth A, Theliander H. Capillary forces exerted by a water bridge on cellulose nanocrystals: the effect of an external electric field. Phys Chem Chem Phys 2023; 25:6326-6332. [PMID: 36779301 DOI: 10.1039/d2cp05563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Capillary forces play an important role during the dewatering and drying of nanocellulosic materials. Traditional moisture removal techniques, such as heating, have been proved to be deterimental to the properties of these materials and hence, there is a need to develop novel dewatering techniques without affecting the desired properties of materials. It is, therefore, important to explore novel methods for dewatering these high-added-value materials without negatively influencing their properties. In this context, we explore the effect of electric field on the capillary forces developed by a liquid-water bridge between two cellulosic surfaces, which may be formed during the water removal process following its displacement from the interfibrillar spaces. All-atom molecular dynamics (MD) simulations have been used to study the influence of an externally applied electric field on the capillary force exerted by a water bridge. Our results suggest that the equilibrium contact angle of water and the capillary force exerted by the water bridge between two nanocellulosic surfaces depend on the magnitude and direction of the externally applied electric fields. Hence, an external electric field can be applied to manipulate the capillary forces between two particles. The close agreement between the capillary forces measured through MD simulations and those calculated through classical equations indicates that, within the range of the electric field applied in this study, Young-Laplace equations can be safely employed to predict the capillary forces between two particles. The present study provides insights into the use of electric fields for drying of nanocellulosic materials.
Collapse
Affiliation(s)
- Nabin Kumar Karna
- Chalmers University of Technology, Chalmersplatsen-4, Sweden. .,Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology and Linköping University, SE-10044 Stockholm, Sweden
| | - Jakob Wohlert
- Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology and Linköping University, SE-10044 Stockholm, Sweden.,KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Hjorth
- Chalmers University of Technology, Chalmersplatsen-4, Sweden. .,Wallenberg Wood Science Center, The Royal Institute of Technology, Chalmers University of Technology and Linköping University, SE-10044 Stockholm, Sweden
| | - Hans Theliander
- Chalmers University of Technology, Chalmersplatsen-4, Sweden.
| |
Collapse
|
3
|
Wang Y, Wang J, Kong X, Gong M, Zhang L, Lin X, Wang D. Origin of Capillary-Force-Induced Welding in Ag Nanowires and Ag Nanowire/Carbon Nanotube Conductive Networks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12682-12688. [PMID: 36191128 DOI: 10.1021/acs.langmuir.2c02176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Capillary-force-induced welding can effectively reduce the contact resistance between two silver nanowires (AgNWs) by merging the NW-NW junctions. Herein, we report a model for quantifying the capillary force between two nano-objects. The model can be used to calculate the capillary force generated between AgNWs and carbon nanotubes (CNTs) during water evaporation. The results indicate that the radius of one-dimensional nano-objects is crucial for capillary-force-induced welding. AgNWs with larger radii can generate a greater capillary force (FAgNW-AgNW) at NW-NW junctions. In addition, for AgNW/CNT hybrid films, the use of CNTs with a radius close to that of AgNWs can result in a larger capillary force (FAgNW-CNT) at NW-CNT junctions. The reliability of the model is verified by measuring the change in sheet resistance before and after capillary-force-induced welding of a series of AgNW and AgNW/CNT conductive films with varying radii.
Collapse
Affiliation(s)
- Yangyang Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Jianping Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Xiangyi Kong
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
| | - Min Gong
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, China
| | - Liang Zhang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, China
| | - Xiang Lin
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, China
| | - Dongrui Wang
- Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing100083, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing100083, China
| |
Collapse
|
4
|
Liu L, Wan KT, Liu KK. Influence of Relative Humidity on Interparticle Capillary Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12714-12722. [PMID: 34664966 DOI: 10.1021/acs.langmuir.1c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A homemade instrument is designed to directly characterize the adhesion between two rigid polymeric microspheres in the presence of moist air. The tensile load is measured as a function of approach distance at designated relative humidity (RH). The measurement is consistent with our model from the first approximation. The model is further extended to include a rough surface. Capillary adhesion force is shown to be monotonically increasing with RH for smooth surfaces but becomes more pronounced at low RH for rough surfaces. Moisture has a profound influence on interparticle adhesion, which has significant impacts on a wide range of industrial applications.
Collapse
Affiliation(s)
- Lidong Liu
- School of Engineering, University of Warwick, Library Road, Coventry CV4 7AL, U.K
| | - Kai-Tak Wan
- Mechanical & Industrial Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Library Road, Coventry CV4 7AL, U.K
| |
Collapse
|
5
|
Yu Y, Yang A, Ye H, Dye JF, Cui Z. Numerical study of the formation and drying kinetics of a capillary bridge of trehalose solution between two parallel hydrophilic fibres. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Sun X, Zhang W, Lee HJ, Michielsen S. Equilibrium clamshell drops on conical surfaces: effect of curvature and gravity. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhao CF, Kruyt NP, Millet O. Capillary bridges between unequal-sized spherical particles: Rupture distances and capillary forces. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Mavrantzas VG, Pratsinis SE. The impact of molecular simulations in gas-phase manufacture of nanomaterials. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Zhao CF, Kruyt NP, Millet O. Capillary bridge force between non-perfectly wettable spherical particles: An analytical theory for the pendular regime. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.08.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Experimental measurement of the normal coefficient of restitution of micro-particles impacting on plate surface in different humidity. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
|
12
|
Wei Z, Sinko R, Keten S, Luijten E. Effect of Surface Modification on Water Adsorption and Interfacial Mechanics of Cellulose Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8349-8358. [PMID: 29431992 DOI: 10.1021/acsami.7b18803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
With increasing environmental concerns about petrochemical-based materials, the development of high-performance polymer nanocomposites with sustainable filler phases has attracted significant attention. Cellulose nanocrystals (CNCs) are promising nanocomposite reinforcing agents due to their exceptional mechanical properties, low weight, and bioavailability. However, there are still numerous obstacles that prevent these materials from achieving optimal performance, including high water adsorption, poor nanoparticle dispersion, and filler properties that vary in response to moisture. Surface modification is an effective method to mitigate these shortcomings. We use computational approaches to obtain direct insight into the water adsorption and interfacial mechanics of modified CNC surfaces. Atomistic grand-canonical Monte Carlo simulations demonstrate how surface modification of sulfated Na-CNCs impacts water adsorption. We find that methyl(triphenyl)phosphonium (MePh3P+)-exchanged CNCs have lower water uptake than Na-CNCs, supporting experimental dynamic vapor sorption measurements. The adsorbed water molecules show orientational ordering when distributed around the cations. Steered molecular dynamics simulations quantify traction-separation behavior of CNC-CNC interfaces. We find that exchanging sodium for MePh3P+ effectively changes the surface hydrophilicity, which in turn directly impacts interfacial adhesion and traction-separation behavior. Our analysis provides guidelines for controlling moisture effects in cellulose nanocomposites and nanocellulose films through surface modifications.
Collapse
|
13
|
LaMarche CQ, Miller AW, Liu P, Leadley S, Hrenya CM. How nano-scale roughness impacts the flow of grains influenced by capillary cohesion. AIChE J 2017. [DOI: 10.1002/aic.15830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Casey Q. LaMarche
- Dept. of Chemical and Biological Engineering; University of Colorado at Boulder; Boulder CO 80309
| | - Andrew W. Miller
- Dept. of Chemical and Biological Engineering; University of Colorado at Boulder; Boulder CO 80309
| | - Peiyuan Liu
- Dept. of Chemical and Biological Engineering; University of Colorado at Boulder; Boulder CO 80309
| | - Stuart Leadley
- Dow Corning Europe SA, Rue Jules Bordet, Parc Industriel de Seneffe - Zone C; B-7180 Seneffe Belgium
| | - Christine M. Hrenya
- Dept. of Chemical and Biological Engineering; University of Colorado at Boulder; Boulder CO 80309
| |
Collapse
|
14
|
|
15
|
|
16
|
Semprebon C, Scheel M, Herminghaus S, Seemann R, Brinkmann M. Liquid morphologies and capillary forces between three spherical beads. Phys Rev E 2016; 94:012907. [PMID: 27575206 DOI: 10.1103/physreve.94.012907] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 11/07/2022]
Abstract
Equilibrium shapes of coalesced pendular bridges in a static assembly of spherical beads are computed by numerical minimization of the interfacial energy. Our present study focuses on generic bead configurations involving three beads, one of which is in contact to the two others while there is a gap of variable size between the latter. In agreement with previous experimental studies, we find interfacial "trimer" morphologies consisting of three coalesced pendular bridges, and "dimers" of two coalesced bridges. In a certain range of the gap opening we observe a bistability between the dimer and trimer morphology during changes of the liquid volume. The magnitude of the corresponding capillary forces in presence of a trimer or dimer depends, besides the gap opening, only on the volume or Laplace pressure of the liquid. For a given Laplace pressure, and for the same gap opening, the capillary forces induced by a trimer are only slightly larger than the corresponding forces in the presence of three pendular bridges. This observation is consistent with a plateau of capillary cohesion in terms of the saturation of a wetting liquid in the funicular regime, as reported in the experimental work [Scheel et al., Nat. Mater. 7, 189 (2008)1476-112210.1038/nmat2117].
Collapse
Affiliation(s)
- Ciro Semprebon
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 7, D-37077 Göttingen, Germany
| | - Mario Scheel
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 7, D-37077 Göttingen, Germany.,Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin, F-99190 Gif-sur-Yvette, France
| | - Stephan Herminghaus
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 7, D-37077 Göttingen, Germany
| | - Ralf Seemann
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 7, D-37077 Göttingen, Germany.,Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Martin Brinkmann
- Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 7, D-37077 Göttingen, Germany.,Experimental Physics, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
17
|
Gallego-Gómez F, Morales-Flórez V, Morales M, Blanco A, López C. Colloidal crystals and water: Perspectives on liquid-solid nanoscale phenomena in wet particulate media. Adv Colloid Interface Sci 2016; 234:142-160. [PMID: 27231015 DOI: 10.1016/j.cis.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 05/04/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
Solid colloidal ensembles inherently contain water adsorbed from the ambient moisture. This water, confined in the porous network formed by the building submicron spheres, greatly affects the ensemble properties. Inversely, one can benefit from such influence on collective features to explore the water behavior in such nanoconfinements. Recently, novel approaches have been developed to investigate in-depth where and how water is placed in the nanometric pores of self-assembled colloidal crystals. Here, we summarize these advances, along with new ones, that are linked to general interfacial water phenomena like adsorption, capillary forces, and flow. Water-dependent structural properties of the colloidal crystal give clues to the interplay between nanoconfined water and solid fine particles that determines the behavior of ensembles. We elaborate on how the knowledge gained on water in colloidal crystals provides new opportunities for multidisciplinary study of interfacial and nanoconfined liquids and their essential role in the physics of utmost important systems such as particulate media.
Collapse
|
18
|
Laube J, Salameh S, Kappl M, Mädler L, Colombi Ciacchi L. Contact Forces between TiO2 Nanoparticles Governed by an Interplay of Adsorbed Water Layers and Roughness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11288-95. [PMID: 26414448 DOI: 10.1021/acs.langmuir.5b02989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Interparticle forces govern the mechanical behavior of granular matter and direct the hierarchical assembling of nanoparticles into supramolecular structures. Understanding how these forces change under different ambient conditions would directly benefit industrial-scale nanoparticle processing units such as filtering and fluidization. Here we rationalize and quantify the contributions of dispersion, capillary, and solvation forces between hydrophilic TiO2 nanoparticles with sub-10 nm diameter and show that the humidity dependence of the interparticle forces is governed by a delicate interplay between the structure of adsorbed water layers and the surface roughness. All-atom molecular dynamics modeling supported by force-spectroscopy experiments reveals an unexpected decrease in the contact forces at increasing humidity for nearly spherical particles, while the forces between rough particles are insensitive to strong humidity changes. Our results also frame the limits of applicability of discrete solvation and continuum capillary theories in a regime where interparticle forces are dominated by the molecular nature of surface adsorbates.
Collapse
Affiliation(s)
| | | | - Michael Kappl
- Max Planck Institute for Polymer Research , 55128 Mainz, Germany
| | | | | |
Collapse
|
19
|
Choi YH, Hong SH. Effect of the Amine Concentration on Phase Evolution and Densification in Printed Films Using Cu(II) Complex Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8101-10. [PMID: 26151862 DOI: 10.1021/acs.langmuir.5b01207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The nucleation and growth behavior of Cu nanoparticles during thermal heating of Cu(II) complex inks for printed Cu metallization were investigated, particularly focusing on the effects of the amine concentration on the microstructure evolution and electrical conductivity. Herein, the dual effects of hexylamine as a reducing agent dissociating the carboxyl group from the precursor and a capping agent hindering the subsequent growth of Cu nuclei were confirmed. On the basis of such dual effects of amine, the sufficient complexation of the Cu(II) precursor with a high amine concentration in the ink led to the single-route growth of Cu nanoparticles during thermal heating, which resulted in the dense film with a narrow particle size distribution exhibiting a high electrical conductivity. The electrical conductivity of the film could be further enhanced by a reducing atmosphere with formic acid. Significantly, the understanding of the ink chemistry and the nucleation and growth kinetics in the metal ion complex or metal-organic decomposition (MOD) ink can provide the design rules for the formulation of the solution-type inks to control the microstructure of printed metallization.
Collapse
Affiliation(s)
- Yun-Hyuk Choi
- Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Republic of Korea
| | - Seong-Hyeon Hong
- Department of Materials Science and Engineering and Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 151-744, Republic of Korea
| |
Collapse
|
20
|
Tisserant JN, Reissner PA, Beyer H, Fedoryshyn Y, Stemmer A. Water-Mediated Assembly of Gold Nanoparticles into Aligned One-Dimensional Superstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7220-7. [PMID: 26072942 DOI: 10.1021/acs.langmuir.5b01135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This Article shows that water in ethanol colloids of gold nanoparticles enhances the formation of linear clusters and, more important for applications in electronics, determines their assembly on surfaces. We show by dynamic light scattering that ethanol colloids contain mainly monomers and dimers and that wormlike superstructures are mostly absent, despite UV-vis evidence of aggregation. Water added to the colloid as a cosolvent was found to enhance the number of clusters as well as their average size, confirming its role in linear self-assembly, on the scale of a few particles. Water adsorbed from the atmosphere during coating was also found to be a powerful lever to tune self-assembly on surfaces. By varying the relative humidity, a sharp transition from branched to linear superstructures was observed, showing the importance of water as a cosolvent in the formation of cluster superstructures. We show that one-dimensional superstructures may form due to long-range mobility of precursor clusters on wet surfaces, allowing their rearrangement. The understanding of the phenomenon allows us to statistically align both clusters and resulting superstructures on patterned substrates, opening the way to rapid screening in molecular electronics.
Collapse
Affiliation(s)
| | - Patrick A Reissner
- †Nanotechnology Group, ETH Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Hannes Beyer
- †Nanotechnology Group, ETH Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Yuriy Fedoryshyn
- ‡Institute of Electromagnetic Fields, ETH Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland
| | - Andreas Stemmer
- †Nanotechnology Group, ETH Zurich, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|