1
|
Liu L, Zhang M, Lu Y, Chen G, Lu B, Ge L, Lu Z, Sun D, Xu Z. Microstructure-dependent CO 2-responsive microemulsions for deep-cleaning of oil-contaminated soils. CHEMOSPHERE 2024; 350:140928. [PMID: 38092174 DOI: 10.1016/j.chemosphere.2023.140928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/30/2023]
Abstract
CO2-responsive microemulsion (ME) is considered a promising candidate for deep-cleaning and oil recovery from oil-contaminated soils. Understanding the responsive nature of different microstructures (i.e., oil-in-water (O/W), bicontinuous (B.C.) and water-in-oil (W/O)) is essential for unlocking the potential and mechanisms of CO2-responsive emulsions in complex multiphase systems and providing comprehensive guidance for remediation of oil-contaminated soils. Herein, the responsiveness of microstructures of ME to CO2 trigger was investigated using experimental designs and coarse-grained molecular dynamic simulations. MEs were formed for the first time by a weakly associated pseudo-Gemini surfactant of indigenous organic acids (naphthenic acids, NAs are a class of natural surface-active molecules in crude oil) and tetraethylenepentamine (TEPA) through fine tuning of co-solvent of dodecyl benzene sulfonic acid (DBSA) and butanol. The O/W ME exhibited an optimal CO2-responsive character due to easier proton migration in the continuous aqueous phase and more pronounced dependence of configuration on deprotonated NA ions. Conversely, the ME with W/O microstructure exhibited a weak to none responsive characteristic, most likely attributed to its high viscosity and strong oil-NA interactions. The O/W ME also showed superior cleaning efficiency and oil recovery from oil-contaminated soils. The results from this study provide insights for the design of CO2-responsive MEs with desired performance and guidance for choosing the favorable operating conditions in various industrial applications, such as oily solid waste treatment, enhanced oil recovery (EOR), and pipeline transportation. The insights from this work allow more efficient and tailored design of switchable MEs for manufacturing advanced responsive materials in various industrial sectors and formulation of household products.
Collapse
Affiliation(s)
- Lingfei Liu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingshan Zhang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China
| | - Yi Lu
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Gaojian Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Binda Lu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Zhouguang Lu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dejun Sun
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan, Shandong, 250100, China
| | - Zhenghe Xu
- Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Zhao Z, Zhang L, Zhang H, Lu G, Meng T, Hao H, Zhang Y, Li J, Yan H. Computational Insights into a CO 2-Responsive Emulsion Prepared Using the Superamphiphile Assembled by Electrostatic Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:938-949. [PMID: 38134444 DOI: 10.1021/acs.langmuir.3c03140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The superamphiphiles exhibit broad prospects for fabricating stimuli-responsive emulsions. Because the superamphiphiles are assembled via noncovalent interactions, they have the advantage of fast response and high efficiency. Recently, a series of switchable emulsions using CO2-responsive superamphiphiles have been developed, which extends the applications of CO2-responsive materials in widespread field. However, there is still a lack of fundamental understanding on the switching mechanism related to the assembled structure of superamphiphiles at the oil-water interface. We employed molecular dynamics (MD) simulations to investigate the reversible emulsification/demulsification process of a responsive emulsion system stabilized by a recently developed responsive superamphiphile (BTOA), which consists of oleic acid (OA) and cationic amine (named 1,3-bis(aminopropyl)tetramethyldisiloxane, BT). The simulation results present the morphologies in both the emulsion and demulsification states. It is found that the ionized OA- and the protonated BT+ together form an adsorption layer at the oil-water interface. The hydrophobic parts of BT+ are inserted into the adsorption layer, and the two amine groups contact the water phase. This adsorption layer reduces the interfacial tension and stabilizes the emulsion. After the bubbling of CO2, the surfactants were fully protonated to OA and BT2+. Because of the changes in the molecular polarity, OA and BT2+ entered the oil and water phases, respectively, resulting in demulsification. The structural and dynamical properties were analyzed to reveal the different intermolecular interactions that were responsible for the reversible reversibility of the emulsion. The observations are considered to be complementary to experimental studies and are expected to provide deeper insights into studies on developing responsive materials via supramolecular assemblies.
Collapse
Affiliation(s)
- Zhen Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Hao Zhang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Guoqiang Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Tong Meng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Yongmin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, P. R. China
| | - Jun Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Hui Yan
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| |
Collapse
|
3
|
Wang H, Wang W, Zhu G, Cao Y, Zhang L. A perspective of microemulsions in critical metal separation and recovery: Implications for potential application of CO 2-responsive microemulsions. CHEMOSPHERE 2023; 338:139494. [PMID: 37451640 DOI: 10.1016/j.chemosphere.2023.139494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Since the discovery of microemulsions, they have attracted great attention due to its unique properties, such as ultra-low interfacial tension and nanoscale droplets. During the past several decades, microemulsions have shown unparalleled advantages in critical metal separation and recovery, e.g., high separation rate, high recovery efficiency, and good selectivity. Therefore, fundamental understandings of such metal recovery behavior are of great significance for the continuous development of microemulsion-based separation technology in this field. Herein, we first systematically reviewed the application of regular microemulsion in the separation and recovery process of critical metals focusing on their separation mechanisms. Then, we summarized the recent progress of CO2-responsive microemulsions and highlighted their potential application in critical metal separation and recovery, aiming to provide some insights into alleviating the difficulties in demulsification during the stripping stage using regular microemulsions. In this section, the latest development of CO2-responsive microemulsions is introduced, and the relationship between their composition, microstructure and macroscopic properties is discussed. Discussion and future perspectives are provided highlighting the design of new microemulsions and potential application of CO2-responsive microemulsions for metal separation and recovery in the future.
Collapse
Affiliation(s)
- Haoxuan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wei Wang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guangli Zhu
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yijun Cao
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Ling Zhang
- Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou, 450001, Henan, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Zhang Y, Xie X, Liu J, Tang B, Fang C, Liu X, Dai Z, Xiong Y. Ionic liquids with reversible photo-induced conductivity regulation in aqueous solution. Sci Rep 2023; 13:13766. [PMID: 37612348 PMCID: PMC10447455 DOI: 10.1038/s41598-023-40905-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
Stimulus-responsive ionic liquids have gained significant attention for their applications in various areas. Herein, three kinds of azobenzimidazole ionic liquids with reversible photo-induced conductivity regulation were designed and synthesized. The change of electrical conductivity under UV/visible light irradiation in aqueous solution was studied, and the effect of chemical structure and concentration of ionic liquids containing azobenzene to the regulation of photoresponse conductivity were discussed. The results showed that exposing the ionic liquid aqueous solution to ultraviolet light significantly increased its conductivity. Ionic liquids with longer alkyl chains exhibited an even greater increase in conductivity, up to 75.5%. Then under the irradiation of visible light, the electrical conductivity of the solution returned to its initial value. Further exploration of the mechanism of the reversible photo-induced conductivity regulation of azobenzene ionic liquids aqueous solution indicated that this may attributed to the formation/dissociation of ionic liquids aggregates in aqueous solution induced by the isomerization of azobenzene under UV/visible light irradiation and resulted the reversible conductivity regulation. This work provides a way for the molecular designing and performance regulation of photo-responsive ionic liquid and were expected to be applied in devices with photoconductive switching and micro photocontrol properties.
Collapse
Affiliation(s)
- Yige Zhang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaowen Xie
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jianliang Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Boyuan Tang
- Boya International Academy, Shaoxing, 312000, People's Republic of China
| | - Can Fang
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaoming Liu
- Zhejiang Institute of Standardization, Hangzhou, 310018, People's Republic of China
| | - Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, People's Republic of China.
| | - Yubing Xiong
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou, 325802, People's Republic of China.
| |
Collapse
|
5
|
Zhang Y, Mu M, Zhou Y, Xie H, Zhao S. Redox-responsive microemulsion: Fabrication and application to curcumin encapsulation. J Colloid Interface Sci 2023; 647:384-394. [PMID: 37269735 DOI: 10.1016/j.jcis.2023.05.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
HYPOTHESIS Stimulus-responsive microemulsions have aroused significant attention because of their versatile and reversible switchability between stable and unstable states. However, most stimuli-responsive microemulsions are based on stimuli-responsive surfactants. We posit that the change in the hydrophilicity of a selenium-containing alcohol triggered by a mild redox reaction could also influence the stability of microemulsions and provide a new nanoplatform for the delivery of bioactive substances. EXPERIMENTS A selenium-containing diol (3,3'-selenobis(propan-1-ol), PSeP) was designed and used as a co-surfactant in a microemulsion with ethoxylated hydrogenated castor oil (HCO40), diethylene glycol monohexyl ether (DGME), 2-n-octyl-1-dodecanol (ODD) and water. The redox-induced transition in PSeP was characterized by 1H NMR, 77Se NMR, and MS. The redox-responsiveness of the ODD/HCO40/DGME/PSeP/water microemulsion was investigated through determination of a pseudo-ternary phase diagram, analysis by dynamic light scattering, and electrical conductivity, and its encapsulation performance was evaluated by determination of the solubility, stability, antioxidant activity, and skin penetrability of encapsulated curcumin. FINDINGS The redox conversion of PSeP enabled efficient switching of ODD/HCO40/DGME/PSeP/water microemulsions. Addition of oxidant (H2O2), oxidized PSeP into more hydrophilic PSeP-Ox (selenoxide), disrupting the emulsifying capacity of the combination of HCO40/DGME/PSeP, markedly reducing the monophasic microemulsion region in the phase diagram, and inducing phase separation in some formulations. Addition of reductant (N2H4·H2O), reduced PSeP-Ox and restored the emulsifying capacity of the combination of HCO40/DGME/PSeP. In addition, PSeP-based microemulsions can significantly enhance the solubility in oil (by 23 times), stability, antioxidant capacity (DPPH∙ radical scavenging by 91.74 %), and skin penetrability of curcumin, showing clear potential for encapsulation and delivery of curcumin and other bioactive substances.
Collapse
Affiliation(s)
- Yongmin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Green Cleaning Technology and Detergents of Zhejiang Province, Hangzhou 310056, PR China.
| | - Meng Mu
- Petroleum Engineering Technology Research Institute of Shengli Oilfield, SINOPEC, Dongying, Shandong 257067, China
| | - Yue Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Huan Xie
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Shanjuan Zhao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
6
|
Kaur M, Singh M, Singh G, Singh A, Kaur G, Mehta SK, Kang TS. Water-pluronic-ionic liquid based microemulsions: Preparation, characterization and application as micro-reactor for enhanced catalytic activity of Cytochrome-c. Colloids Surf B Biointerfaces 2023; 222:113034. [PMID: 36435029 DOI: 10.1016/j.colsurfb.2022.113034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Microemulsions (µEs), comprising water as polar component, pluronic (normal, L35 and reverse, 10R5) as surfactant and a hydrophobic ionic liquid (HIL) as non-polar component have been prepared and characterized. Owing to higher surface activity, pluronics have promoted the formation of µEs without the use of co-surfactant. Thus prepared µEs have been utilized as nano-reactors for the oxidation of guaiacol in the presence of Cytochrome-c (Cyt-c) at 15, 20, and 25 °C. A 3.2- and 1.3-fold increase in the rate of formation of product of enzymatic catalysis in direct µE (HIL-in-water) with reverse pluronic (10R5) is observed at 15 and 20 °C as compared to that in buffer. However, negligible enzymatic activity is observed in the direct µE formed by normal pluronic (L35). The catalytic activity of Cyt-c decreases in reverse µEs (water-in-HIL) as compared to direct µEs irrespective of the nature of pluronic used. The contrasting nature of nano-interfaces formed by pluronics in µEs and the extent of hydration of these nano-interfaces controlled by temperature exerts varying influence on the catalytic activity of Cyt-c. It is expected that the present work would result in providing a versatile platform for the creation of new IL and pluronic-based µEs for bio-catalytic applications, which have never been reported.
Collapse
Affiliation(s)
- Manvir Kaur
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Manpreet Singh
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Gurbir Singh
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Amritpal Singh
- Department of Chemistry, Mata Gujri College, Sri Fatehgarh Sahib 140407, India
| | - Gurleen Kaur
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Surinder Kumar Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Tejwant Singh Kang
- Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
7
|
Lu Y, Zhu Y, Yang F, Xu Z, Liu Q. Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004082. [PMID: 34047073 PMCID: PMC8336505 DOI: 10.1002/advs.202004082] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/19/2021] [Indexed: 05/07/2023]
Abstract
Advanced switchable molecules and materials have shown great potential in numerous applications. These novel materials can express different states of physicochemical properties as controlled by a designated stimulus, such that the processing condition can always be maintained in an optimized manner for improved efficiency and sustainability throughout the whole process. Herein, the recent advances in switchable molecules/materials in oil recovery and oily waste cleanup are reviewed. Oil recovery and oily waste cleanup are of critical importance to the industry and environment. Switchable materials can be designed with various types of switchable properties, including i) switchable interfacial activity, ii) switchable viscosity, iii) switchable solvent, and iv) switchable wettability. The materials can then be deployed into the most suitable applications according to the process requirements. An in-depth discussion about the fundamental basis of the design considerations is provided for each type of switchable material, followed by details about their performances and challenges in the applications. Finally, an outlook for the development of next-generation switchable molecules/materials is discussed.
Collapse
Affiliation(s)
- Yi Lu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Yeling Zhu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
| | - Fan Yang
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| | - Zhenghe Xu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Qingxia Liu
- Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonAlbertaT6G 1H9Canada
- College of New Materials and New EnergiesShenzhen Technology UniversityShenzhen518118P. R. China
| |
Collapse
|
8
|
Yuan X, Zhang Y, Li Z, Huo F, Dong Y, He H. Stimuli‐Responsive
Ionic Liquids and the Regulation of Aggregation Structure and Phase Behavior†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiao‐Qing Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Ya‐Qin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Zhi‐Yong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Yi‐Hui Dong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hong‐Yan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Dalian National Laboratory for Clean Energy Dalian Liaoning 116023 China
| |
Collapse
|
9
|
Zhou Y, He S, Li H, Zhang Y. CO 2 and Temperature Control over Nanoaggregates in Surfactant-Free Microemulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1983-1990. [PMID: 33512168 DOI: 10.1021/acs.langmuir.0c03527] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Smart microemulsions (MEs) recently have attracted significant interests. However, MEs, especially surfactant-free MEs (SFMEs) that respond to more than one stimulus, are rarely reported to date. Here, we reported the first example of dual-responsive SFME in which a CO2-sensitive hydroxyethylamine was used as an amphisolvent. This SFME was investigated utilizing ternary phase diagram, dynamic light scattering, and UV-visible spectrum techniques. It was found that three hydroxyethylamines could stabilize the octanol-water mixture to form transparent and isotropic SFMEs including nanoaggregates-rich pre-ouzo zone, regardless of the number of the hydroxyl group. Among them, 2-(dimethyl amino) ethanol (DMEA)-based SFME possesses the largest single-phase region and most sensitive to CO2 and the changes in temperature. With bubbling of CO2/N2 or decreasing/increasing temperature, both the single-phase region and pre-ouzo zone reversibly shrink and expand, as well as with breathing. However, CO2/N2-induced change is more significant than that induced by temperature. The former is mainly ascribed to the reversible protonation and deprotonation of DMEA, while the latter is generally interpreted as the effects of temperature on hydrogen bond interaction. Note that CO2 leads to a thorough demusification from Winsor IV ME to oil-rich and water-rich two phases without nanoaggregates, while cooling only causes to a particular phase separation, producing two new MEs phases, not typical Winsor I or II MEs. Such a unique dual-responsive SFME can not only be applied in the remediation of contaminated soil, drug delivery, and nanoparticles preparation but also opens a new door to switchable emulsion.
Collapse
Affiliation(s)
- Yue Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Shuai He
- College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Huanhuan Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Yongmin Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Materials Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
10
|
Lv X, Li X, Zhu P, Ge Y, Li Q, Lu H. Regulating redox and pH- responsive behavior of emulsion by varying alkane carbon number of tertiary amine. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1857265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xin Lv
- State Key Laboratory of Natural Gas Hydrates, Beijing, China
| | - Xiaojiang Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Peiyao Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Yang Ge
- State Key Laboratory of Natural Gas Hydrates, Beijing, China
| | - Qingping Li
- State Key Laboratory of Natural Gas Hydrates, Beijing, China
| | - Hongsheng Lu
- State Key Laboratory of Natural Gas Hydrates, Beijing, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| |
Collapse
|
11
|
|
12
|
Zhang Y, Liu D, Wang B, Lu H, Huang Z. Reversible temperature regulation of CO2-responsive ionic liquid microemulsion. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Li X, Wang B, Dai S, Lu H, Huang Z. Ionic Liquid-Based Microemulsions with Reversible Microstructures Regulated by CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:264-272. [PMID: 31845812 DOI: 10.1021/acs.langmuir.9b03327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
CO2-responsive microemulsions based on ionic liquid 1,1,3,3-tetramethylguanidine-oleic acid (TMG-OA) have been designed to provide an approach for reducing the volatilization of amine in amine-containing microemulsions effectively and exhibit reversible transitions of microstructures. The ionic liquid TMG-OA was prepared by the direct neutralization of oleic acid (HOA) and 1,1,3,3-tetramethylguanidine (TMG, one of volatile and toxic amines). From the investigations of nuclear magnetic resonance hydrogen spectrum, pH, thermogravimetry, and automatic interface tension meter, the excellent properties of switchability, stability, and surface activity of TMG-OA were demonstrated, and then the ionic liquid-based microemulsions with CO2 response were prepared with TMG-OA (surfactant), HOA (oil phase), isopropyl alcohol (IPA, cosurfactant), and water. Interestingly, for microemulsions with a higher IPA content (47.42, 44.48 wt %), sizes of microemulsions are increased upon introducing CO2 and decreased upon addition of N2/65 °C. In addition, for microemulsions with a lower IPA content (26.22 wt %), the new microemulsions with different sizes are regenerated after the phase separation of emulsions generated by introducing CO2, and incomplete recovery of microemulsions can be observed upon addition of N2/65 °C. The reversible microstructures are induced by the swelling behavior and the reduced single phase area, which are caused by the reversible conversion between TMG-OA and HOA components.
Collapse
Affiliation(s)
- Xiaojiang Li
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
| | - Baogang Wang
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
- Engineering Research Center of Oilfield Chemistry , Ministry of Education , Chengdu 610500 , P. R. China
| | - Shanshan Dai
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
- Engineering Research Center of Oilfield Chemistry , Ministry of Education , Chengdu 610500 , P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
- Engineering Research Center of Oilfield Chemistry , Ministry of Education , Chengdu 610500 , P. R. China
| | - Zhiyu Huang
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
- Engineering Research Center of Oilfield Chemistry , Ministry of Education , Chengdu 610500 , P. R. China
| |
Collapse
|
14
|
Guan X, Liu D, Lu H, Huang Z. CO2 responsive emulsions: Generation and potential applications. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Xu D, Lu H, Liu D, Li X. CO2-switchable surfactant-free microemulsion consisted of N,N-dimethylcyclohexylamine, ethanol and water. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2018.1555482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Daixue Xu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Dongfang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| | - Xiaojiang Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, P. R. China
| |
Collapse
|
16
|
Yuan X, Li Z, Feng Y, Pei Y, Wang H, Liu D, Wang D, Wang J. Phase behavior and microstructure of azobenzene ionic liquids based photo-responsive microemulsions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Liu D, Lu H, Zhang Y, Zhu P, Huang Z. Conversion of a surfactant-based microemulsion to a surfactant-free microemulsion by CO 2. SOFT MATTER 2019; 15:462-469. [PMID: 30574987 DOI: 10.1039/c8sm02444h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A microemulsion with a CO2 response was prepared by mixing the surfactant sodium oleate (NaOA), the co-surfactant isopropyl alcohol (IPA), oil phase oleic acid (HOA) and water. This surfactant-based microemulsion (SBME) shows a CO2 responsive behavior, and the introduction of CO2 can breakdown the microemulsion. Through the research in this paper, it is found that the content of IPA has a direct impact on the CO2 response behavior of SBME. It was found that the lower the IPA content (22.73 wt%), the more obvious the CO2 response behavior of SBME. Conversely, when the concentration of IPA is high (54.05 wt% and 63.83 wt%), the introduction of CO2 does not directly lead to the demulsification of the microemulsion. NaOA can be converted to HOA under the action of CO2, which is why SBME shows CO2 response behavior. By comparing the effects of CO2 on the (pseudo-)ternary phase diagrams of SBME and surfactant-free microemulsion (SFME), we found evidence that SBME shows different CO2 response behaviors. When CO2 was bubbled into the SBME system with a low IPA content, IPA cannot stabilize the excessive HOA and water in the system and eventually break the microemulsion. The situation is different when CO2 is applied to the SBME system with a high IPA content. IPA as an amphiphilic solvent can stabilize the HOA and water in the system to form SFME. In this process, SBME can be demulsified (low IPA content) or can be converted to SFME (high IPA content) in the presence of CO2.
Collapse
Affiliation(s)
- Dongfang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China. and Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| | - Ying Zhang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Peiyao Zhu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | - Zhiyu Huang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China. and Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, P. R. China
| |
Collapse
|
18
|
Li Y, Liu L, Liu X, Chen S, Fang Y. Reversibly responsive microemulsion triggered by redox reactions. J Colloid Interface Sci 2019; 540:51-58. [PMID: 30622058 DOI: 10.1016/j.jcis.2018.12.109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 11/29/2022]
Abstract
HYPOTHESIS Stimuli-responsive surfactants (also known as switchable surfactants) can undergo reversible conversions between active and inactive forms under particular stimuli, affecting surface and interfacial activity, aggregation structure, emulsification and solubilisation. Selenium-containing surfactants are of reversibly redox-responsive. Hence, microemulsions (MEs) stabilized by selenium-containing surfactants should reversibly respond to redox reactions. EXPERIMENTS The formation of MEs, consisting of sodium dodecylselanylpropyl sulfate (reduced form, SDSePS-Re) or its oxidized form (SDSePS-Ox), n-butanol, n-heptane, and water, was verified based on a pseudo-ternary phase diagram. Changes in molecular structure between SDSePS-Re and SDSePS-Ox were verified by nuclear magnetic resonance spectrometry and electrospray ionization mass spectrometry. The transition between SDSePS-Re- and SDSePS-Ox -based MEs was systematically characterized through electrical conductivity measurements, cryo-transmission electron microscopy and dynamic light-scattering. FINDINGS Both SDSePS-Re and SDSePS-Ox could stabilize the mixture of n-butanol-n-heptane-water to form MEs. A reversible transition between an SDSePS-Re-based ME and the corresponding SDSePS-Ox-based ME was achieved, which was realized by the oxidation of SDSePS-Re with H2O2 and then reduction with N2H4. Compared with SDSePS-Re, SDSePS-Ox has a lower surface activity, resulting in a difference in solubilization capacity of the oil between SDSePS-Re- and SDSePS-Ox -based MEs. After oxidation with H2O2, phase separation could be observed in some SDSePS-Re-based MEs; however, the SDSePS-Re-based MEs could be recovered after reduction of SDSePS-Ox-based MEs with N2H4.
Collapse
Affiliation(s)
- Ying Li
- School of Chemical & Materials Engineering, Key Laboratory of Synthetic and Biological Colloids Ministry of Education, Jiangnan University, 214122 Wuxi, PR China
| | - Lian Liu
- School of Chemical & Materials Engineering, Key Laboratory of Synthetic and Biological Colloids Ministry of Education, Jiangnan University, 214122 Wuxi, PR China
| | - Xuefeng Liu
- School of Chemical & Materials Engineering, Key Laboratory of Synthetic and Biological Colloids Ministry of Education, Jiangnan University, 214122 Wuxi, PR China.
| | - Shuang Chen
- College of Chemical Engineering, China University of Petroleum, 266580 Qingdao, PR China
| | - Yun Fang
- School of Chemical & Materials Engineering, Key Laboratory of Synthetic and Biological Colloids Ministry of Education, Jiangnan University, 214122 Wuxi, PR China
| |
Collapse
|
19
|
Chen X, Ma X, Yan C, Sun D, Yeung T, Xu Z. CO2-responsive O/W microemulsions prepared using a switchable superamphiphile assembled by electrostatic interactions. J Colloid Interface Sci 2019; 534:595-604. [DOI: 10.1016/j.jcis.2018.09.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
20
|
Liu D, Suo Y, Tan J, Zhu P, Zhao J, Wang B, Lu H. Tertiary Amine-Naphthenic Acid Self-Assembled Surfactants for Viscosity Reduction of Crude Oil. Chem Eng Technol 2018. [DOI: 10.1002/ceat.201700489] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dongfang Liu
- Southwest Petroleum University; College of Chemistry and Chemical Engineering; No. 8 Xindu Avenue 610500 Chengdu China
| | - Yuxin Suo
- Southwest Petroleum University; College of Chemistry and Chemical Engineering; No. 8 Xindu Avenue 610500 Chengdu China
| | - Jiang Tan
- Southwest Petroleum University; College of Chemistry and Chemical Engineering; No. 8 Xindu Avenue 610500 Chengdu China
| | - Peiyao Zhu
- Southwest Petroleum University; College of Chemistry and Chemical Engineering; No. 8 Xindu Avenue 610500 Chengdu China
| | - Jihe Zhao
- Southwest Petroleum University; College of Chemistry and Chemical Engineering; No. 8 Xindu Avenue 610500 Chengdu China
| | - Baogang Wang
- Southwest Petroleum University; College of Chemistry and Chemical Engineering; No. 8 Xindu Avenue 610500 Chengdu China
| | - Hongsheng Lu
- Southwest Petroleum University; College of Chemistry and Chemical Engineering; No. 8 Xindu Avenue 610500 Chengdu China
- Ministry of Education; Engineering Research Center of Oilfield Chemistry; No. 8 Xindu Avenue 610500 Chengdu China
| |
Collapse
|
21
|
Liu D, Huang Z, Suo Y, Zhu P, Tan J, Lu H. CO 2-Responsive Surfactant-Free Microemulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8910-8916. [PMID: 29983070 DOI: 10.1021/acs.langmuir.8b01518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A surfactant-free microemulsion (SFME) with CO2 stimuli responsive properties was prepared. The oil and the water phases were N, N-dimethylcyclohexylamine (DMCHA) and deionized water, respectively, and N, N-dimethylethanolamine was used as an amphisolvent. The single-phase and multiphase zones were measured by the ternary-phase diagram, and the microstructure of the SFME was determined by measuring the change trend of the electrical conductivity of the system with increasing DMCHA content. While using methyl orange as a probe, the microstructure of the SFME was further confirmed by an UV-visible spectrometer. The microstructures of water-in-oil (SFME-I) and oil-in-water (SFME-II) microemulsions were obtained by changing the DMCHA content in the system. The SFME-I system has a significant phase separation after the action of CO2. However, with the continuous introduction of CO2, the upper phase of DMCHA is gradually protonated and dissolves in the aqueous phase, resulting in a gradual decrease in the volume of the upper phase, and eventually in an aqueous solution of ammonium bicarbonate. For SFME-II, CO2 does not directly cause phase separation, but eventually it becomes an aqueous solution of ammonium bicarbonate with the addition of CO2. Both the water-in-oil structure SFME-I and the oil-in-water structure SFME-II have excellent CO2 stimuli responsive performance.
Collapse
Affiliation(s)
- Dongfang Liu
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
| | - Zhiyu Huang
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
| | - Yuxin Suo
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
| | - Peiyao Zhu
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
| | - Jiang Tan
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
| | - Hongsheng Lu
- College of Chemistry and Chemical Engineering , Southwest Petroleum University , Chengdu 610500 , P. R. China
| |
Collapse
|
22
|
Lv X, Liu L, Liu X, Ge Z, Zhong K. Reversibly Redox-Switchable Anionic Surfactant Contains Two Selenium Atoms. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiangliang Lv
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Lian Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Xuefeng Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 China
| | - Zan Ge
- Zanyu Technology Group Co. Ltd.; Hangzhou 310009 China
| | - Kai Zhong
- Zanyu Technology Group Co. Ltd.; Hangzhou 310009 China
| |
Collapse
|
23
|
Fan Y, Zhang Y, Liu X, Zhong K, Ge Z. Recovery and Recycling of CO2/N2-Switchable Anionic Surfactants in Emulsions. J SURFACTANTS DETERG 2017. [DOI: 10.1007/s11743-017-2022-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Liu D, Suo Y, Tan J, Lu H. CO 2-Switchable microemulsion based on a pseudogemini surfactant. SOFT MATTER 2017; 13:3783-3788. [PMID: 28480931 DOI: 10.1039/c7sm00576h] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
At present, more and more researchers around the world are paying attention to stimuli-responsive surfactants. In this paper, we have reported a microemulsion prepared from the tertiary amine TMPDA (N,N,N',N'-tetramethyl-1,3-propanediamine) and the anionic surfactant SDS (sodium dodecyl sulphate), which has good carbon dioxide response characteristics. The molar ratio of TMPDA to SDS is 1 : 2. By introducing CO2 into the microemulsion that consists of SDS, TMPDA, n-hexane, n-butanol and water, the tertiary amine TMPDA molecules can be protonated to form quaternary ammonium species. The protonated tertiary amine TMPDA can be assembled with SDS by electrostatic interactions to form a pseudogemini surfactant (SDS-TMPDA-SDS). The pseudogemini surfactant can dissolve in the aqueous phase which makes the microemulsion break down eventually. By bubbling N2 after CO2 into the same system at 50 °C for 3 hours, the pseudogemini surfactant SDS-TMPDA-SDS disintegrates into SDS and TMPDA, respectively. At the same time, the microemulsion also recovers its initial state. Such a reversible transition could be repeated for several cycles from monophase to complete phase separation.
Collapse
Affiliation(s)
- Dongfang Liu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.
| | | | | | | |
Collapse
|
25
|
Zhang Y, Chen H, Liu X, Zhang Y, Fang Y, Qin Z. Effective and Reversible Switching of Emulsions by an Acid/Base-Mediated Redox Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13728-13735. [PMID: 27958741 DOI: 10.1021/acs.langmuir.6b03645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To develop a fast, effective, and reversible strategy for phase separation and re-emulsification of the surfactant-based emulsions, a strategy for using acid/base-mediated redox reactions was established to switch the emulsions formed from a redox-responsive anionic surfactant of potassium dodecyl seleninate (C12SeO2K). Upon acidification, C12SeO2K was reduced by KI to give didodecyl diselenide (C12Se)2, a state of almost no surface or interfacial activity; upon basification, (C12Se)2 was oxidized by I2 to give C12SeO2K again. The fractional conversion of C12SeO2K in the reversible switching processes was close to 100%. Consequently, an unusually large change in interfacial tension (ΔIFT) as high as ∼27.1 mN m-1 was obtained at a wider concentration range starting from the critical micelle concentration of C12SeO2K; the highest IFT at the oil-water interface was obtained after an almost complete switch-off, giving an oil-aqueous solution interface very similar to that without any emulsifiers, which leads to the effective and fast phase separation of the C12SeO2K-based switchable emulsions.
Collapse
Affiliation(s)
- Yuandi Zhang
- School of Chemical & Materials Engineering, Key Laboratory of Food Colloids and Biotechnology Ministry of Education, Jiangnan University , Wuxi 214122, PR China
| | - Hui Chen
- School of Chemical & Materials Engineering, Key Laboratory of Food Colloids and Biotechnology Ministry of Education, Jiangnan University , Wuxi 214122, PR China
| | - Xuefeng Liu
- School of Chemical & Materials Engineering, Key Laboratory of Food Colloids and Biotechnology Ministry of Education, Jiangnan University , Wuxi 214122, PR China
| | - Yongmin Zhang
- School of Chemical & Materials Engineering, Key Laboratory of Food Colloids and Biotechnology Ministry of Education, Jiangnan University , Wuxi 214122, PR China
| | - Yun Fang
- School of Chemical & Materials Engineering, Key Laboratory of Food Colloids and Biotechnology Ministry of Education, Jiangnan University , Wuxi 214122, PR China
| | - Zhirong Qin
- Zhejiang Zanyu Technology Co. Ltd. , Hangzhou 310009, PR China
| |
Collapse
|
26
|
Bera A, Belhaj H. Ionic liquids as alternatives of surfactants in enhanced oil recovery—A state-of-the-art review. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.09.105] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Darabi A, Jessop PG, Cunningham MF. CO2-responsive polymeric materials: synthesis, self-assembly, and functional applications. Chem Soc Rev 2016; 45:4391-436. [PMID: 27284587 DOI: 10.1039/c5cs00873e] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CO2 is an ideal trigger for switchable or stimuli-responsive materials because it is benign, inexpensive, green, abundant, and does not accumulate in the system. Many different CO2-responsive materials including polymers, latexes, solvents, solutes, gels, surfactants, and catalysts have been prepared. This review focuses on the preparation, self-assembly, and functional applications of CO2-responsive polymers. Detailed discussion is provided on the synthesis of CO2-responsive polymers, in particular using reversible deactivation radical polymerization (RDRP), formerly known as controlled/living radical polymerization (CLRP), a powerful technique for the preparation of well-defined (co)polymers with precise control over molecular weight distribution, chain-end functional groups, and polymer architectural design. Self-assembly in aqueous dispersed media is highlighted as well as emerging potential applications.
Collapse
Affiliation(s)
- Ali Darabi
- Department of Chemical Engineering, Queen's University, Kingston, Canada.
| | | | | |
Collapse
|
28
|
|
29
|
Li Y, Zhang C, Zhou Y, Dong Y, Chen W. Novel multi-responsive polymer materials: When ionic liquids step in. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
|
31
|
Abstract
Recent developments of polymerization in ionic liquid-based microemulsions and its applications are reviewed, along with the perspectives and challenges.
Collapse
Affiliation(s)
- Chao Yuan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhihong Si
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|