1
|
Mayer DB, Franosch T, Mast C, Braun D. Thermophoresis beyond Local Thermodynamic Equilibrium. PHYSICAL REVIEW LETTERS 2023; 130:168202. [PMID: 37154655 DOI: 10.1103/physrevlett.130.168202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
We measure the thermophoresis of polysterene beads over a wide range of temperature gradients and find a pronounced nonlinear phoretic characteristic. The transition to the nonlinear behavior is marked by a drastic slowing down of thermophoretic motion and is characterized by a Péclet number of order unity as corroborated for different particle sizes and salt concentrations. The data follow a single master curve covering the entire nonlinear regime for all system parameters upon proper rescaling of the temperature gradients with the Péclet number. For low thermal gradients, the thermal drift velocity follows a theoretical linear model relying on the local-equilibrium assumption, while linear theoretical approaches based on hydrodynamic stresses, ignoring fluctuations, predict significantly slower thermophoretic motion for steeper thermal gradients. Our findings suggest that thermophoresis is fluctuation dominated for small gradients and crosses over to a drift-dominated regime for larger Péclet numbers in striking contrast to electrophoresis.
Collapse
Affiliation(s)
- Daniel B Mayer
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Christof Mast
- Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, D-80799 München, Germany
| | - Dieter Braun
- Systems Biophysics, Physics Department, Nanosystems Initiative Munich and Center for NanoScience, Ludwig-Maximilians-Universität München, Amalienstrasse 54, D-80799 München, Germany
| |
Collapse
|
2
|
Chen Z, Kollipara PS, Ding H, Pughazhendi A, Zheng Y. Liquid Optothermoelectrics: Fundamentals and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1315-1336. [PMID: 33410698 PMCID: PMC7856676 DOI: 10.1021/acs.langmuir.0c03182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liquid thermoelectricity describes the redistribution of ions in an electrolytic solution under the influence of temperature gradients, which leads to the formation of electric fields. The thermoelectric field is effective in driving the thermophoretic migration of charged colloidal particles for versatile manipulation. However, traditional macroscopic thermoelectric fields are not suitable for particle manipulations at high spatial resolution. Inspired by optical tweezers and relevant optical manipulation techniques, we employ laser interaction with light-absorbing nanostructures to achieve subtle heat management on the micro- and nanoscales. The resulting thermoelectric fields are exploited to develop new optical technologies, leading to a research field known as liquid optothermoelectrics. This Invited Feature Article highlights our recent works on advancing fundamentals, technologies, and applications of optothermoelectrics in colloidal solutions. The effects of light irradiation, substrates, electrolytes, and particles on the optothermoelectric manipulations of colloidal particles along with their theoretical limitations are discussed in detail. Our optothermoelectric technologies with the versatile capabilities of trapping, manipulating, and pulling colloidal particles at low optical power are finding applications in microswimmers and nanoscience. With its intricate interfacial processes and tremendous technological promise, optothermoelectrics in colloidal solutions will remain relevant for the foreseeable future.
Collapse
|
3
|
Miloh T. Light-induced thermoosmosis about conducting ellipsoidal nanoparticles. Proc Math Phys Eng Sci 2019. [DOI: 10.1098/rspa.2018.0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We consider the central problem of a non-spherical (ellipsoidal) polarizable (metallic) nanoparticle freely suspended in a conducting liquid phase which is irradiated (heated) by a laser under the Rayleigh (electrostatic) approximation. It is shown that, unlike the case of perfectly symmetric (spherical) particles, the surface temperature of general orthotropic particles exposed to continuous laser irradiation is
not uniform!
Thus, the induced surface slip (Soret type) velocity may lead to a self-induced thermoosmotic flow (sTOF) about the particle, in a similar manner to the electroosmotic flow driven by the Helmholtz—Smoluchowski slippage. Using the recent advancement in the theory of Lamé functions and ellipsoidal harmonics, we analytically present new solutions for two key physical problems. (i) Heat conduction and temperature distribution inside and outside a conducting laser-irradiated homogeneous tri-axial ellipsoid which is subjected to uniform Joule heating. (ii) Creeping (Stokes) sTOF around a fixed impermeable metallic ellipsoidal nanoparticle driven by a Soret-type surface slip velocity (i.e. proportional to the surface-temperature gradient).
Collapse
Affiliation(s)
- Touvia Miloh
- School of Mechanical Engineering, University of Tel-Aviv, Tel-Aviv 69978, Israel
| |
Collapse
|
4
|
Chen YL, Yang CX, Jiang HR. Electrically Enhanced Self-Thermophoresis of Laser-Heated Janus Particles under a Rotating Electric Field. Sci Rep 2018; 8:5945. [PMID: 29654240 PMCID: PMC5899123 DOI: 10.1038/s41598-018-24343-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/26/2018] [Indexed: 01/16/2023] Open
Abstract
The motion of a laser-heated Janus particle is experimentally measured under a rotating electric field. Directionally circular motions of the Janus particle following or countering the direction of the rotating electric field are observed in the low-frequency region (from 1 to 6 kHz) depending on the direction of electrorotation. In the higher frequency region (>10 kHz), only pure electrorotation and electrothermal flow are observed. By measuring the dependence of the frequency, voltage, and laser heating power, we propose that the tangential component of circular motion is caused by electric field enhanced self-thermophoresis, which is proportional to the laser heating power and the electric field. This result indicates that thermophoresis could be modified by the induced zeta potential of the Janus particle tuned by the applied electric fields. By this mechanism, the intrinsic thermophoresis can be enhanced several times at a relatively low applied voltage (~3 Volt). Electrically tunable thermophoresis of a particle may bring new insights to thermophoresis phenomenon and also open a new direction for tunable active materials.
Collapse
Affiliation(s)
- Yu-Liang Chen
- Institute of Applied Mechanics, National Taiwan University. No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan R.O.C
| | - Cheng-Xiang Yang
- Institute of Applied Mechanics, National Taiwan University. No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan R.O.C
| | - Hong-Ren Jiang
- Institute of Applied Mechanics, National Taiwan University. No.1, Sec. 4, Roosevelt Rd., Da'an Dist., Taipei City 106, Taiwan R.O.C..
| |
Collapse
|
5
|
Chang WB, Evans CM, Popere BC, Russ BM, Liu J, Newman J, Segalman RA. Harvesting Waste Heat in Unipolar Ion Conducting Polymers. ACS Macro Lett 2016; 5:94-98. [PMID: 35668585 DOI: 10.1021/acsmacrolett.5b00829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Seebeck effect in unipolar ion-conducting, solid-state polymers is characterized. The high Seebeck coefficient and sign in polymer ion conductors is explained via analysis of thermogalvanic multicomponent transport. A solid-state, water-processeable, flexible device based on these materials is demonstrated, showcasing the promise of polymers as thermogalvanic materials. Thermogalvanic materials based on ion-conducting polymer membranes show great promise in the harvesting of waste heat.
Collapse
Affiliation(s)
| | - Christopher M. Evans
- Departments
of Chemical Engineering and Materials, University of California, Santa Barbara, California 93117, United States
| | - Bhooshan C. Popere
- Departments
of Chemical Engineering and Materials, University of California, Santa Barbara, California 93117, United States
| | | | - Jun Liu
- Department
of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | - Rachel A. Segalman
- Departments
of Chemical Engineering and Materials, University of California, Santa Barbara, California 93117, United States
| |
Collapse
|
7
|
Huang BT, Roger M, Bonetti M, Salez TJ, Wiertel-Gasquet C, Dubois E, Cabreira Gomes R, Demouchy G, Mériguet G, Peyre V, Kouyaté M, Filomeno CL, Depeyrot J, Tourinho FA, Perzynski R, Nakamae S. Thermoelectricity and thermodiffusion in charged colloids. J Chem Phys 2015; 143:054902. [DOI: 10.1063/1.4927665] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- B. T. Huang
- Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS, UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - M. Roger
- Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS, UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - M. Bonetti
- Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS, UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - T. J. Salez
- Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS, UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
- École des Ponts ParisTech, 6 et 8 Avenue Blaise Pascal, Champs-sur-Marne, F-77455 Marne-la-Vallée, France
| | - C. Wiertel-Gasquet
- Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS, UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | - E. Dubois
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
| | - R. Cabreira Gomes
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
- Grupo de Fluidos Complexos, Instituto de Fisica & Instituto de Quimica, Universidade de Brasília, CP 04478, 70904-970 Brasília (DF), Brazil
| | - G. Demouchy
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
- Université Cergy-Pontoise, Département de la Physique, 33 Bd du Port, F-95011 Cergy-Pontoise Cedex, France
| | - G. Mériguet
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
| | - V. Peyre
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
| | - M. Kouyaté
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
| | - C. L. Filomeno
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
- Grupo de Fluidos Complexos, Instituto de Fisica & Instituto de Quimica, Universidade de Brasília, CP 04478, 70904-970 Brasília (DF), Brazil
| | - J. Depeyrot
- Grupo de Fluidos Complexos, Instituto de Fisica & Instituto de Quimica, Universidade de Brasília, CP 04478, 70904-970 Brasília (DF), Brazil
| | - F. A. Tourinho
- Grupo de Fluidos Complexos, Instituto de Fisica & Instituto de Quimica, Universidade de Brasília, CP 04478, 70904-970 Brasília (DF), Brazil
| | - R. Perzynski
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire PHENIX, Case 51, 4 Place Jussieu, F-75005 Paris, France
| | - S. Nakamae
- Service de Physique de l’Etat Condensé, CEA-IRAMIS-SPEC, CNRS, UMR 3680, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|