1
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
Facile construction of shape-regulated β-cyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydr Polym 2019; 231:115714. [PMID: 31888845 DOI: 10.1016/j.carbpol.2019.115714] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
Although supramolecular prodrug self-assemblies have been proven as efficient nanocarriers for cancer therapy, tedious synthesis procedures have made their practical applications more difficult. In this paper, β-cyclodextrin-based supramolecular self-assemblies (SSAs) were directly constructed by utilizing β-cyclodextrin trimer (β-CD3) as the host unit and unmodified curcumin as the guest unit. Due to the adjustment of host-guest inclusion and hydrophilic-hydrophobic interactions occurring in the SSAs, their morphology could be readily tuned by changing the ratio of the two components. Different self-assembly morphologies, such as spherical complex micelles, spindle-like complex micelles and multi-compartment vesicles, were obtained. Furthermore, basic cell experiments were performed to study the corresponding effects of the SSA shape on their biological properties. Compared to the other micelles, the spindle-like complex micelles exhibited enhanced cellular toxicity, uptake behaviors and apoptosis rates, and the spherical complex micelles exhibited poor performance. The performance of the multi-compartment vesicles was similar to that of the spindle-like complex micelles. The facile construction of these shape-regulated SSAs and their different cellular biological properties might be valuable in the controlled drug release field.
Collapse
|
3
|
Deng Y, Li X, Zhang Q, Luo Z, Han C, Dong S. LCST phase behavior of benzo-21-crown-7 with different alkyl chains. Beilstein J Org Chem 2019; 15:437-444. [PMID: 30873228 PMCID: PMC6404474 DOI: 10.3762/bjoc.15.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/01/2019] [Indexed: 12/24/2022] Open
Abstract
The introduction of hydrophobic units into crown ethers can dramatically decrease the critical transition temperature of LCST and realize macroscopic phase separation at low to moderate temperature and concentration. Minor modifications in the chemical structure of crown ethers (benzo-21-crown-7, B21C7s) can effectively control the thermo-responsive properties.
Collapse
Affiliation(s)
- Yan Deng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| | - Chengyou Han
- Department of Chemistry, College of science, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China
| |
Collapse
|
4
|
Zheng B, Luo Z, Deng Y, Zhang Q, Gao L, Dong S. A degradable low molecular weight monomer system with lower critical solution temperature behaviour in water. Chem Commun (Camb) 2019; 55:782-785. [PMID: 30569924 DOI: 10.1039/c8cc09160a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A degradable thermo-responsive system was prepared and investigated. The degradation behaviour induced by the cleavage process of the thermo-sensitive crown ethers effectively altered the thermo-responsiveness.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | | | | | | | | | | |
Collapse
|
5
|
Mu B, Liu T, Tian W. Long‐Chain Hyperbranched Polymers: Synthesis, Properties, and Applications. Macromol Rapid Commun 2018; 40:e1800471. [DOI: 10.1002/marc.201800471] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/30/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Bin Mu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Tingting Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Wei Tian
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Macromolecular Science and TechnologySchool of ScienceNorthwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
6
|
Wang L, Li X, Zhang Q, Luo Z, Deng Y, Yang W, Dong S, Wang QA, Han C. Supramolecular control over pillararene-based LCST phase behaviour. NEW J CHEM 2018. [DOI: 10.1039/c8nj01366g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the supramolecular interactions between pillar[5]arenes and ionic liquids, supramolecular control was successfully introduced into thermo-responsive systems to adjust LCST phase behaviour in water.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yan Deng
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Wen Yang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Qiu-an Wang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Chengyou Han
- Department of Chemistry
- College of Science
- China University of Petroleum (East China)
- Qingdao
- China
| |
Collapse
|
7
|
Venkata Rao K, Miyajima D, Nihonyanagi A, Aida T. Thermally bisignate supramolecular polymerization. Nat Chem 2017; 9:1133-1139. [DOI: 10.1038/nchem.2812] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/31/2017] [Indexed: 12/23/2022]
|
8
|
Abstract
This feature article presents a systematic summary of the synthesis strategies including direct and indirect approaches for obtaining supramolecular hyperbranched polymers (SHPs).
Collapse
Affiliation(s)
- Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xuexiang Li
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Jingxia Wang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
9
|
Yao H, Qi M, Liu Y, Tian W. Host-Guest Binding-Site-Tunable Self-Assembly of Stimuli-Responsive Supramolecular Polymers. Chemistry 2016; 22:8508-19. [PMID: 27167577 DOI: 10.1002/chem.201601142] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 03/29/2016] [Indexed: 11/07/2022]
Abstract
Despite the remarkable progress made in controllable self-assembly of stimuli-responsive supramolecular polymers (SSPs), a basic issue that has not been consideration to date is the essential binding site. The noncovalent binding sites, which connect the building blocks and endow supramolecular polymers with their ability to respond to stimuli, are expected to strongly affect the self-assembly of SSPs. Herein, the design and synthesis of a dual-stimuli thermo- and photoresponsive Y-shaped supramolecular polymer (SSP2) with two adjacent β-cyclodextrin/azobenzene (β-CD/Azo) binding sites, and another SSP (SSP1) with similar building blocks, but only one β-CD/Azo binding site as a control, are described. Upon gradually increasing the polymer solution temperature or irradiating with UV light, SSP2 self-assemblies with a higher binding-site distribution density; exhibits a flower-like morphology, smaller size, and more stable dynamic aggregation process; and greater controllability for drug-release behavior than those observed with SSP1 self-assemblies. The host-guest binding-site-tunable self-assembly was attributed to the positive cooperativity generated among adjacent binding sites on the surfaces of SSP2 self-assemblies. This work is beneficial for precisely controlling the structural parameters and controlled release function of SSP self-assemblies.
Collapse
Affiliation(s)
- Hao Yao
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Miao Qi
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Yuyang Liu
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P.R. China
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P.R. China.
| |
Collapse
|
10
|
Li H, Fan X, Shang X, Qi M, Zhang H, Tian W. A triple-monomer methodology to construct controllable supramolecular hyperbranched alternating polymers. Polym Chem 2016. [DOI: 10.1039/c6py00869k] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel “D3–AC–E3” triple-monomer methodology was proposed to construct supramolecular hyperbranched alternating polymers.
Collapse
Affiliation(s)
- Hui Li
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiaodong Fan
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiaomeng Shang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Miao Qi
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Haitao Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
11
|
Yao X, Wang X, Jiang T, Ma X, Tian H. Bis-p-Sulfonatocalix[4]arene-Based Supramolecular Amphiphiles with an Emergent Lower Critical Solution Temperature Behavior in Aqueous Solution and Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13647-13654. [PMID: 26639514 DOI: 10.1021/acs.langmuir.5b04083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An unexpected lower critical solution temperature (LCST) phenomenon is observed in a bis-p-sulfonatocalix[4]arene-based supramolecular amphiphile system, and the mechanism of this intriguing phenomenon is studied. The unusual macroscopic thermoresponsive behavior is based on the switch of the system from water-soluble assemblies to insoluble netlike cross-linked nanoparticles under temperature stimulus, which is regulated by multiple weak interactions, including hydrophilic and hydrophobic interactions, π-π stacking, and host-guest recognition. By using the LCST solution as the dispersion medium, a hydrogel with LCST behavior can be fabricated. This work contributes toward better understanding about calixarene-induced aggregation (CIA) and thermoresponsive self-assembled systems. It will also help to enrich the designing of complexed supramolecular amphiphile systems and develop their potential applications in hydrogels.
Collapse
Affiliation(s)
- Xuyang Yao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , Shanghai 200237, P. R. China
| | - Xi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , Shanghai 200237, P. R. China
| | - Tao Jiang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology , Shanghai 200237, P. R. China
| |
Collapse
|
12
|
Alkan A, Steinmetz C, Landfester K, Wurm FR. Triple-Stimuli-Responsive Ferrocene-Containing PEGs in Water and on the Surface. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26137-26144. [PMID: 26539654 DOI: 10.1021/acsami.5b07945] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Triple-stimuli-responsive PEG-based materials are prepared by living anionic ring-opening copolymerization of ethylene oxide and vinyl ferrocenyl glycidyl ether and subsequent thiol-ene postpolymerization modification with cysteamine. The hydrophilicity of these materials can be tuned by three stimuli: (i) temperature (depending on the comonomer ratio), (ii) oxidation state of iron centers in the ferrocene moieties, and (iii) pH-value (through amino groups), both in aqueous solution and at the interface after covalent attachment to a glass surface. In such materials, the cloud point temperatures are adjustable in solution by changing oxidation state and/or pH. On the surface, the contact angle increases with increasing pH and temperature and after oxidation, making these smart surfaces interesting for catalytic applications. Also, their redox response can be switched by temperature and pH, making this material useful for catalysis and electrochemistry applications. Exemplarily, the temperature-dependent catalysis of the chemiluminescence of luminol (a typical blood analysis tool in forensics) was investigated with these polymers.
Collapse
Affiliation(s)
- Arda Alkan
- Max Planck Institute for Polymer Research (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| | - Christian Steinmetz
- Max Planck Institute for Polymer Research (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research (MPIP) , Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
13
|
Bai Y, Fan XD, Yao H, Yang Z, Liu TT, Zhang HT, Zhang WB, Tian W. Probing into the Supramolecular Driving Force of an Amphiphilic β-Cyclodextrin Dimer in Various Solvents: Host–Guest Recognition or Hydrophilic–Hydrophobic Interaction? J Phys Chem B 2015; 119:11893-9. [DOI: 10.1021/acs.jpcb.5b05317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yang Bai
- Xi’an Mordern Chemistry Research Institute, Xi’an, 710065, P. R. China
| | - Xiao-dong Fan
- The
Key Laboratory of Space Applied Physics and Chemistry, Ministry of
Education and Shaanxi Key Laboratory of Macromolecular Science and
Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China
| | - Hao Yao
- The
Key Laboratory of Space Applied Physics and Chemistry, Ministry of
Education and Shaanxi Key Laboratory of Macromolecular Science and
Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China
| | - Zhen Yang
- The
Key Laboratory of Space Applied Physics and Chemistry, Ministry of
Education and Shaanxi Key Laboratory of Macromolecular Science and
Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China
| | - Ting-ting Liu
- The
Key Laboratory of Space Applied Physics and Chemistry, Ministry of
Education and Shaanxi Key Laboratory of Macromolecular Science and
Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China
| | - Hai-tao Zhang
- The
Key Laboratory of Space Applied Physics and Chemistry, Ministry of
Education and Shaanxi Key Laboratory of Macromolecular Science and
Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China
| | - Wan-bin Zhang
- The
Key Laboratory of Space Applied Physics and Chemistry, Ministry of
Education and Shaanxi Key Laboratory of Macromolecular Science and
Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China
| | - Wei Tian
- The
Key Laboratory of Space Applied Physics and Chemistry, Ministry of
Education and Shaanxi Key Laboratory of Macromolecular Science and
Technology, School of Science, Northwestern Polytechnical University, Xi’an, 710072, P. R. China
| |
Collapse
|
14
|
Yang X, Yu H, Wang L, Tong R, Akram M, Chen Y, Zhai X. Self-healing polymer materials constructed by macrocycle-based host-guest interactions. SOFT MATTER 2015; 11:1242-1252. [PMID: 25614350 DOI: 10.1039/c4sm02372b] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Self-healing polymers, which can spontaneously recover themselves after being ruptured, result in enhanced lifetimes for materials and open up a fascinating direction in material science. Macrocycle-based host-guest interactions, one of the most crucial non-covalent interactions, play a key role in self-healing material fabrication. This review aims to highlight the very recent and important progress made in the area of self-healing polymer materials by focusing on cyclodextrins (CDs), crown ethers, cucurbit[n]urils (CBs), calix[n]arenes and pillar[n]arenes with special guest groups and tailored structures. In addition, we also propose future research directions and hope that this review can in a way reflect the current situation and future trends in this developing area.
Collapse
Affiliation(s)
- Xianpeng Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhang HT, Fan XD, Tian W, Suo RT, Yang Z, Bai Y, Zhang WB. Ultrasound-Driven Secondary Self-Assembly of Amphiphilic β-Cyclodextrin Dimers. Chemistry 2015; 21:5000-8. [DOI: 10.1002/chem.201405707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 12/19/2022]
|
16
|
Zhang H, Tian W, Suo R, Yue Y, Fan X, Yang Z, Li H, Zhang W, Bai Y. Photo-controlled host–guest interaction as a new strategy to improve the preparation of “breathing” hollow polymer nanospheres for controlled drug delivery. J Mater Chem B 2015; 3:8528-8536. [DOI: 10.1039/c5tb01665g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photo-controlled host–guest interaction is used to improve the core removal method for preparing “breathing” hollow nanospheres as drug delivery.
Collapse
Affiliation(s)
- Haitao Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Rongtian Suo
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Yang Yue
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Xiaodong Fan
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Zhen Yang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Hui Li
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Wanbin Zhang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Yang Bai
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
17
|
Yao H, Tian W, Liu Y, Bai Y, Liu D, Liu T, Qi M, Wang M, Liu Y. Cyclodextrin-tunable reversible self-assembly of a thermoresponsive Y-shaped polymer. RSC Adv 2015. [DOI: 10.1039/c5ra03064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The reversible self-assembly behavior of thermoresponsive γ-shaped polymer can be effectively tuned based on the inclusion complexation, intermolecular hydrogen bonding and steric hindrance of β-CD.
Collapse
Affiliation(s)
- Hao Yao
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Wei Tian
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Yuezhou Liu
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Yang Bai
- Xi'an Mordern Chemistry Research Institute
- Xi'an
- P. R. China
| | - Dizheng Liu
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Tingting Liu
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Miao Qi
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Min Wang
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| | - Yuyang Liu
- The Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an
| |
Collapse
|
18
|
Li H, Fan X, Tian W, Zhang H, Zhang W, Yang Z. A supramolecular hyperbranched polymer based on molecular recognition between benzo-21-crown-7 and secondary ammonium salt. Chem Commun (Camb) 2014; 50:14666-9. [DOI: 10.1039/c4cc07171a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study provides an effective strategy for preparing a crown ether-based A2-B3-type supramolecular hyperbranched polymer with stimuli-responsive behavior.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072, P. R. China
| | - Xiaodong Fan
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072, P. R. China
| | - Wei Tian
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072, P. R. China
| | - Haitao Zhang
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072, P. R. China
| | - Wanbin Zhang
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072, P. R. China
| | - Zhen Yang
- Key Laboratory of Space Applied Physics and Chemistry
- Ministry of Education and Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science
- Northwestern Polytechnical University
- Xi'an 710072, P. R. China
| |
Collapse
|