1
|
Lotito V, Zambelli T. Heat: A powerful tool for colloidal particle shaping. Adv Colloid Interface Sci 2024; 331:103240. [PMID: 39024831 DOI: 10.1016/j.cis.2024.103240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Colloidal particles of spherical shape are important building blocks for nanotechnological applications. Materials with tailored physical properties can be directly synthesized from self-assembled particles, as is the case for colloidal photonic crystals. In addition, colloidal monolayers and multilayers can be exploited as a mask for the fabrication of complex nanostructures via a colloidal lithography process for applications ranging from optoelectronics to sensing. Several techniques have been adopted to modify the shape of both individual colloidal particles and colloidal masks. Thermal treatment of colloidal particles is an effective route to introduce colloidal particle deformation or to manipulate colloidal masks (i.e. to tune the size of the interstices between colloidal particles) by heating them at elevated temperatures above a certain critical temperature for the particle material. In particular, this type of morphological manipulation based on thermal treatments has been extensively applied to polymer particles. Nonetheless, interesting shaping effects have been observed also in inorganic materials, in particular silica particles. Due to their much less complex implementation and distinctive shaping effects in comparison to dry etching or high energy ion beam irradiation, thermal treatments turn out to be a powerful and competitive tool to induce colloidal particle deformation. In this review, we examine the physicochemical principles and mechanisms of heat-induced shaping as well as its experimental implementation. We also explore its applications, going from tailored masks for colloidal lithography to the fabrication of colloidal assemblies directly useful for their intrinsic optical, thermal and mechanical properties (e.g. thermal switches) and even to the synthesis of supraparticles and anisotropic particles, such as doublets.
Collapse
Affiliation(s)
- Valeria Lotito
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| |
Collapse
|
2
|
Ham JH, Park JS, Oh MK, Kim JH. Reusable Wrinkled Nanoporous Silver Film Fabricated by Plasma Treatment for Surface-Enhanced Raman Scattering Applications. ACS OMEGA 2023; 8:47146-47152. [PMID: 38107931 PMCID: PMC10720294 DOI: 10.1021/acsomega.3c07167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
A nanoporous silver film (npAgF), a promising structure for surface-enhanced Raman spectroscopy (SERS), can be fabricated by using successive O2 and Ar plasma treatments on a planar silver film. The common dealloying method for producing an npAgF involves annealing at high temperatures to produce an alloy film, as well as harsh etching using corrosive chemicals. By contrast, the plasma-based method can be applied directly to various functional substrates to produce more sophisticated npAgF structures. Herein, we report a facile fabrication method for a wrinkled npAgF (w-npAgF) for SERS applications using a thermally contractible polystyrene substrate. The w-npAgF had 3D wrinkles of the nanoporous structure and showed approximately 8 times higher SERS enhancement than did the flat npAgF. Moreover, the w-npAgF could be reused for multiple SERS measurements of different molecules by mild O2 and Ar plasma treatments after each use, in which the O2 plasma effectively removed the adsorbed organic molecules and the Ar plasma reduced silver oxide to pristine silver for subsequent SERS measurements. The wrinkled nanoporous structure was maintained after multiple mild plasma treatments for reuse. The simplicity of plasma-based fabrication and high sensitivity of w-npAgFs are promising features for the green production of low-cost and reusable 3D SERS substrates.
Collapse
Affiliation(s)
- Jin-Hyun Ham
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Jung Su Park
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Myoung-Kyu Oh
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute
(APRI), Gwangju Institute of Science and
Technology, Gwangju 61005, Republic
of Korea
| |
Collapse
|
3
|
Osipov AA, Gagaeva AE, Speshilova AB, Endiiarova EV, Bespalova PG, Osipov AA, Belyanov IA, Tyurikov KS, Tyurikova IA, Alexandrov SE. Development of controlled nanosphere lithography technology. Sci Rep 2023; 13:3350. [PMID: 36849515 PMCID: PMC9971052 DOI: 10.1038/s41598-023-29077-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 03/01/2023] Open
Abstract
This work is devoted to the development of nanosphere lithography (NSL) technology, which is a low-cost and efficient method to form nanostructures for nanoelectronics, as well as optoelectronic, plasmonic and photovoltaic applications. Creating a nanosphere mask by spin-coating is a promising, but not sufficiently studied method, requiring a large experimental base for different sizes of nanospheres. So, in this work, we investigated the influence of the technological parameters of NSL by spin-coating on the substrate coverage area by a monolayer of nanospheres with a diameter of 300 nm. It was found that the coverage area increases with decreasing spin speed and time, isopropyl and propylene glycol content, and with increasing the content of nanospheres in solution. Moreover, the process of controllably reducing the size of nanospheres in inductively coupled oxygen plasma was studied in detail. It was determined that increasing the oxygen flow rate from 9 to 15 sccm does not change the polystyrene etching rate, whereas changing the high-frequency power from 250 to 500 W increases the etching rate and allows us to control the decreasing diameter with high accuracy. Based on the experimental data, the optimal technological parameters of NSL were selected and the nanosphere mask on Si substrate was created with coverage area of 97.8% and process reproducibility of 98.6%. Subsequently reducing the nanosphere diameter lets us obtain nanoneedles of various sizes, which can be used in field emission cathodes. In this work, the reduction of nanosphere size, silicon etching, and removal of polystyrene residues occurred in unified continuous process of plasma etching without sample unloading to atmosphere.
Collapse
Affiliation(s)
- Artem A. Osipov
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation ,grid.465445.20000 0004 0485 6375Institute of Mineralogy of Southern-Urals Federal Research Center of Mineralogy and Geoecology of Ural Branch of RAS, Miass, Chelyabinsk Region 456317 Russian Federation
| | - Alina E. Gagaeva
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| | - Anastasiya B. Speshilova
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| | - Ekaterina V. Endiiarova
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| | - Polina G. Bespalova
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| | - Armenak A. Osipov
- grid.465445.20000 0004 0485 6375Institute of Mineralogy of Southern-Urals Federal Research Center of Mineralogy and Geoecology of Ural Branch of RAS, Miass, Chelyabinsk Region 456317 Russian Federation
| | - Ilya A. Belyanov
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| | - Kirill S. Tyurikov
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| | - Irina A. Tyurikova
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| | - Sergey E. Alexandrov
- grid.32495.390000 0000 9795 6893Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251 Russian Federation
| |
Collapse
|
4
|
Rahman MM, Tolbert CL, Saha P, Halpern JM, Hill CM. On-Demand Electrochemical Fabrication of Ordered Nanoparticle Arrays using Scanning Electrochemical Cell Microscopy. ACS NANO 2022; 16:21275-21282. [PMID: 36399100 DOI: 10.1021/acsnano.2c09336] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Well-ordered nanoparticle arrays are attractive platforms for a variety of analytical applications, but the fabrication of such arrays is generally challenging. Here, it is demonstrated that scanning electrochemical cell microscopy (SECCM) can be used as a powerful, instantly reconfigurable tool for the fabrication of ordered nanoparticle arrays. Using SECCM, Ag nanoparticle arrays were straightforwardly fabricated via electrodeposition at the interface between a substrate electrode and an electrolyte-filled pipet. By dynamically monitoring the currents flowing in an SECCM cell, individual nucleation and growth events could be detected and controlled to yield individual nanoparticles of controlled size. Characterization of the resulting arrays demonstrate that this SECCM-based approach enables spatial control of nanoparticle location comparable with the terminal diameter of the pipet employed and straightforward control over the volume of material deposited at each site within an array. These results provide further evidence for the utility of probe-based electrochemical techniques such as SECCM as tools for surface modification in addition to analysis.
Collapse
Affiliation(s)
- Md Maksudur Rahman
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| | - Chloe L Tolbert
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| | - Partha Saha
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| | - Jeffrey M Halpern
- Department of Chemical Engineering and the Materials Science and Engineering Program, University of New Hampshire, 33 Academic Way, Durham, New Hampshire03824, United States
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, 1000 East University Avenue, Laramie, Wyoming82071, United States
| |
Collapse
|
5
|
Nanosphere Lithography-Based Fabrication of Spherical Nanostructures and Verification of Their Hexagonal Symmetries by Image Analysis. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nanosphere lithography (NSL) is a cost- and time-effective technique for the fabrication of well-ordered large-area arrays of nanostructures. This paper reviews technological challenges in NSL mask preparation, its modification, and quality control. Spin coating with various process parameters (substrate wettability, solution properties, spin coating operating parameters) are discussed to create a uniform monolayer from monodisperse polystyrene (PS) nanospheres with a diameter of 0.2–1.5 μm. Scanning electron microscopy images show that the PS nanospheres are ordered into a hexagonal close-packed monolayer. Verification of sphere ordering and symmetry is obtained using our open-source software HEXI, which can recognize and detect circles, and distinguish between hexagonal ordering and defect configurations. The created template is used to obtain a wide variety of tailor-made periodic structures by applying additional treatments, such as plasma etching (isotropic and anisotropic), deposition, evaporation, and lift-off. The prepared highly ordered nanopatterned arrays (from circular, triangular, pillar-shaped structures) are applicable in many different fields (plasmonics, photonics, sensorics, biomimetic surfaces, life science, etc.).
Collapse
|
6
|
Construction of a Chitosan/ZnO-Based Light-Resistant Coating System to Protect Dyed Wood from Ultraviolet Irradiation via Layer-by-Layer Self-Assembly. Int J Mol Sci 2022; 23:ijms232415735. [PMID: 36555382 PMCID: PMC9779377 DOI: 10.3390/ijms232415735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Wood dyeing is an effective way to alleviate the supply-demand imbalance of valuable wood and improve the surface decoration of fast-growing wood. However, applications of dyed wood are limited due to the susceptibility of dyes and wood to photo-discolor and degrade under light irradiation. Thus, the improved weather resistance of dyed wood is crucial. To prevent photochromic discoloration of dyed wood, an anti-photochromic coating structure was constructed via layer-by-layer self-assembly (LbL) using chitosan and zinc oxide (ZnO). The results showed that the surface color difference of treated dyed wood was reduced by approximately 84.6% after the first 2 h of irradiation under the following conditions °C: temperature (50 °C), relative humidity (55%), and irradiation intensity (550 W/m2). However, the color of untreated dyed wood drastically changed at this stage. The reason for the decrease was that the redness and yellowness of treated dye wood were significantly reduced. The deposition of ZnO onto treated dyed wood helped to protect the wood from UV light irradiation. Chitosan bridged the dyes and complexed ZnO to enhance UV resistance. This study provides valuable information for the protection of dyed wood against light discoloration that can be used as an interior and exterior decorative material.
Collapse
|
7
|
Qiu T, Akinoglu EM, Luo B, Konarova M, Yun JH, Gentle IR, Wang L. Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103842. [PMID: 35119141 DOI: 10.1002/adma.202103842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Transparent conductive films (TCFs) are irreplaceable components in most optoelectronic applications such as solar cells, organic light-emitting diodes, sensors, smart windows, and bioelectronics. The shortcomings of existing traditional transparent conductors demand the development of new material systems that are both transparent and electrically conductive, with variable functionality to meet the requirements of new generation optoelectronic devices. In this respect, TCFs with periodic or irregular nanomesh structures have recently emerged as promising candidates, which possess superior mechanical properties in comparison with conventional metal oxide TCFs. Among the methods for nanomesh TCFs fabrication, nanosphere lithography (NSL) has proven to be a versatile platform, with which a wide range of morphologically distinct nanomesh TCFs have been demonstrated. These materials are not only functionally diverse, but also have advantages in terms of device compatibility. This review provides a comprehensive description of the NSL process and its most relevant derivatives to fabricate nanomesh TCFs. The structure-property relationships of these materials are elaborated and an overview of their application in different technologies across disciplines related to optoelectronics is given. It is concluded with a perspective on current shortcomings and future directions to further advance the field.
Collapse
Affiliation(s)
- Tengfei Qiu
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, Guangdong, 526238, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bin Luo
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Muxina Konarova
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jung-Ho Yun
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Lianzhou Wang
- Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
8
|
Lee SH, Kim S, Yang JY, Mun C, Lee S, Kim SH, Park SG. Hydrogel-Assisted 3D Volumetric Hotspot for Sensitive Detection by Surface-Enhanced Raman Spectroscopy. Int J Mol Sci 2022; 23:ijms23021004. [PMID: 35055189 PMCID: PMC8779965 DOI: 10.3390/ijms23021004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 01/27/2023] Open
Abstract
Effective hotspot engineering with facile and cost-effective fabrication procedures is critical for the practical application of surface-enhanced Raman spectroscopy (SERS). We propose a SERS substrate composed of a metal film over polyimide nanopillars (MFPNs) with three-dimensional (3D) volumetric hotspots for this purpose. The 3D MFPNs were fabricated through a two-step process of maskless plasma etching and hydrogel encapsulation. The probe molecules dispersed in solution were highly concentrated in the 3D hydrogel networks, which provided a further enhancement of the SERS signals. SERS performance parameters such as the SERS enhancement factor, limit-of-detection, and signal reproducibility were investigated with Cyanine5 (Cy5) acid Raman dye solutions and were compared with those of hydrogel-free MFPNs with two-dimensional hotspots. The hydrogel-coated MFPNs enabled the reliable detection of Cy5 acid, even when the Cy5 concentration was as low as 100 pM. We believe that the 3D volumetric hotspots created by introducing a hydrogel layer onto plasmonic nanostructures demonstrate excellent potential for the sensitive and reproducible detection of toxic and hazardous molecules.
Collapse
Affiliation(s)
- Soo Hyun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Sunho Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| | - Jun-Yeong Yang
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - ChaeWon Mun
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Seunghun Lee
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
- Correspondence: (S.-H.K.); (S.-G.P.)
| | - Sung-Gyu Park
- Department of Nano-Bio Convergence, Korea Institute of Materials Science, 797 Changwondae-ro, Changwon 51508, Korea; (S.H.L.); (J.-Y.Y.); (C.M.); (S.L.)
- Correspondence: (S.-H.K.); (S.-G.P.)
| |
Collapse
|
9
|
Orientation-induced properties of anisotropic polyacrylamide thin layer via plasma treatment in liquid crystal system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Playing with sizes and shapes of colloidal particles via dry etching methods. Adv Colloid Interface Sci 2022; 299:102538. [PMID: 34906837 DOI: 10.1016/j.cis.2021.102538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Monolayers of self-assembled quasi-spherical colloidal particles are essential building blocks in the field of materials science and engineering. More typically, they are used as a template for the fabrication of nanostructures if they serve, for instance, as a mask for deposition of new material on the surface on which particles are assembled or for etching of the material underneath; in this case, they are removed afterwards. This is what occurs in colloidal or nanosphere lithography. In some other cases, they are not used as a sacrificial material but they are incorporated in the final structure because they are inherently interesting for their properties. Independently of their specific use and application, different strategies have been devised in order to modify size and shape of colloidal particles, so as to enrich the variety of attainable patterns and to tailor the properties of the final structures and materials. In this review, we will focus on one of the most widespread methods to shape spherical colloidal particles, i.e. dry etching techniques. We will follow the development of such approaches until recent days, so as to trace an extensive panorama of the diverse parameters that can be harnessed to achieve specific morphological changes and highlight the characteristic features of the variants of this method. We will finally discuss how particles modified via dry etching can be used for patterning or can be resuspended in solvents for very diverse applications.
Collapse
|
11
|
Simo PC, Laible F, Horneber A, Burkhardt CJ, Fleischer M. Hexagonal arrays of plasmonic gold nanopyramids on flexible substrates for surface-enhanced Raman scattering. NANOTECHNOLOGY 2021; 33:095303. [PMID: 34727539 DOI: 10.1088/1361-6528/ac3579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) with pyramidal gold nanostructures increases the signal of Raman active analytes, since hotspots form at the edges and tip of a nanopyramid under illumination. 2D hexagonal arrays of pyramidal nanostructures with a quadratic base are fabricated through cost-effective nanosphere lithography and transferred onto elastomeric polydimethylsiloxane. By making use of the {111} crystal plane of a silicon (100) wafer, an inverted pyramidal array is etched, which serves as the complementary negative for the gold nanostructures. Either a continuous gold thin-film with protruding pyramids or separate isolated nanopyramids are produced. Three basic fabrication strategies are presented. The SERS enhancement is verified by Raman mapping of 4-mercaptobenzoic acid (4-MBA) molecules. Fabrication on a flexible substrate paves the way for future applications on curved surfaces orin situtunable resonances.
Collapse
Affiliation(s)
- P Christian Simo
- Institute for Applied Physics and Center LISA+, University of Tübingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Florian Laible
- Institute for Applied Physics and Center LISA+, University of Tübingen, Germany
| | - Anke Horneber
- Institute for Applied Physics and Center LISA+, University of Tübingen, Germany
| | - Claus J Burkhardt
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Monika Fleischer
- Institute for Applied Physics and Center LISA+, University of Tübingen, Germany
| |
Collapse
|
12
|
Liu J, Huang J, Niu W, Tan C, Zhang H. Unconventional-Phase Crystalline Materials Constructed from Multiscale Building Blocks. Chem Rev 2021; 121:5830-5888. [PMID: 33797882 DOI: 10.1021/acs.chemrev.0c01047] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Crystal phase, an intrinsic characteristic of crystalline materials, is one of the key parameters to determine their physicochemical properties. Recently, great progress has been made in the synthesis of nanomaterials with unconventional phases that are different from their thermodynamically stable bulk counterparts via various synthetic methods. A nanocrystalline material can also be viewed as an assembly of atoms with long-range order. When larger entities, such as nanoclusters, nanoparticles, and microparticles, are used as building blocks, supercrystalline materials with rich phases are obtained, some of which even have no analogues in the atomic and molecular crystals. The unconventional phases of nanocrystalline and supercrystalline materials endow them with distinctive properties as compared to their conventional counterparts. This Review highlights the state-of-the-art progress of nanocrystalline and supercrystalline materials with unconventional phases constructed from multiscale building blocks, including atoms, nanoclusters, spherical and anisotropic nanoparticles, and microparticles. Emerging strategies for engineering their crystal phases are introduced, with highlights on the governing parameters that are essential for the formation of unconventional phases. Phase-dependent properties and applications of nanocrystalline and supercrystalline materials are summarized. Finally, major challenges and opportunities in future research directions are proposed.
Collapse
Affiliation(s)
- Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jingtao Huang
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy Sciences, Changchun, Jilin 130022, P.R. China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China.,Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Darvill D, Iarossi M, Abraham Ekeroth RM, Hubarevich A, Huang JA, De Angelis F. Breaking the symmetry of nanosphere lithography with anisotropic plasma etching induced by temperature gradients. NANOSCALE ADVANCES 2021; 3:359-369. [PMID: 36131733 PMCID: PMC9419189 DOI: 10.1039/d0na00718h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/10/2020] [Indexed: 06/01/2023]
Abstract
We report a novel anisotropic process, termed plasma etching induced by temperature gradients (PE-TG), which we use to modify the 3D morphology of a hexagonally close-packed polystyrene sphere array. Specifically, we combined an isotropic oxygen plasma (generated by a plasma cleaner) and a vertical temperature gradient applied from the bottom to the top of a colloidal mask to create an anisotropic etching process. As a result, an ordered array of well-defined and separated nano mushrooms is obtained. We demonstrate that the features of the mushrooms, namely the hat size and their intrinsic undercut, as well as the pillar diameter and height, can be easily tuned by adjusting the main parameters of the process i.e. the temperature gradient and etching time, or the spheres' size. We show that PS mushroom arrays can be used as nanostructured templates to fabricate plasmonic arrays, such as gold-capped nano mushrooms and ultra-small nanoapertures, by using vertical and oblique gold sputtering deposition respectively. PE-TG reveals a new, cheap and facile approach to produce plasmonic nanostructures of great interest in the fields of molecular sensing, surface-enhanced Raman scattering (SERS), energy harvesting and optoelectronics. We study the optical properties of the Au-capped nano mushroom arrays and their performance as biosensing platforms by performing SERS measurements.
Collapse
Affiliation(s)
- Daniel Darvill
- Istituto Italiano di Tecnologia Via Morego 30 16136 Genova Italy
| | - Marzia Iarossi
- Istituto Italiano di Tecnologia Via Morego 30 16136 Genova Italy
- Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Università; degli Studi di Genova Via Balbi 5 16126 Genova Italy
| | - Ricardo M Abraham Ekeroth
- Istituto Italiano di Tecnologia Via Morego 30 16136 Genova Italy
- Instituto de Física Arroyo Seco (CIFICEN-CICPBA-CONICET), Universidad Nacional del Centro de la Provincia de Buenos Aires Pinto 399 7000 Tandil Argentina
| | | | - Jian-An Huang
- Istituto Italiano di Tecnologia Via Morego 30 16136 Genova Italy
| | | |
Collapse
|
14
|
Akinoglu EM, Luo L, Dodge T, Guo L, Akinoglu GE, Wang X, Shui L, Zhou G, Naughton MJ, Kempa K, Giersig M. Extraordinary optical transmission in nano-bridged plasmonic arrays mimicking a stable weakly-connected percolation threshold. OPTICS EXPRESS 2020; 28:31425-31435. [PMID: 33115115 DOI: 10.1364/oe.403034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Ultrasensitive sensors of various physical properties can be based on percolation systems, e.g., insulating media filled with nearly touching conducting particles. Such a system at its percolation threshold featuring the critical particle concentration, changes drastically its response (electrical conduction, light transmission, etc.) when subjected to an external stimulus. Due to the critical nature of this threshold, a given state at the threshold is typically very unstable. However, stability can be restored without significantly sacrificing the structure sensitivity by forming weak connections between the conducting particles. In this work, we employed nano-bridged nanosphere lithography to produce such a weakly connected percolation system. It consists of two coupled quasi-Babinet complementary arrays, one with weakly connected, and the other with disconnected metallic islands. We demonstrate via experiment and simulation that the physics of this plasmonic system is non-trivial, and leads to the extraordinary optical transmission at narrowly defined peaks sensitive to system parameters, with surface plasmons mediating this process. Thus, our system is a potential candidate for percolation effect based sensor applications. Promising detection schemes could be based on these effects.
Collapse
|
15
|
Myint B, Yap DSF, Ng V. Stepwise nanosphere lithography: an alternate way of fabricating nanostructures. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/abaddb] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
This work demonstrates a new nanosphere lithography technique, termed stepwise nanosphere lithography, to create matrices of novel two- and three-dimensional nanostructures. Different sets of nanostructures are placed at desired locations through step-by-step deposition during thermal evaporation onto a substrate surface. Three deposition parameters: (1) number of deposition steps; (2) angle of deposition; and (3) nanosphere mask orientation angle were investigated. By changing these parameters, the ordering, shape, and size of nanostructures were modified accordingly. Two- and three-dimensional nanostructure matrices with different arrangements and symmetries were successfully simulated and fabricated experimentally through a combination of multiple stationary deposition stages with different parameters.
Collapse
|
16
|
Zhang H, Kinnear C, Mulvaney P. Fabrication of Single-Nanocrystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904551. [PMID: 31576618 DOI: 10.1002/adma.201904551] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 05/17/2023]
Abstract
To realize the full potential of nanocrystals in nanotechnology, it is necessary to integrate single nanocrystals into addressable structures; for example, arrays and periodic lattices. The current methods for achieving this are reviewed. It is shown that a combination of top-down lithography techniques with directed assembly offers a platform for attaining this goal. The most promising of these directed assembly methods are reviewed: capillary force assembly, electrostatic assembly, optical printing, DNA-based assembly, and electrophoretic deposition. The last of these appears to offer a generic approach to fabrication of single-nanocrystal arrays.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Calum Kinnear
- CSIRO Manufacturing, Ian Wark Laboratories, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
17
|
Luo L, Akinoglu EM, Wu L, Dodge T, Wang X, Zhou G, Naughton MJ, Kempa K, Giersig M. Nano-bridged nanosphere lithography. NANOTECHNOLOGY 2020; 31:245302. [PMID: 32126530 DOI: 10.1088/1361-6528/ab7c4c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We develop nano-bridged nanosphere lithography (NB-NSL), a modification to the widely used conventional nanosphere lithography (NSL). Nano-bridges between polystyrene (PS) spheres of a pristine NSL template are controllably formed in a two-step process: (i) spin-coating of a dilute styrene solution on top of the template, followed by (ii) oxygen plasma etching of the template. We show that the nanobridge dimensions can be precisely tuned by controlling the pre-processing conditions and the plasma etching time. The resulting lithography templates feature control over the shape and size of the apertures, which determine the morphology of the final nano-island arrays after material deposition and template removal. The unique advantage of NB-NSL is that PS particle templates based on a single PS particle diameter can be utilized for the fabrication of a variation of nano-island shapes and sizes, whereas conventional NSL yields only bowtie-shaped nano-islands, with their size being predetermined by the PS particle diameter of the template.
Collapse
Affiliation(s)
- Lingpeng Luo
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 526238 Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, 510006 Guangdong, People's Republic of China
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 526238 Guangdong, People's Republic of China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Lihua Wu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 526238 Guangdong, People's Republic of China
| | - Tyler Dodge
- Boston College, Department of Physics, Chestnut Hill, MA 02467, United States of America
| | - Xin Wang
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 526238 Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, 510006 Guangdong, People's Republic of China
| | - Guofu Zhou
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 526238 Guangdong, People's Republic of China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, 510006 Guangdong, People's Republic of China
| | - Michael J Naughton
- Boston College, Department of Physics, Chestnut Hill, MA 02467, United States of America
| | - Krzysztof Kempa
- Boston College, Department of Physics, Chestnut Hill, MA 02467, United States of America
| | - Michael Giersig
- International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 526238 Guangdong, People's Republic of China
- Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
18
|
Jeong S, Kim MW, Jo YR, Kim NY, Kang D, Lee SY, Yim SY, Kim BJ, Kim JH. Hollow Porous Gold Nanoshells with Controlled Nanojunctions for Highly Tunable Plasmon Resonances and Intense Field Enhancements for Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44458-44465. [PMID: 31718128 DOI: 10.1021/acsami.9b16983] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plasmonic metal nanostructures with nanogaps have attracted great interest owing to their controllable optical properties and intense electromagnetic fields that can be useful for a variety of applications, but precise and reliable control of nanogaps in three-dimensional nanostructures remains a great challenge. Here, we report the control of nanojunctions of hollow porous gold nanoshell (HPAuNS) structures by a facile oxygen plasma-etching process and the influence of changes in nanocrevices of the interparticle junction on the optical and sensing characteristics of HPAuNSs. We demonstrate a high tunability of the localized surface plasmon resonance (LSPR) peaks and surface-enhanced Raman scattering (SERS) detection of rhodamine 6G (R6G) using HPAuNS structures with different nanojunctions by varying the degree of gold sintering. As the neck region of the nanojunction is further sintered, the main LSPR peak shifts from 785 to 1350 nm with broadening because the charge transfer plasmon mode becomes more dominant than the dipolar plasmon mode, resulting from the increase of conductance at the interparticle junctions. In addition, it is demonstrated that an increase in the sharpness of the nanojunction neck can enhance the SERS enhancement factor of the HPAuNS by up to 4.8-fold. This enhancement can be ascribed to the more intense local electromagnetic fields at the sharper nanocrevices of interparticle junctions. The delicate change of nanojunction structures in HPAuNSs can significantly affect their optical spectrum and electromagnetic field intensity, which are critical for their practical use in a SERS-based analytical sensor as well as multiple-wavelength compatible applications.
Collapse
|
19
|
Krupinski M, Sobieszczyk P, Zieliński P, Marszałek M. Magnetic reversal in perpendicularly magnetized antidot arrays with intrinsic and extrinsic defects. Sci Rep 2019; 9:13276. [PMID: 31527641 PMCID: PMC6746764 DOI: 10.1038/s41598-019-49869-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022] Open
Abstract
Defects can significantly affect performance of nanopatterned magnetic devices, therefore their influence on the material properties has to be understood well before the material is used in technological applications. However, this is experimentally challenging due to the inability of the control of defect characteristics in a reproducible manner. Here, we construct a micromagnetic model, which accounts for intrinsic and extrinsic defects associated with the polycrystalline nature of the material and with corrugated edges of nanostructures. The predictions of the model are corroborated by the measurements obtained for highly ordered arrays of circular Co/Pd antidots with perpendicular magnetic anisotropy. We found that magnetic properties, magnetic reversal and the evolution of the domain pattern are strongly determined by density of defects, heterogeneity of nanostructures, and edge corrugations. In particular, an increase in the Néel domain walls, as compared to Bloch walls, was observed with a increase of the antidot diameters, suggesting that a neck between two antidots can behave like a nanowire with a width determined by the array period and antidot size. Furthermore, the presence of edge corrugations can lead to the formation of a network of magnetic bubbles, which are unstable in non-patterned flat films.
Collapse
Affiliation(s)
- Michal Krupinski
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland.
| | - Pawel Sobieszczyk
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Piotr Zieliński
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| | - Marta Marszałek
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342, Kraków, Poland
| |
Collapse
|
20
|
Akinoglu GE, Akinoglu EM, Kempa K, Giersig M. Plasmon resonances in coupled Babinet complementary arrays in the mid-infrared range. OPTICS EXPRESS 2019; 27:22939-22950. [PMID: 31510578 DOI: 10.1364/oe.27.022939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 06/10/2023]
Abstract
A plasmonic structure with transmission highly tunable in the mid-infrared spectral range is developed. This structure consists of a hexagonal array of metallic discs located on top of silicon pillars protruding through holes in a metallic Babinet complementary film. We reveal with FDTD simulations that changing the hole diameter tunes the main plasmonic resonance frequency of this structure throughout the infrared range. Due to the underlying Babinet physics of these coupled arrays, the spectral width of these plasmonic resonances is strongly reduced, and the higher harmonics are suppressed. Furthermore, we demonstrate that this structure can be easily produced by a combination of the nanosphere lithography and the metal-assisted chemical etching technique.
Collapse
|
21
|
A gold coated polystyrene ring microarray formed by two-step patterning: construction of an advanced microelectrode for voltammetric sensing. Mikrochim Acta 2019; 186:349. [PMID: 31093739 DOI: 10.1007/s00604-019-3461-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
Abstract
A two-step patterning process was developed based on nanosphere lithography and plasma etching to fabricate an array of electrodes with two different gold ring structures: the arrays of Au micro-ring electrode (Au-MRE) and Au covered with polystyrene micro-ring electrode (Au-PS-MRE). The Au-MRE structure was fabricated by etching a monolayer of polystyrene (PS) spheres on indium tin oxide (ITO) surface to generate PS rings on ITO glass. PS rings served as a mask in secondary etching for blocking an interaction of oxygen plasma and ITO surface to create a ring-patterned ITO surface. Then, the PS residue was removed and gold was deposited. The site-selective electrodeposition of gold was carried out and an array of a gold ring structure was formed on the ITO glass. The Au-PS-MRE structure was fabricated by keeping the PS residue from second etching before deposition of gold. The Au-PS-MRE microelectrode was studied by using hexacyanoferrate as an electrochemical probe where it displayed steady state current in cyclic voltammetry. The respective calibration plots were acquired at a working potential of 0.31 V and 0.12 V (vs. Ag/AgCl) for oxidation and reduction reaction, respectively. The sensitivity is as high as 163.4-220.7 μA·mM-1·mm-2 which is larger by a factor of 95-132 compared to a conventional gold film macroelectrode. The detection limit (at a signal-to-noise ratio of 3) is 2.2 μM. This approach thus yields relatively effective and low-cost fabrication without resorting to high resolution instruments. Conceivably, the technique may be used to produce microelectrode arrays on a large scale. Graphical abstract Schematic presentation of a novel fabrication process of micro-ring electrode arrays. Two-step patterning based on nanosphere lithography leads to electrodes with great electrochemical performance. Direct deposition metal in the presence of polystyrene (PS) mask induces the formation of a new structure with arrays of gold covered with PS microring on the indium tin oxide (ITO) coated glass. The microelectrode-like behavior has been achieved using this fabrication process.
Collapse
|
22
|
Chen Y, Shi D, Chen Y, Chen X, Gao J, Zhao N, Wong CP. A Facile, Low-Cost Plasma Etching Method for Achieving Size Controlled Non-Close-Packed Monolayer Arrays of Polystyrene Nano-Spheres. NANOMATERIALS 2019; 9:nano9040605. [PMID: 31013724 PMCID: PMC6523458 DOI: 10.3390/nano9040605] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/04/2023]
Abstract
Monolayer nano-sphere arrays attract great research interest as they can be used as templates to fabricate various nano-structures. Plasma etching, and in particular high-frequency plasma etching, is the most commonly used method to obtain non-close-packed monolayer arrays. However, the method is still limited in terms of cost and efficiency. In this study, we demonstrate that a low frequency (40 kHz) plasma etching system can be used to fabricate non-close-packed monolayer arrays of polystyrene (PS) nano-spheres with smooth surfaces and that the etching rate is nearly doubled compared to that of the high-frequency systems. The study reveals that the low-frequency plasma etching process is dominated by a thermal evaporation etching mechanism, which is different from the atom-scale dissociation mechanism that underlines the high-frequency plasma etching. It is found that the polystyrene nano-sphere size can be precisely controlled by either adjusting the etching time or power. Through introducing oxygen as the assisting gas in the low frequency plasma etching system, we achieved a coalesced polystyrene nano-sphere array and used it as a template for metal-assisted chemical etching. We demonstrate that the method can significantly improve the aspect ratio of the silicon nanowires to over 200 due to the improved flexure rigidity.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
- School of Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| | - Dachuang Shi
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yanhui Chen
- Key Laboratory of Precision Microelectronic Manufacturing Technology & Equipment of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jian Gao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ni Zhao
- School of Engineering, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| | - Ching-Ping Wong
- Key Laboratory of Precision Microelectronic Manufacturing Technology & Equipment of Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
23
|
Hummel MEJ, Stelling C, Kopera BAF, Nutz FA, Karg M, Retsch M, Förster S. Ordered Particle Arrays via a Langmuir Transfer Process: Access to Any Two-Dimensional Bravais Lattice. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:973-979. [PMID: 30472854 DOI: 10.1021/acs.langmuir.8b03047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate how to directly transform a close-packed hexagonal colloidal monolayer into nonclose-packed particle arrays of any two-dimensional symmetry at the air/water interface. This major advancement in the field of nanoparticle self-assembly is based on a simple one-dimensional stretching step in combination with the particle array orientation. Our method goes far beyond existing strategies and allows access to all possible two-dimensional Bravais lattices. A key element of our work is the possibility to macroscopically stretch a particle array in a truly one-dimensional manner, which has not been possible up to now. We achieve this by stretching the nanoparticle array at an air/water interface during the transfer process. The degree of stretching is simply controlled by the wettability of the transfer substrate. To retain the symmetry of the transferred structure, the capillary forces upon drying have to be circumvented. We demonstrate two concepts based on thermal fixation for this. It allows for the first time to fabricate nonclose-packed, nonhexagonal colloidal monolayers on a macroscopic length scale.
Collapse
Affiliation(s)
- Miriam E J Hummel
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
- JCNS-1/ICS-1 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Christian Stelling
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Bernd A F Kopera
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Fabian A Nutz
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University , 40204 Düsseldorf , Germany
| | - Markus Retsch
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
| | - Stephan Förster
- Department of Chemistry , University of Bayreuth , 95447 Bayreuth , Germany
- JCNS-1/ICS-1 , Forschungszentrum Jülich , 52425 Jülich , Germany
- Physical Chemistry , RWTH University , 52074 Aachen , Germany
| |
Collapse
|
24
|
Fabrication of high-density array of barnacle-like porous structures using polystyrene colloidal particle monolayer and poly(vinyl alcohol) coating. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Xue P, Ye S, Su H, Wang S, Nan J, Chen X, Ruan W, Zhang J, Cui Z, Yang B. Graded nanowell arrays: a fine plasmonic "library" with an adjustable spectral range. NANOSCALE 2017; 9:6724-6733. [PMID: 28485438 DOI: 10.1039/c7nr01505d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present an effective approach for fabricating graded plasmonic arrays based on ordered micro-/nanostructures with a geometric gradient. Ag nanowell arrays with graded geometric parameters were fabricated and systematically investigated. The order of the graded plasmonic arrays is generated by colloidal lithography, while the geometric gradient is the result of inclined reactive ion etching. The surface plasmon resonance (SPR) peaks were measured at different positions, which move gradually along the Ag nanowell arrays with a geometric gradient. Such micro-/nanostructure arrays with graded and integrated SPR peaks can work as a fine plasmonic "library" (FPL), and the spectral range can be controlled using a "coarse adjustment knob" (lattice constant) and a "fine adjustment knob" (pore diameter). Additionally, the spectral resolution of the FPL is high, which benefits from the high value of the full height/full width at half-maximum and the small step size of the wavelength shift (0.5 nm). Meanwhile, the FPL could be effectively applied as a well-defined model to verify the plasmonic enhancement in surface enhanced Raman scattering. As the FPL is an integrated optical material with graded individual SPR peaks, it can not only be a theoretical model for fundamental research, but also has great potential in high-throughput screening of optical materials, multiplex sensors, etc.
Collapse
Affiliation(s)
- Peihong Xue
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pisco M, Galeotti F, Quero G, Grisci G, Micco A, Mercaldo LV, Veneri PD, Cutolo A, Cusano A. Nanosphere lithography for optical fiber tip nanoprobes. LIGHT, SCIENCE & APPLICATIONS 2017; 6:e16229. [PMID: 30167246 PMCID: PMC6062194 DOI: 10.1038/lsa.2016.229] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 05/12/2023]
Abstract
This paper reports a simple and economical method for the fabrication of nanopatterned optical fiber nanotips. The proposed patterning approach relies on the use of the nanosphere lithography of the optical fiber end facet. Polystyrene (PS) nanospheres are initially self-assembled in a hexagonal array on the surface of water. The created pattern is then transferred onto an optical fiber tip (OFT). The PS monolayer colloidal crystal on the OFT is the basic building block that is used to obtain different periodic structures by applying further treatment to the fiber, such as metal coating, nanosphere size reduction and sphere removal. Ordered dielectric and metallo-dielectric sphere arrays, metallic nanoisland arrays and hole-patterned metallic films with feature sizes down to the submicron scale are achievable using this approach. Furthermore, the sizes and shapes of these periodic structures can be tailored by altering the fabrication conditions. The results indicate that the proposed self-assembly approach is a valuable route for the development of highly repeatable metallo-dielectric periodic patterns on OFTs with a high degree of order and low fabrication cost. The method can be easily extended to simultaneously produce multiple fibers, opening a new route to the development of fiber-optic nanoprobes. Finally, we demonstrate the effective application of the patterned OFTs as surface-enhanced Raman spectroscopy nanoprobes.
Collapse
Affiliation(s)
- Marco Pisco
- Optoelectronic Division—Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Francesco Galeotti
- National Research Council, Institute for Macromolecular Studies (ISMAC-CNR), 20133 Milano, Italy
| | - Giuseppe Quero
- Optoelectronic Division—Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Giorgio Grisci
- National Research Council, Institute for Macromolecular Studies (ISMAC-CNR), 20133 Milano, Italy
| | - Alberto Micco
- Optoelectronic Division—Engineering Department, University of Sannio, 82100 Benevento, Italy
| | | | | | - Antonello Cutolo
- Optoelectronic Division—Engineering Department, University of Sannio, 82100 Benevento, Italy
| | - Andrea Cusano
- Optoelectronic Division—Engineering Department, University of Sannio, 82100 Benevento, Italy
| |
Collapse
|
27
|
Krupinski M, Mitin D, Zarzycki A, Szkudlarek A, Giersig M, Albrecht M, Marszałek M. Magnetic transition from dot to antidot regime in large area Co/Pd nanopatterned arrays with perpendicular magnetization. NANOTECHNOLOGY 2017; 28:085302. [PMID: 28045378 DOI: 10.1088/1361-6528/aa5656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have studied the transition between two different magnetization reversal mechanisms for thin Co/Pd multilayers with perpendicular magnetic anisotropy, appearing in magnetic dot and antidot arrays, which were prepared by nanosphere lithography. Various ordered arrays of nanostuctures, both magnetic dots and antidots, were created by varying size and distance between the nanospheres employing RF-plasma etching. We have shown that the coercivity values reach a maximum for the array of antidots with a separation length close to the domain wall width. In this case, each area between three adjacent holes corresponds to a single domain configuration, which can be switched individually. On the contrary, small hole sizes and large volume of material between them results in domain wall propagation throughout the system accompanied by strong domain wall pinning at the holes. We have also shown the impact of edge effects on the magnetic anisotropy energy.
Collapse
Affiliation(s)
- M Krupinski
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | | | | | | | | | | | | |
Collapse
|
28
|
Wang CG, Wu XZ, Di D, Dong PT, Xiao R, Wang SQ. Orientation-dependent nanostructure arrays based on anisotropic silicon wet-etching for repeatable surface-enhanced Raman scattering. NANOSCALE 2016; 8:4672-4680. [PMID: 26853057 DOI: 10.1039/c5nr04750a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Repeatable fabrication of sensitive plasmonic substrates through a simple procedure has become a major challenge for SERS-based sensing and imaging. Herein, a new class of high-performance SERS substrates, including pyramid, ridged-hexagon, and quasi-triangle nanostructures, is successfully fabricated based on the nanosphere lithography technique and anisotropic wet etching. Using the wafer-scale Cr-hole array as the etching mask, cavity-templates of various configurations are fabricated by the orientation-dependent wet etching technique, from where the nanostructure arrays are finally peeled-off. The anisotropic wet etching on (100), (110), and (111) silicon wafers has been systematically studied at the nanoscale revealing the formation mechanism of these cavity-templates. The peeled-off nanostructure arrays provide high-density tips and/or gaps (about 2.5 × 10(7) mm(-2)) and thus facilitate the generation of "hot spots". The distribution of the electromagnetic field is visualized by the finite difference time domain calculation. And the calculation results are validated by SERS characterization. The SERS enhancement factors of these substrates are in the order of 10(6)-10(7), with the maximum enhancement factor of 1.32 × 10(7) yielded by the ridged-hexagon arrays. The proposed nanostructure arrays present excellent homogeneity and reproducibility (with the largest relative standard deviation of 16.43%) for the reason that the SERS-active substrates are peeled-off from an identical template. The cost-effective fabrication, high sensitivity, good homogeneity and well-performed reproducibility demonstrate that these orientation-dependent NSs are good candidates for SERS-based in vitro and in situ detection and biosensing.
Collapse
Affiliation(s)
- C G Wang
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China. and Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, P. R. China.
| | - X Z Wu
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China.
| | - D Di
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China. and Dingyuan Automotive Proving Ground, Nanjing, Jiangsu Province 210028, P.R. China
| | - P T Dong
- College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha, Hunan Province 410073, P. R. China.
| | - R Xiao
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, P. R. China.
| | - S Q Wang
- Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Institute of Radiation Medicine, Academy of Military Medical Sciences, Beijing 100850, P. R. China.
| |
Collapse
|
29
|
Sano S, Nishioka K, Matsutani A, Isobe T, Nakajima A, Matsushita S. Simple fabrication of micro-polygons and micro-honeycombs utilizing thermal deformation of monolayer colloidal crystals during reactive ion etching. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Shen Q, He J, Ni M, Song C, Zhou L, Hu H, Zhang R, Luo Z, Wang G, Tao P, Deng T, Shang W. Subtractive Structural Modification of Morpho Butterfly Wings. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5705-5711. [PMID: 26397977 DOI: 10.1002/smll.201500502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 07/12/2015] [Indexed: 06/05/2023]
Abstract
Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.
Collapse
Affiliation(s)
- Qingchen Shen
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiaqing He
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mengtian Ni
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lingye Zhou
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hang Hu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruoxi Zhang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhen Luo
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ge Wang
- Analytical Center, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
31
|
Stelling C, Bernhardt C, Retsch M. Subwavelength Etched Colloidal Monolayers: A Model System for Tunable Antireflective Coatings. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Stelling
- Physical Chemistry I-Polymer Systems; University of Bayreuth; Universitätsstr. 30 95447 Bayreuth Germany
| | - Christoph Bernhardt
- Physical Chemistry I-Polymer Systems; University of Bayreuth; Universitätsstr. 30 95447 Bayreuth Germany
| | - Markus Retsch
- Physical Chemistry I-Polymer Systems; University of Bayreuth; Universitätsstr. 30 95447 Bayreuth Germany
| |
Collapse
|
32
|
Vogel N, Retsch M, Fustin CA, del Campo A, Jonas U. Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions. Chem Rev 2015; 115:6265-311. [DOI: 10.1021/cr400081d] [Citation(s) in RCA: 531] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstrasse
4, 91058 Erlangen, Germany
- Cluster
of Excellence - Engineering of Advanced Materials, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Markus Retsch
- Physical
Chemistry 1 - Polymer Systems, University of Bayreuth, Universitätsstraße
30, 95447 Bayreuth, Germany
| | - Charles-André Fustin
- Institute
of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter
Division (BSMA), Université catholique de Louvain, Place Louis
Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Aranzazu del Campo
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ulrich Jonas
- Macromolecular
Chemistry, Cμ - The Research Center for Micro- and Nanochemistry
and Engineering, University of Siegen, Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
- Bio-Organic Materials Chemistry Laboratory (BOMCLab), Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Nikolaou Plastira 100, Vassilika Vouton, P.O. Box 1527, 71110 Heraklion, Crete, Greece
| |
Collapse
|
33
|
Zheng L, Ma Z, Li Z, Yan Q. Rapid nanostructuration of polymer colloid surfaces by nonsolvent induced phase separation. J Colloid Interface Sci 2015; 441:39-45. [PMID: 25490560 DOI: 10.1016/j.jcis.2014.11.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 11/16/2022]
Abstract
We have designed an effective strategy for producing nanostructures on the polymer colloid surfaces within few minutes. The poly(N-vinylpyrrolidone) (PVP)-stabilized polystyrene colloid latex dispersed in ethanol was exposed to a nonsolvent medium of PVP and nanometric droplets formed on the polymer colloid surfaces within few minutes. Surface wettability of the polymer colloids with nanoprotrusions experienced a significant change as compared with the smooth polymer colloids. The formation mechanism was ascribed to the precipitation of PVP phase due to the nonsolvent induced phase separation. To further confirm the proposed mechanism, the material components included in the polymer colloid lattices before the nanostructuration process and surface compositions on the nanostructured polymer colloid surfaces were characterized using gel permeation chromatography (GPC) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) respectively. This new strategy provides an alternative and promising method for patterning curved polymer surfaces. The polymer colloids with different surface textures would be ideal for use as model systems in biomedical research such as targets in phagocytosis and platforms of drug delivery.
Collapse
Affiliation(s)
- Lu Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaohui Ma
- Key Laboratory for Renewable Energy, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhanping Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|