1
|
Lee S, Jaseem SA, Atar N, Wang M, Kim JY, Zare M, Kim S, Bartlett MD, Jeong JW, Dickey MD. Connecting the Dots: Sintering of Liquid Metal Particles for Soft and Stretchable Conductors. Chem Rev 2025. [PMID: 40036064 DOI: 10.1021/acs.chemrev.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
This review focuses on the sintering of liquid metal particles (LMPs). Here, sintering means the partial merging or connecting of particles (or droplets) to form a network of percolated and, thus, conductive electrical pathways. LMPs are attractive materials because they can be suspended in a carrier fluid to create printable inks or distributed in an elastomer to create soft, stretchable composites. However, films and traces of LMPs are not typically conductive as fabricated due to the native oxide that forms on the surface of the particles. In the case of composites, polymers can also get between particles, making sintering more challenging. Sintering can be done via a variety of ways, such as mechanical, thermal, and chemical processing. This review discusses the mechanisms to sinter these particles, patterning techniques that use sintering, unique properties of sintered LMPs, and their practical applications in fields such as stretchable electronics, soft robotics, and active materials.
Collapse
Affiliation(s)
- Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Syed Ahmed Jaseem
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Nurit Atar
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
- Key Laboratory of Bioinspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Jeong Yong Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Mohammadreza Zare
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| | - Michael D Bartlett
- Mechanical Engineering, Soft Materials and Structures Lab, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Daejeon 34141, Republic of Korea
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University (NCSU), Raleigh, North Carolina 27606, United States
| |
Collapse
|
2
|
Application of 4D printing and AI to cardiovascular devices. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Wu Y, Guo G, Wei Z, Qian J. Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2397. [PMID: 35407728 PMCID: PMC8999758 DOI: 10.3390/ma15072397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Multi-modal and controllable shape-morphing constitutes the cornerstone of the functionalization of soft actuators/robots. Involving heterogeneity through material layout is a widely used strategy to generate internal mismatches in active morphing structures. Once triggered by external stimuli, the entire structure undergoes cooperative deformation by minimizing the potential energy. However, the intrinsic limitation of soft materials emerges when it comes to applications such as soft actuators or load-bearing structures that require fast response and large output force. Many researchers have explored the use of the structural principle of snap-through bistability as the morphing mechanisms. Bistable or multi-stable mechanical systems possess more than one local energy minimum and are capable of resting in any of these equilibrium states without external forces. The snap-through motion could overcome energy barriers to switch among these stable or metastable states with dramatically distinct geometries. Attributed to the energy storage and release mechanism, such snap-through transition is quite highly efficient, accompanied by fast response speed, large displacement magnitude, high manipulation strength, and moderate driving force. For example, the shape-morphing timescale of conventional hydrogel systems is usually tens of minutes, while the activation time of hydrogel actuators using the elastic snapping instability strategy can be reduced to below 1 s. By rationally embedding stimuli-responsive inclusions to offer the required trigger energy, various controllable snap-through actuations could be achieved. This review summarizes the current shape-morphing programming strategies based on mismatch strain induced by material heterogeneity, with emphasis on how to leverage snap-through bistability to broaden the applications of the shape-morphing structures in soft robotics and mechanical metamaterials.
Collapse
Affiliation(s)
| | | | | | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.G.); (Z.W.)
| |
Collapse
|
4
|
Li Z, Wang J, Xu Y, Shen M, Duan C, Dai L, Ni Y. Green and sustainable cellulose-derived humidity sensors: A review. Carbohydr Polym 2021; 270:118385. [PMID: 34364627 DOI: 10.1016/j.carbpol.2021.118385] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
Cellulose, as the most abundant natural polysaccharide, is an excellent material for developing green humidity sensors, especially due to its humidity responsiveness as a result of its rich hydrophilic groups. In combination with other components including carbon materials and polymers, cellulose and its derivatives can be used to design high-performance humidity sensors that meet various application requirements. This review summarizes the recent advances in the field of various cellulose-derived humidity sensors, with particular attention paid to different sensing mechanisms including resistance, capacitance, colorimetry and gravity, and so on. Furthermore, the roles of cellulose and its derivatives are highlighted. This work may promote the development of cellulose-derived humidity sensors, as well as other cellulose-based intelligent materials.
Collapse
Affiliation(s)
- Zixiu Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jian Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
5
|
Cheng M, Li Q. Left-Handed or Right-Handed? Determinants of the Chirality of Helically Deformable Soft Actuators. Soft Robot 2021; 9:850-860. [PMID: 34582707 DOI: 10.1089/soro.2021.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Helical curling and spiral structure are very common in nature, which inspire researchers to create various forms of helical configurations and actuators. The helically deformable actuators perform asymmetric deformations and show different chirality, which means that they can be left handed or right handed. However, the mechanism of helical curling and especially how the key factors influence the chirality of the actuator have not been systematically explained and well understood. In this study, we focus on the typical double-layer soft actuator composed of an active (expansion) layer and a passive (supporting) layer and investigate the effect of key factors (expansion coefficient, Young's modulus, relative thickness) on the chirality of the helical actuation or morphing by comprehensive finite element analyses. It was found that (i) the anisotropic expansion of the active layer or (ii) the anisotropic Young's modulus of the active or the passive layer is indispensable for helical curling. In Case (i), the actuator curls along the direction of greater expansion of the active layer. In Case (ii), the actuator curls along the direction of closer moduli match of the active and passive layers, and their relative thickness also affects the helical morphing of the actuator. In practice, the above two factors may cooperate or compete with each other, and the dominant one determines the chirality. This work gives the general rules for helical morphing forms and can provide guidance for the design and preparation of spiral actuators and soft robots in the future.
Collapse
Affiliation(s)
- Mingxing Cheng
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qingwei Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Zhao Q, Li C, Shum HC, Du X. Shape-adaptable biodevices for wearable and implantable applications. LAB ON A CHIP 2020; 20:4321-4341. [PMID: 33232418 DOI: 10.1039/d0lc00569j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emerging wearable and implantable biodevices have been significantly revolutionizing the diagnosis and treatment of disease. However, the geometrical mismatch between tissues and biodevices remains a great challenge for achieving optimal performances and functionalities for biodevices. Shape-adaptable biodevices enabling active compliance with human body tissues offer promising opportunities for addressing the challenge through programming their geometries on demand. This article reviews the design principles and control strategies for shape-adaptable biodevices with programmable shapes and actively compliant capabilities, which have offered innovative diagnostic/therapeutic tools and facilitated a variety of wearable and implantable applications. The state-of-the-art progress in applications of shape-adaptable biodevices in the fields of smart textiles, wound care, healthcare monitoring, drug and cell delivery, tissue repair and regeneration, nerve stimulation and recording, and biopsy and surgery, is highlighted. Despite the remarkable advances already made, shape-adaptable biodevices still confront many challenges on the road toward the clinic, such as enhanced intelligence for actively sensing and operating in response to physiological environments. Next-generation paradigms will shed light on future directions for extending the breadth and performance of shape-adaptable biodevices for wearable and implantable applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035 China.
| | | | | | | |
Collapse
|
7
|
Roberts B, Ghosh M, Ku PC. Variable transmission optical filter based on an actuated origami structure. APPLIED OPTICS 2020; 59:2963-2968. [PMID: 32400571 DOI: 10.1364/ao.385443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
A variable transmission thin film for visible light is proposed based on a mechanically actuated origami structure coated with metallic nanoparticles. The transmissivity can be tuned continuously from 0 to >90% for unpolarized incident light. Power is only required for switching and is not necessary to maintain the desired transmittance state. The asymmetric metal nanorods create two distinct plasmon resonances. Controlling the orientation of the nanorods with respect to the direction of the incident light changes the optical transmittance. The switching speed is only limited by the mechanical actuation and not by the optical response of the materials. The applicability of the proposed film for smart glass applications is investigated. Good image transmission clarity with minimal distortion is shown.
Collapse
|
8
|
Lyu S, Zheng F, Aguilar-Tadeo JA, Lin F, Wu R, Derby B, Kinloch IA, Soutis C, Gresil M, Blaker JJ. Patterned, morphing composites via maskless photo-click lithography. SOFT MATTER 2020; 16:1270-1278. [PMID: 31913394 DOI: 10.1039/c9sm02056j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Morphing materials, also known as smart materials are attracting increasing attention as sensors, actuators and in soft robotic applications. In this work bilayered morphing composites were created by exploiting the thiol-ene photoclick reaction via maskless digital light processing (DLP). This technique allows for gradients and patterns of near infrared (nIR)-triggered materials to be efficiently crosslinked to substrates, with suitable interfacial adhesion to realise complex morphing. Photo-thermally responsive composites are produced by DLP patterning of reduced graphene oxide-filled chitosan-methacrylamide (rGO-chitosan-MA) on thiolated polydimethylsiloxane substrates via thiol-ene photoclick reaction. Morphing composites with parallel striped patterns and box-like hinges were printed via DLP to realise self-rolling and self-folding behaviours. Bilayered structures, with gradient rGO-chitosan-MA thicknesses (2-8 μm), were produced by controlling the light intensity from the DLP device. These gradient bilayered structures enable photothermal-triggered gradient bending and morphing exemplified here by a "walking worm" and a kirigami-inspired "opening flower". Thermo-mechanical calculations were performed to estimate bending angles, and finite element analysis applied to simulate self-folding and bending. The difference between simulation and measurements is in the range 0.4-7.6%, giving confidence to the assumptions and simplifications applied in design.
Collapse
Affiliation(s)
- Shida Lyu
- Department of Materials, The University of Manchester, Manchester, M13 9PL, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang X, Chen L, Lim KH, Gonuguntla S, Lim KW, Pranantyo D, Yong WP, Yam WJT, Low Z, Teo WJ, Nien HP, Loh QW, Soh S. The Pathway to Intelligence: Using Stimuli-Responsive Materials as Building Blocks for Constructing Smart and Functional Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804540. [PMID: 30624820 DOI: 10.1002/adma.201804540] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/09/2018] [Indexed: 05/22/2023]
Abstract
Systems that are intelligent have the ability to sense their surroundings, analyze, and respond accordingly. In nature, many biological systems are considered intelligent (e.g., humans, animals, and cells). For man-made systems, artificial intelligence is achieved by massively sophisticated electronic machines (e.g., computers and robots operated by advanced algorithms). On the other hand, freestanding materials (i.e., not tethered to a power supply) are usually passive and static. Hence, herein, the question is asked: can materials be fabricated so that they are intelligent? One promising approach is to use stimuli-responsive materials; these "smart" materials use the energy supplied by a stimulus available from the surrounding for performing a corresponding action. After decades of research, many interesting stimuli-responsive materials that can sense and perform smart functions have been developed. Classes of functions discussed include practical functions (e.g., targeting and motion), regulatory functions (e.g., self-regulation and amplification), and analytical processing functions (e.g., memory and computing). The pathway toward creating truly intelligent materials can involve incorporating a combination of these different types of functions into a single integrated system by using stimuli-responsive materials as the basic building blocks.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Linfeng Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Spandhana Gonuguntla
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Kang Wen Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wai Pong Yong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wei Jian Tyler Yam
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhida Low
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wee Joon Teo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Hao Ping Nien
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiao Wen Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
10
|
Liu Z, Cui A, Li J, Gu C. Folding 2D Structures into 3D Configurations at the Micro/Nanoscale: Principles, Techniques, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802211. [PMID: 30276867 DOI: 10.1002/adma.201802211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Compared to their 2D counterparts, 3D micro/nanostructures show larger degrees of freedom and richer functionalities; thus, they have attracted increasing attention in the past decades. Moreover, extensive applications of 3D micro/nanostructures are demonstrated in the fields of mechanics, biomedicine, optics, etc., with great advantages. However, the mainstream micro/nanofabrication technologies are planar ones; therefore, they cannot be used directly for the construction of 3D micro/nanostructures, making 3D fabrication at the micro/nanoscale a great challenge. A promising strategy to overcome this is to combine the state-of-the-art planar fabrication techniques with the folding method to produce 3D structures. In this strategy, 2D components can be easily produced by traditional planar techniques, and then, 3D structures are constructed by folding each 2D component to specific orientations. In this way, not only will the advantages of existing planar techniques, such as high precision, programmable patterning, and mass production, be preserved, but the fabrication capability will also be greatly expanded without complex and expensive equipment modification/development. The goal here is to highlight the recent progress of the folding method from the perspective of principles, techniques, and applications, as well as to discuss the existing challenges and future prospectives.
Collapse
Affiliation(s)
- Zhe Liu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ajuan Cui
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
11
|
Bioinspired Temperature-Responsive Multilayer Films and Their Performance under Thermal Fatigue. Biomimetics (Basel) 2018; 3:biomimetics3030020. [PMID: 31105242 PMCID: PMC6352671 DOI: 10.3390/biomimetics3030020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/24/2018] [Accepted: 07/29/2018] [Indexed: 11/16/2022] Open
Abstract
The structure of certain nonliving tissues determines their self-shaping and self-folding capabilities in response to a stimulus. Predetermined movements are realized according to changes in the environmental conditions due to the generated stresses of the multilayer anisotropic structure. In this study, we present bioinspired responsive anisotropic multilayer films and their fabrication process which comprises low-cost techniques. The anisotropic multilayer materials are capable of deforming their geometry caused by small temperature changes (<40 °C). The mismatch in the thermo-mechanical properties between three or more anisotropic thin layers creates responsive materials that alter their shape owing to the developed internal stresses. The movements of the material can be controlled by forming anisotropic homogenous metallic strips over an anisotropic thermoplastic layer. As a result, responsive multilayer films made of common materials can be developed to passively react to a temperature stimulus. We demonstrate the ability of the anisotropic materials to transform their geometry and we present a promising fabrication process and the thermal fatigue resistance of the developed materials. The thermal fatigue performance is strongly related to the fabrication method and the thickness of the strips. We studied the thermal fatigue performance of the materials and how the thermal cycling affects their sensitivity, as well as their failure modes and crack formation.
Collapse
|
12
|
Taffetani M, Jiang X, Holmes DP, Vella D. Static bistability of spherical caps. Proc Math Phys Eng Sci 2018; 474:20170910. [PMID: 29887751 DOI: 10.1098/rspa.2017.0910] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/11/2018] [Indexed: 11/12/2022] Open
Abstract
Depending on its geometry, a spherical shell may exist in one of two stable states without the application of any external force: there are two 'self-equilibrated' states, one natural and the other inside out (or 'everted'). Though this is familiar from everyday life-an umbrella is remarkably stable, yet a contact lens can be easily turned inside out-the precise shell geometries for which bistability is possible are not known. Here, we use experiments and finite-element simulations to determine the threshold between bistability and monostability for shells of different solid angle. We compare these results with the prediction from shallow shell theory, showing that, when appropriately modified, this offers a very good account of bistability even for relatively deep shells. We then investigate the robustness of this bistability against pointwise indentation. We find that indentation provides a continuous route for transition between the two states for shells whose geometry makes them close to the threshold. However, for thinner shells, indentation leads to asymmetrical buckling before snap-through, while also making these shells more 'robust' to snap-through. Our work sheds new light on the robustness of the 'mirror buckling' symmetry of spherical shell caps.
Collapse
Affiliation(s)
- Matteo Taffetani
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| | - Xin Jiang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Douglas P Holmes
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Dominic Vella
- Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK
| |
Collapse
|
13
|
Smart patterned surfaces with programmable thermal emissivity and their design through combinatorial strategies. Sci Rep 2017; 7:12908. [PMID: 29018238 PMCID: PMC5635011 DOI: 10.1038/s41598-017-13132-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
The emissivity of common materials remains constant with temperature variations, and cannot drastically change. However, it is possible to design its entire behaviour as a function of temperature, and to significantly alter the thermal emissivity of a surface through the combination of different patterns and materials. We show that smart patterned surfaces consisting of smaller structures (motifs) may be designed to respond uniquely through combinatorial strategies by transforming themselves. The smart surfaces can passively manipulate thermal radiation—without the use of electronics—because their modus operandi has already been programmed into their intrinsic characteristics; the environment provides the energy required for their activation. Each motif emits thermal radiation in a certain manner, as it changes its geometry; however, the spatial distribution of these motifs causes them to interact with each other. Therefore, their combination and interaction determine the global behaviour of the surfaces, thus enabling their a priori design. The emissivity behaviour is not random; it is determined by two fundamental parameters, namely the combination of orientations in which the motifs open (n-fold rotational symmetry) and the combination of materials (colours) on the motifs; these generate functions which fully determine the dependency of the emissivity on the temperature.
Collapse
|
14
|
Abstract
The arts of origami and kirigami inspired numerous examples of macroscale hierarchical structures with high degree of reconfigurability and multiple functionalities. Extension of kirigami and origami patterning to micro-, meso-, and nanoscales enabled production of nanocomposites with unusual combination of properties, transitioning these art forms to the toolbox of materials design. Various subtractive and additive fabrication techniques applicable to nanocomposites and out-of-plane deformation of patterns enable a technological framework to negotiate often contradictory structural requirements for materials properties. Additionally, the long-searched possibility of patterned composites/parts with highly predictable set of properties/functions emerged. In this review, we discuss foldable/stretchable composites with designed mechanical properties, as exemplified by the negative Poisson's ratio, as well as optical and electrical properties, as exemplified by the sheet conductance, photovoltage generation, and light diffraction. Reconfiguration achieved by extrinsic forces and/or intrinsic stresses enables a wide spectrum of technological applications including miniaturized biomedical tools, soft robotics, adaptive optics, and energy systems, extending the limits of both materials engineering concepts and technological innovation.
Collapse
Affiliation(s)
- Lizhi Xu
- Department of Chemical Engineering and ‡Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Terry C Shyu
- Department of Chemical Engineering and ‡Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Nicholas A Kotov
- Department of Chemical Engineering and ‡Department of Materials Science and Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Han K, Shields CW, Diwakar NM, Bharti B, López GP, Velev OD. Sequence-encoded colloidal origami and microbot assemblies from patchy magnetic cubes. SCIENCE ADVANCES 2017; 3:e1701108. [PMID: 28798960 PMCID: PMC5544397 DOI: 10.1126/sciadv.1701108] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 06/30/2017] [Indexed: 05/19/2023]
Abstract
Colloidal-scale assemblies that reconfigure on demand may serve as the next generation of soft "microbots," artificial muscles, and other biomimetic devices. This requires the precise arrangement of particles into structures that are preprogrammed to reversibly change shape when actuated by external fields. The design and making of colloidal-scale assemblies with encoded directional particle-particle interactions remain a major challenge. We show how assemblies of metallodielectric patchy microcubes can be engineered to store energy through magnetic polarization and release it on demand by microscale reconfiguration. The dynamic pattern of folding and reconfiguration of the chain-like assemblies can be encoded in the sequence of the cube orientation. The residual polarization of the metallic facets on the microcubes leads to local interactions between the neighboring particles, which is directed by the conformational restrictions of their shape after harvesting energy from external magnetic fields. These structures can also be directionally moved, steered, and maneuvered by global forces from external magnetic fields. We illustrate these capabilities by examples of assemblies of specific sequences that can be actuated, reoriented, and spatially maneuvered to perform microscale operations such as capturing and transporting live cells, acting as prototypes of microbots, micromixers, and other active microstructures.
Collapse
Affiliation(s)
- Koohee Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695–7905, USA
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
| | - C. Wyatt Shields
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nidhi M. Diwakar
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
| | - Bhuvnesh Bharti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695–7905, USA
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
| | - Gabriel P. López
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
- Corresponding author. (O.D.V.); (G.P.L.)
| | - Orlin D. Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695–7905, USA
- Research Triangle Materials Research Science and Engineering Center, Durham, NC 27708, USA
- Corresponding author. (O.D.V.); (G.P.L.)
| |
Collapse
|
16
|
|
17
|
Song K, Chang SS, Lee SJ. How the pine seeds attach to/detach from the pine cone scale? FRONTIERS IN LIFE SCIENCE 2017; 10:38-47. [PMID: 29732239 DOI: 10.1080/21553769.2017.1287777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
One of the primary purposes of pine cones is the protection and distant dispersal of pine seeds. Pine cones open and release their embedded seeds on dry and windy days for long-distance dispersal. In this study, how the pine seed attach to/ detach from the pine cone scale for efficient seed dispersal were experimentally investigated by using X-ray micro-imaging technique. The cone and seeds adhere to one another in the presence of water, which could be explained by the surface tension and the contact angle hysteresis. Otherwise, without water, the waterproof seed wing surface permits rapid drying for detach and dispersion. On the other hand, during wildfires, pine cones open their seed racks and detach the pine seeds from pine cones for rapid seed dispersal. Due to these structural advantages, pine seeds are released safely and efficiently on adjust condition. These advantageous structure could be mimicked in practical applications.
Collapse
Affiliation(s)
- Kahye Song
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| | - Shyr-Shea Chang
- Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sang Joon Lee
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Korea
| |
Collapse
|
18
|
Poppinga S, Nestle N, Šandor A, Reible B, Masselter T, Bruchmann B, Speck T. Hygroscopic motions of fossil conifer cones. Sci Rep 2017; 7:40302. [PMID: 28074936 PMCID: PMC5225473 DOI: 10.1038/srep40302] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022] Open
Abstract
Conifer cones represent natural, woody compliant structures which move their scales as passive responses to changes in environmental humidity. Here we report on water-driven opening and closing motions in coalified conifer cones from the Eemian Interglacial (approx. 126,000-113,000 years BP) and from the Middle Miocene (approx. 16.5 to 11.5 million years BP). These cones represent by far the oldest documented evidence of plant parts showing full functionality of such passive hydraulically actuated motion. The functional resilience of these structures is far beyond the biological purpose of seed dispersal and protection and is because of a low level of mineralization of the fossils. Our analysis emphasizes the functional-morphological integrity of these biological compliant mechanisms which, in addition to their biological fascination, are potentially also role models for resilient and maintenance-free biomimetic applications (e.g., adaptive and autonomously moving structures including passive hydraulic actuators).
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Faculty of Biology, D-79104 Freiburg im Breisgau, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| | - Nikolaus Nestle
- BASF SE Advanced Materials and Systems Research, D-67056 Ludwigshafen, Germany
| | - Andrea Šandor
- BASF SE Advanced Materials and Systems Research, D-67056 Ludwigshafen, Germany
| | - Bruno Reible
- Department of Orthopedics and Traumatology Heidelberg, Heidelberg University Hospital, D- 69118 Heidelberg, Germany
| | - Tom Masselter
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Faculty of Biology, D-79104 Freiburg im Breisgau, Germany
| | - Bernd Bruchmann
- BASF SE Advanced Materials and Systems Research, D-67056 Ludwigshafen, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Faculty of Biology, D-79104 Freiburg im Breisgau, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, D-79104 Freiburg im Breisgau, Germany
| |
Collapse
|
19
|
Li S, Wang KW. Plant-inspired adaptive structures and materials for morphing and actuation: a review. BIOINSPIRATION & BIOMIMETICS 2016; 12:011001. [PMID: 27995902 DOI: 10.1088/1748-3190/12/1/011001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants exhibit a variety of reversible motions, from the slow opening of pine cones to the impulsive closing of Venus flytrap leaves. These motions are achieved without muscles and they have inspired a wide spectrum of engineered materials and structures. This review summarizes the recent developments of plant-inspired adaptive structures and materials for morphing and actuation. We begin with a brief overview of the actuation strategies and physiological features associated to these plant movements, showing that different combinations of these strategies and features can lead to motions with different deformation characteristics and response speeds. Then we offer a comprehensive survey of the plant-inspired morphing and actuation systems, including pressurized cellular structures, osmotic actuation, anisotropic hygroscopic materials, and bistable systems for rapid movements. Although these engineered systems are vastly different in terms of their size scales and intended applications, their working principles are all related to the actuation strategies and physiological features in plants. This review is to promote future cross-disciplinary studies between plant biology and engineering, which can foster new solutions for many applications such as morphing airframes, soft robotics and kinetic architectures.
Collapse
Affiliation(s)
- Suyi Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC, 29634, USA
| | | |
Collapse
|
20
|
Abstract
Pine cones fold their scales when it rains to prevent seeds from short-distance dispersal. Given that the scales of pine cones consist of nothing but dead cells, this folding motion is evidently related to structural changes. In this study, the structural characteristics of pine cones are studied on micro-/macro-scale using various imaging instruments. Raindrops fall along the outer scales to the three layers (bract scales, fibers and innermost lignified structure) of inner pine cones. However, not all the layers but only the bract scales get wet and then, most raindrops move to the inner scales. These systems reduce the amount of water used and minimize the time spent on structural changes. The result shows that the pine cones have structural advantages that could influence the efficient motion of pine cones. This study provides new insights to understand the motion of pine cones and would be used to design a novel water transport system.
Collapse
|