1
|
Hayashi K, Ota H, Sugimura H, Shimanouchi T, Iwasaki T, Fujita S, Nakamura H, Umakoshi H. Cholesterol as a Subsidiary Component of Sorbitan Surfactant-Based Aggregates: A Study of Formation, Hydrophobicity, and Estimation of Localization of Embedded Molecules. J Phys Chem B 2023; 127:2214-2223. [PMID: 36881848 DOI: 10.1021/acs.jpcb.2c08153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Aggregates of amphiphilic molecules can be used as drug carriers, for which the properties can be modified by mixing with other molecules such as cholesterol. It is important to understand the effects of such additives on the properties because they directly define the material functions. In this work, we investigated the effect of cholesterol on the formation and hydrophobicity of aggregates of sorbitan surfactants. As cholesterol changed its formation from micelles to vesicles, an increase in hydrophobicity was seen, particularly in the middle regions compared with the shallow and deep regions. We show that this gradual hydrophobicity is related to the localization of the embedded molecules. 4-Hydroxy-TEMPO and 4-carboxy-TEMPO were preferentially localized in the shallow region of the aggregates, whereas 4-PhCO2-TEMPO was preferentially localized in the deep region of the vesicle. The localization of molecules depends on their chemical structure. However, the localization of 4-PhCO2-TEMPO in micelles was not observed, despite the similar hydrophobicity in the hydrophobic region within the aggregates. The localization of embedded molecules was related to other properties, such as molecular mobility.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Hikaru Ota
- Department of Materials Science and Chemical Engineering, Faculty of Advanced Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Haruna Sugimura
- Department of Materials Science and Chemical Engineering, Faculty of Advanced Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Toshinori Shimanouchi
- Division of Environmental Science, Graduate School of Environmental and Life Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Tomoyuki Iwasaki
- Division of Medical Research Support, Advanced Research Support Center, Ehime University, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Sakiko Fujita
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hidemi Nakamura
- Department of Chemical Engineering, National Institute of Technology, Nara College, 22 Yata-cho, Yamatokoriyama, Nara 639-1080, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
2
|
Lu S, Dong J, Li X. Gradual transformation of anionic/zwitterionic wormlike micelles from viscous to elastic domains: Unravelling the effect of anionic surfactant chain length. J Colloid Interface Sci 2023; 641:319-328. [PMID: 36934579 DOI: 10.1016/j.jcis.2023.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
HYPOTHESIS Ultra-long tailed zwitterionic surfactants often form aqueous wormlike elastic micelles, whereas the shorter ones mainly exhibit spherical viscous micelles. Anionic surfactants are widely used to tune the micellar morphology from spherical into wormlike. Systematic investigations in the molecular level are insightful to understand the viscoelasticity regulative mechanism. EXPERIMENTS Anionic/zwitterionic hybrid wormlike micelles are composed of sodium alkylsulfate (SAS) homologues and dodecyl dimethyl amidopropyl hydroxyl sulfobetaine (DHSB). The formation of wormlike micelles was studied by employing rheometer, cryogenic transmission electron microscopy (cryo-TEM) and small angle X-ray scattering (SAXS) techniques. The effects of surfactant concentration, molar ratio, anionic surfactant chain length and temperature were investigated systematically. FINDINGS SAS promoted the formation of SAS/DHSB hybrid wormlike micelles. The increase in both chain length and molar ratio (xSAS) of SAS are advantageous in the enhancement of viscosity. Interestingly, sodium hexadecylsulfate (SHS) endowed elastic wormlike micelles with thermally insensitive viscosity below its Krafft temperature (Tk), which was distinguished from the viscous ones formed by sodium octylsulfate (SOS). SAXS results showed that the size of SAS/DHSB wormlike micelles was primarily determinate by surfactants with longer hydrophobic tails.
Collapse
Affiliation(s)
- Shuo Lu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jinfeng Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| | - Xuefeng Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
3
|
Mitomo H, Ijiro K. Controlled Nanostructures Fabricated by the Self-Assembly of Gold Nanoparticles via Simple Surface Modifications. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideyuki Mitomo
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Kuniharu Ijiro
- Research Institute for Electronic Science (RIES), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita 21, Nishi 11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
4
|
Fan J, Kotov NA. Chiral Nanoceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906738. [PMID: 32500963 DOI: 10.1002/adma.201906738] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 05/27/2023]
Abstract
The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever-expanding toolbox of nanoscale engineering and self-organization provides a chirality-based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.
Collapse
Affiliation(s)
- Jinchen Fan
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nicholas A Kotov
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Lim CJ, Lim CK, Ee GCL. Concentration-dependent physicochemical behaviors and micellar interactions in polyalkoxylated fatty alcohol-based binary surfactant systems. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1777152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Chaw Jiang Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chan Kiang Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Gwendoline Cheng Lian Ee
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
He H, Zheng H, Ma M, Shi Y, Gao Z, Chen S, Wang X. Peripheral groups of polyhedral oligomeric silsesquioxane (POSS) core-based dendrimers: a crucial factor for higher-level supra-architecture building. NANOSCALE 2020; 12:12146-12153. [PMID: 32490499 DOI: 10.1039/d0nr03216f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role of peripheral groups (PGs) on dendrimers in the spontaneous higher-level organization of hierarchically assembled nanofibers was investigated in a series of POSS-based dendritic gelators (POSS-Lys-X, X: -Boc, -Cbz, -Fmoc, etc.). We demonstrate that the PGs not only affect the gelation ability in solutions, but also the construction of orderly entangled fibrous supramolecular networks, e.g., "loofah-like" networks. Attributed to the PGs (especially the -Boc group) causing a lower cooperative assembly, the steady state with the lowest potential energy of gelators can be easily achieved by the higher ordering of nanofiber entanglement into superstructures. The -Boc group-containing dendrimers show low molar enthalpy and molar entropy of gelation, which help the construction of unique three-dimensional (3D) "loofah-like" superstructures. In contrast, the high cooperative assembly of the dendrimer (-Cbz as the PG) promotes the gelator into a higher enthalpy gelation process, with a constructed normal fibrous network. Hence, the PGs of POSS-based dendrimers act as the crucial factor in controlling the hierarchical self-assembly via a thermodynamics approach. This research presents new perspectives to explicate the relationships between PGs of dendrimers, supra-architectures and gel performances, which further guide the design of functional supramolecular materials via controllable self-assembly.
Collapse
Affiliation(s)
- Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China. and College of mechanical Engineering, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310000, China
| | - Hao Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Yanqing Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Zengliang Gao
- College of mechanical Engineering, Zhejiang University of Technology, 288 Liuhe Road, Hangzhou 310000, China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, China.
| |
Collapse
|
7
|
Liu Y, Wang L, Feng H, Ren X, Ji J, Bai F, Fan H. Microemulsion-Assisted Self-Assembly and Synthesis of Size-Controlled Porphyrin Nanocrystals with Enhanced Photocatalytic Hydrogen Evolution. NANO LETTERS 2019; 19:2614-2619. [PMID: 30848602 DOI: 10.1021/acs.nanolett.9b00423] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Design and engineering of highly efficient light-harvesting nanomaterial systems to emulate natural photosynthesis for maximizing energy conversion have stimulated extensive efforts. Here we present a new class of photoactive semiconductor nanocrystals that exhibit high-efficiency energy transfer for enhanced photocatalytic hydrogen production under visible light. These nanocrystals are formed through noncovalent self-assembly of In(III) meso-tetraphenylporphine chloride (InTPP) during microemulsion assisted nucleation and growth process. Through kinetic control, a series of uniform nanorods with controlled aspect ratio and high crystallinity have been fabricated. Self-assembly of InTPP porphyrins results in extensive optical coupling and broader coverage of the visible spectrum for efficient light harvesting. As a result, these nanocrystals display excellent photocatalytic hydrogen production and photostability under the visible light in comparison with the commercial InTPP porphyrin powders.
Collapse
Affiliation(s)
- Yanqiu Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , China
| | - Liang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , China
| | - Hexiang Feng
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , China
| | - Xitong Ren
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , China
| | - Juanjuan Ji
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , China
| | - Feng Bai
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications , Henan University , Kaifeng 475004 , China
| | - Hongyou Fan
- Department of Chemical and Biological Engineering, Albuquerque , University of New Mexico , Albuquerque , New Mexico 87106 , United States
- Center for Integrated Nanotechnologies , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
- Advanced Materials Laboratory , Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| |
Collapse
|
8
|
Aggregate morphology transition of an adamantane-containing surfactant via the host-guest interaction with β-cyclodextrin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Tu Y, Ye Z, Lian C, Shang Y, Teng H, Liu H. UV-Responsive Behavior of Multistate and Multiscale Self-Assemblies Constructed by Gemini Surfactant 12-3-12·2Br - and trans- o-Methoxy-cinnamate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12990-12999. [PMID: 30289724 DOI: 10.1021/acs.langmuir.8b02914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Photoresponsive systems with adjustable self-assembly morphologies and tunable rheological properties have aroused widespread concern of researchers in recent years because of their prospect applications in controlled release, microfluidics, sensors, and so forth. In this paper, we combine a cationic Gemini surfactant 12-3-12·2Br- and trans-2-methoxy-cinnamate ( trans-OMCA) together to create a representative UV-responsive self-assembly system. The system displays abundant self-assembly behaviors, and the self-assemblies with different states and different scales including wormlike micelles, vesicles, and lyotropic liquid crystals (LCs) as well as an aqueous two-phase system (ATPS) are observed even at lower surfactant concentration. The UV-responsive behavior of the formed self-assemblies is investigated systematically. The results have shown that the photoisomerization of OMCA from trans form to cis form under UV light irradiation alters the hydrophobicity and steric hindrance effect of OMCA and thus affects the molecular packing at the micellar interface and further leads to the transformation of assembly morphologies. The long wormlike micelles can gradually transform into much shorter rodlike micelles under UV irradiation and companied by the decrease of solution viscosity by 2 orders of magnitude. In addition, the vesicles can evolve into multistate self-assembly structures including the ATPS, wormlike micelles, rod-like micelles, and small spherical micelles depending on the UV irradiation time. The ATPS and its adjacent anisotropic LC phase can respectively combine into a single phase and separate into ATPS under UV irradiation. The morphologies of assemblies in the 12-3-12·2Br-/ trans-OMCA mixed system can be tailored by adjusting the system composition and duration of UV light irradiation on purpose. The photoresponsive system with abundant self-assembly behaviors and tunable rheological properties has wide application prospect in numerous fields such as drug delivery, materials science, smart fluids, and so forth, and the macroscopic phase separation and combination provide novel strategies for effective separation and purification of certain substances.
Collapse
Affiliation(s)
- Yan Tu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Zhicheng Ye
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Cheng Lian
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Hongni Teng
- Department of Applied Chemistry, College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266510 , China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
10
|
Kundu N, Banik D, Sarkar N. Self-Assembly of Amphiphiles into Vesicles and Fibrils: Investigation of Structure and Dynamics Using Spectroscopy and Microscopy Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11637-11654. [PMID: 29544249 DOI: 10.1021/acs.langmuir.7b04355] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphiphiles are a class of molecules which are known to assemble into a variety of nanostructures. The understanding and applications of self-assembled systems are based on what has been learned from biology. Among the vast number of self-assemblies, in this article, we have described the formation, characterization, and dynamics of two important biologically inspired assemblies: vesicles and fibrils. Vesicles, which can be classified into several categories depending on the sizes and components, are of great interest due to their potential applications in drug delivery and as nanoscale reactors. The structure and dynamics of vesicles can also mimic the complex geometry of the cell membrane. On the other hand, the self-assembly of proteins, peptides, and even single amino acids leads to a number of degenerative disorders. Thus, a complete understanding of these self-assembled systems is necessary. In this article, we discuss recent work on vesicular aggregates composed of phospholipids, fatty acids, and ionic as well as nonionic surfactants and single amino acid-based fibrils such as phenylalanine and tyrosine. Beside the characterization, we also emphasize the excited-state dynamics inside the aggregates for a proper understanding of the organization, reactivity, and heterogeneity of the aggregates.
Collapse
Affiliation(s)
- Niloy Kundu
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Debasis Banik
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| | - Nilmoni Sarkar
- Department of Chemistry , Indian Institute of Technology , Kharagpur 721302 , WB India
| |
Collapse
|
11
|
Huang T, Wu T, Zhu Z, Zhao L, Ci H, Gao X, Liu K, Zhao J, Huang J, Yan Y. Self-assembly facilitated and visible light-driven generation of carbon dots. Chem Commun (Camb) 2018; 54:5960-5963. [DOI: 10.1039/c7cc08876k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular self-assembly may facilitate visible light generation of carbon dots.
Collapse
|
12
|
Buchanan C, Garvey CJ, Perlmutter P, Mechler A. Co-assembly of helical β3-peptides: a self-assembled analogue of a statistical copolymer. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AbstractUnnatural peptide self-assembly offers the means to design hierarchical nanostructures of controlled geometries, chemical function and physical properties. N-acyl β3 peptides, where all residues are unnatural amino acids, are able to form helical fibrous structures by a head-to-tail assembly of helical monomers, extending the helix via a three point supramolecular hydrogen bonding motif. These helical nanorods were shown to be stable under a wide range of physical conditions, offering a self-assembled analogue of polymeric fibres. Hitherto the self-assembly has only been demonstrated between identical monomers; however the self-assembly motif is sequence-independent, offering the possibility of hetero-assembly of different peptide monomers. Here we present a proof of principle study of head-to-tail co-assembly of two different helical unnatural peptides Ac-β3[WELWEL] and Ac-β3[LIA], where the letters denote the β3 analogues of natural amino acids. By atomic force microscopy imaging it was demonstrated that the homo-assembly and co-assembly of these peptides yield characteristically different structures. Synchrotron small angle X-ray scattering experiments have confirmed the presence of the fibres in the solution and the averaged diameters from modelled data correlate well to the results of AFM imaging. Hence, there is evidence of co-assembly of the fibrous superstructures; given that different monomers may be used to introduce variations into chemical and physical properties, the results demonstrate a self-assembled analogue of a statistical co-polymer that can be used in designing complex functional nanomaterials.
Collapse
Affiliation(s)
- Claire Buchanan
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | | | | | - Adam Mechler
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
13
|
Design of pH-responsive “on-off” emulsions using CTAB/PPA emulsifiers by simulations and experiments. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Markina AA, Ivanov VA, Komarov PV, Khokhlov AR, Tung SH. Self-Assembly of Lecithin and Bile Salt in the Presence of Inorganic Salt in Water: Mesoscale Computer Simulation. J Phys Chem B 2017; 121:7878-7888. [PMID: 28737387 DOI: 10.1021/acs.jpcb.7b04566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The influence of inorganic salt on the structure of lecithin/bile salt mixtures in aqueous solution is studied by means of dissipative particle dynamics simulations. We propose a coarse-grained model of phosphatidylcholine and two types of bile salts (sodium cholate and sodium deoxycholate) and also take into account the presence of low molecular weight salt. This model allows us to study the system on rather large time and length scales (up to about ∼20 μs and 50 nm) and to reveal mechanisms of experimentally observed increasing viscosity upon increasing the low molecular weight salt concentration in this system. We show that increasing the low molecular weight salt concentration induces the growth of cylinder-like micelles formed in lecithin/bile salt mixtures in water. These wormlike micelles can entangle into transient networks displaying perceptible viscoelastic properties. Computer simulation results are in good qualitative agreement with experimental observations.
Collapse
Affiliation(s)
| | | | - Pavel V Komarov
- Institute of Organoelement Compounds RAS , Moscow 119991, Russian Federation.,Tver State University , Tver 170100, Russian Federation
| | - Alexei R Khokhlov
- Moscow State University , Moscow 119991, Russian Federation.,Institute of Organoelement Compounds RAS , Moscow 119991, Russian Federation
| | | |
Collapse
|
15
|
Liu N, He Q, Wang Y, Bu W. Stepwise self-assembly of a block copolymer-platinum(ii) complex hybrid in solvents of variable quality: from worm-like micelles to free-standing sheets to vesicle-like nanostructures. SOFT MATTER 2017; 13:4791-4798. [PMID: 28676879 DOI: 10.1039/c7sm01055a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The self-assembly process of formation of worm-like micelles of a block copolymer-platinum(ii) complex hybrid is investigated with respect to the influence of solvent quality. When the solvent quality is moderately weakened, unilamellar free-standing sheets are achieved, in which the worm-like micelles snap off to form star micelles together with a few short worms. Extremely worsened solvent quality leads to unilamellar vesicle-like nanostructures, onto which only star micelles emerged. With the intermediate solvent quality, the sheets coexist with the vesicle-like nanostructures. This is well correlated with mechanistic insights regarding the morphological transition from sheet- to vesicle-like nanoassemblies. In these aggregates, short worms and star micelles still hold their core-shell structures. Furthermore, these unconventional superstructures are well interrelated with their luminescence properties. This result challenges the conventional paradigm of the amphiphilic self-assembly of surfactants and block copolymers in selective solvents, where they form bilayered nanostructures and are required universally to be rearranged during the morphological transition from micelles to vesicles.
Collapse
Affiliation(s)
- Nijuan Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| | - Yongyue Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
16
|
Rajkhowa S, Mahiuddin S, Dey J, Kumar S, Aswal VK, Biswas R, Kohlbrecher J, Ismail K. The effect of temperature, composition and alcohols on the microstructures of catanionic mixtures of sodium dodecylsulfate and cetyltrimethylammonium bromide in water. SOFT MATTER 2017; 13:3556-3567. [PMID: 28443931 DOI: 10.1039/c7sm00342k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The influence of mixing protocol, composition, temperature, ageing and added alcohols on the characteristics of the microstructures of sodium dodecylsulfate (SDS) + cetyltrimethylammonium bromide (CTAB) mixtures has been investigated in this paper. In this catanionic mixture (1 weight% total surfactant content) temperature induced microstructural transition occurs, which is (i) a micelle-to-vesicle transition (MVT) if αSDS (mole fraction of SDS) = 0.7, 0.8 or 0.9 and (ii) a vesicle-to-micelle transition (VMT) if αSDS = 0.1, 0.2 or 0.3. In the mixture of αSDS = 0.7, specific conductivity and dynamic light scattering measurements also support the occurrence of MVT. Transition electron microscopy and small angle neutron scattering measurements were also made to assess the characteristics of the microstructures. Alcohols added to the mixture of αSDS = 0.7 reduced the size of the vesicle, while only monohydric alcohols suppressed the temperature induced transition indicating that the number and location of -OH groups of the alcohols have a dramatic modulating influence on the structural transition occurring in catanionic mixtures. The influence of the alcohols is explained in terms of changes produced in the dielectric constant and hydrophobicity of the medium.
Collapse
Affiliation(s)
- S Rajkhowa
- Department of Chemistry, North-Eastern Hill University, NEHU Campus, Shillong - 793022, India.
| | - S Mahiuddin
- Materials Science Division, CSIR-North East Institute of Science and Technology, Jorhat - 785006, India
| | - J Dey
- Department of Chemistry, North-Eastern Hill University, NEHU Campus, Shillong - 793022, India.
| | - S Kumar
- Solid State Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai - 400085, India
| | - V K Aswal
- Solid State Physics Division, Bhabha Atomic Research Center, Trombay, Mumbai - 400085, India
| | - R Biswas
- Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata - 700098, India
| | - J Kohlbrecher
- Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen, Switzerland
| | - K Ismail
- Department of Chemistry, North-Eastern Hill University, NEHU Campus, Shillong - 793022, India.
| |
Collapse
|
17
|
Chen LC, Wang HP, Deng YH, Deng SP. Vesicle formation by proton transfer driven short-tailed fatty acids of C4-C8 chain length in water. SOFT MATTER 2017; 13:1291-1298. [PMID: 28106900 DOI: 10.1039/c6sm02307j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrashort single-chain fatty acids self-assemble to form vesicles under certain proton-driven conditions. The protonation provides a larger charge area around the hydrophilic carbonyl headgroups, and proton shift as the key driving parameter was studied. The ultrashort fatty acids (C4-C8) formed stable unilamellar vesicles predominantly through out the whole range of tested pH levels (6.5-9.5). A proton-driven self-assembly process and effects on the phase transition were characterized by dynamic light scattering, transmission electron microscopy and cryo-transmission electron microscopy. In particular, we studied in greater detail the molecular packing characteristics of FA vesicles for geometric reasons and the protonation effect changes the molecular surface charge and further carboxylic acid headgroup motion. This study enhances the understanding of the physicochemical specificity of these membrane vesicles, and may facilitate the alteration of membrane function caused by FAs.
Collapse
Affiliation(s)
- Li-Chun Chen
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China. and Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Agricultural Products, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Hong-Peng Wang
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Agricultural Products, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Yu-Hao Deng
- Zhejiang Provincial Key Lab for Chem & Bio Processing Technology of Agricultural Products, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Shao-Ping Deng
- College of Food & Biology Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
18
|
Wang J, Li B, Wang X, Yang F, Shen H, Wu D. Morphological Evolution of Self-Assembled Structures Induced by the Molecular Architecture of Supra-Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13706-13715. [PMID: 27966989 DOI: 10.1021/acs.langmuir.6b03550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of telechelic supramolecular amphiphiles [POSS-Azo8@(β-CD-PDMAEMA)1→8] was accomplished by orthogonally coupling the multiarm host polymer β-cyclodextrin-poly(dimethylaminoethyl methacrylate) (β-CD-PDMAEMA) with an octatelechelic guest molecule azobenzene modified-polyhedral oligomeric silsesquioxanes (POSS-Azo8) under different host-guest ratios. These telechelic supramolecular amphiphiles possess a rigid core and flexible corona. Increasing the multiarm host polymer coupled onto the rigid POSS core made the molecular architecture tend to be symmetrical and spherical. POSS-Azo8@[β-CD-PDMAEMA]1→8 could self-assemble into diverse morphologies evolving from spherical micelles, wormlike micelles, and branched aggregates to bowl-shaped vesicles. Distinct from the traditional linear amphiphilic polymers, we discovered that the self-assembly of POSS-Azo8@[β-CD-PDMAEMA]1→8 was dominantly regulated by their molecular architectures instead of hydrophilicity, which has also been verified using computer simulation results.
Collapse
Affiliation(s)
| | | | | | - Fei Yang
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | | | - Decheng Wu
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| |
Collapse
|
19
|
Lei H, Liu J, Yan J, Quan J, Fang Y. Luminescent Helical Nanofiber Self-Assembled from a Cholesterol-Based Metalloamphiphile and Its Application in DNA Conformation Recognition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10350-10357. [PMID: 27648676 DOI: 10.1021/acs.langmuir.6b03181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Compared to pure organic amphiphiles, metalloamphiphiles display distinctive features, including luminescence, magnetism and catalytic properties. However, the self-organization of metalloamphiphiles is commonly driven by solvophobic effects. Alkyl chains and oligomeric ethylene glycol moieties are thus the most frequently used aggregation units to drive the self-assembly of metalloamphiphiles. We expect novel metallo-supramolecular structures with exciting functions to be created if additional noncovalent interaction modes are incorporated. In this work, a new type of metalloamphiphile, consisting of a Tb(III) complex head and a cholesteryl unit (TbL3+(I)), was designed and synthesized. TbL3+(I) spontaneously self-assembles into helical nanofibers (d = 6 nm) in water. This synthetic multivalent nanoscale binding array displays powerful capability for the recognition of DNA conformations through a turn-on luminescence sensing mechanism. ssDNA-kit1 triggered a 26-fold increase in the luminescence intensity of TbL3+(I). Its corresponding G-quadruplex structure (G-quadruplex-kit1), however, induced a 6.6-fold enhancement under the same conditions. Consequently, TbL3+(I) nanofibers can monitor DNA folding. In contrast, neither ssDNA-kit1 nor G-quadruplex-kit1 markedly promoted the luminescence of molecularly dispersed TbL3+(II), illustrating that the multivalent electrostatic interactions between the phosphate groups on the backbone of DNA and TbL3+(I) self-assembled into nanofibers could greatly improve the efficiency of the energy transfer between the guanine units and the organized TbL3+(I). The TbL3+(I) nanofibers could bind and distinguish not only the kit1-ssDNA/G-quadruplex but also the conformations of other G-rich DNA, such as spb1, htelo, and intermolec-htelo. The self-assembly of luminescent metalloamphiphiles thus provides a general and convenient strategy for the efficient recognition and conversion of molecular information.
Collapse
Affiliation(s)
- Hairui Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Junlin Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Jingmiao Quan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University , Xi'an 710062, People's Republic of China
| |
Collapse
|
20
|
Liu Z, Wang P, Pei S, Liu B, Sun X, Zhang J. Molecular insights into the pH-induced self-assembly of CTAB/PPA system. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Huang H, Liao Y, Bu W, Wang W, Sun JZ. Going beyond the classical amphiphilicity paradigm: the self-assembly of completely hydrophobic polymers into free-standing sheets and hollow nanostructures in solvents of variable quality. SOFT MATTER 2016; 12:5011-5021. [PMID: 27157546 DOI: 10.1039/c6sm00259e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Self-assembly is well-known to occur in amphiphiles, and the totally hydrophobic ones are never reported to self-assemble. In this work we report for the first time that the latter can self-assemble into free-standing sheets and hollow spheres in toluene/methanol mixed solvents by modulating the solvent quality. The homopolymers studied in this work are polystyrene (PS), polyphenylacetylene (PPA), and poly(3-hexyl thiophene) (P3HT), representing polymers with different rigidity. All the three form a homogenous solution in toluene, but self-assembly occurs in the toluene/methanol mixed solvents. Micrometer sized free-standing sheets were formed for PS, PPA, and P3HT at methanol volume fractions being 43%, 50%, and 67%, respectively, and hollow spheres were observed for PPA at higher methanol fractions of 75 and 90%. Under the latter solvent conditions, PS forms solid spheres, yet ill-defined aggregates and free-standing sheets coexist in the case of P3HT. This non-solvent induced self-assembly was explained by a delicate balance of two "opposing forces": van der Waals attractive and entropic repulsive forces generated between the segments of these homopolymers within a single chain, between two chains, and among more chains in the solvents of worsened quality.
Collapse
Affiliation(s)
- Huanting Huang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| | | | | | | | | |
Collapse
|
22
|
Jia K, Hu J, Dong J, Li X. Light-responsive multillamellar vesicles in coumaric acid/alkyldimethylamine oxide binary systems: Effects of surfactant and hydrotrope structures. J Colloid Interface Sci 2016; 477:156-65. [PMID: 27262081 DOI: 10.1016/j.jcis.2016.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/22/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022]
Abstract
Herein, we report a series of novel light-responsive multilamellar vesicles based on the surfactant/hydrotrope binary systems. The phase behaviors of alkyldimethylamine oxide (CmDMAO, m=10, 12, 14) and trans-coumaric acid (trans-CA) isomerides, including trans-ortho-coumaric acid (trans-OCA), trans-meta-coumaric acid (trans-MCA) and trans-para-coumaric acid (trans-PCA), show that the multilamellar vesicle (MLV) formation region is commonly presented in the trans-CA/CmDMAO systems except trans-PCA/C12DMAO. Moreover, the molecular structures of CmDMAO and trans-CA affect the multilamellar vesicle formation region significantly. Generally speaking, the bigger the m, the larger the MLV region. Various techniques such as rheology, polarized optical microscopy (POM), (1)H NMR, (2)H NMR, cryogen transmission electron microscopy (cryo-TEM) and freeze-fracture transmission electron microscopy (FF-TEM) are used to characterize the aggregate structures. The multilamellar vesicles can transform into a homogeneous and transparent micelle phase or a two-phase system in the trans-OCA/CmDMAO binary systems under UV light irradiation, which depends on the chain length of CmDMAO and the molar ratio of [trans-OCA]/[CmDMAO]. Specifically, the light-stimuli response of multilamellar vesicles in the trans-OCA/C12DMAO system is representatively studied in detail. UV-vis spectra and (1)H NMR measurements illustrate that the light-induced trans-OCA to cis-OCA isomerization is essential during the transitions and the light-induced two-phase formation is attributed to the enrichment of surfactants, because the trans-cis isomerization can not only strengthen the hydrophilicity of cis-OCA but also increase the steric hindrance between cis-OCA and C12DMAO, and thereby altering the morphology of aggregate and the rheological response of bulk phase significantly.
Collapse
Affiliation(s)
- Kangle Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Junwen Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jinfeng Dong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xuefeng Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
23
|
Benedini LA, Sequeira MA, Fanani ML, Maggio B, Dodero VI. Development of a Nonionic Azobenzene Amphiphile for Remote Photocontrol of a Model Biomembrane. J Phys Chem B 2016; 120:4053-63. [DOI: 10.1021/acs.jpcb.6b00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Luciano A. Benedini
- Instituto
de Química del Sur (INQUISUR−CONICET), Departamento
de Química, Universidad Nacional del Sur, 8000FTN Bahía Blanca, Argentina
| | - M. Alejandra Sequeira
- Instituto
de Química del Sur (INQUISUR−CONICET), Departamento
de Química, Universidad Nacional del Sur, 8000FTN Bahía Blanca, Argentina
| | - Maria Laura Fanani
- Centro
de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC−CONICET), Departamento de Química Biológica,
Facultad de Ciencias Químicas, Universidad Nacional del Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Bruno Maggio
- Centro
de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC−CONICET), Departamento de Química Biológica,
Facultad de Ciencias Químicas, Universidad Nacional del Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Verónica I. Dodero
- Instituto
de Química del Sur (INQUISUR−CONICET), Departamento
de Química, Universidad Nacional del Sur, 8000FTN Bahía Blanca, Argentina
| |
Collapse
|
24
|
Bastakoti BP, Li Y, Guragain S, Pramanik M, Alshehri SM, Ahamad T, Liu Z, Yamauchi Y. Synthesis of Mesoporous Transition‐Metal Phosphates by Polymeric Micelle Assembly. Chemistry 2016; 22:7463-7. [DOI: 10.1002/chem.201600435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Bishnu Prasad Bastakoti
- World Premier International (WPI), Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yunqi Li
- World Premier International (WPI), Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering Waseda University 3–4-1 Okubo, Shinjuku Tokyo 169–8555 Japan
| | - Sudhina Guragain
- World Premier International (WPI), Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Malay Pramanik
- World Premier International (WPI), Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Saad M. Alshehri
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Tansir Ahamad
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering The University of Sydney Sydney NSW 2006 Australia
| | - Yusuke Yamauchi
- World Premier International (WPI), Research Center for Materials Nanoarchitectonics (MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Faculty of Science and Engineering Waseda University 3–4-1 Okubo, Shinjuku Tokyo 169–8555 Japan
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
25
|
Shen J, Xin X, Liu T, Tong L, Xu G, Yuan S. Manipulation the properties of supramolecular hydrogels of α-cyclodextrin/Tyloxapol/carbon-based nanomaterials. J Colloid Interface Sci 2016; 468:78-85. [DOI: 10.1016/j.jcis.2016.01.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
|
26
|
Li JJ, Peng HD, Lu Y, Wu HD, Pan GB. Shape-controlled synthesis of platinum octaethylporphyrin crystalline aggregates modulated by versatile ionic liquids. RSC Adv 2016. [DOI: 10.1039/c6ra04452b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ILs-mediated solution self-assembly was exploited to produce the well-defined single-crystalline PtOEP microwires, which had highly sensitive photo-response and active optical waveguide characteristics.
Collapse
Affiliation(s)
- Jia-Jia Li
- Department of Chemistry
- College of Sciences
- Shanghai University
- 200444 Shanghai
- P. R. China
| | - Hong-Dan Peng
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- 215123 Suzhou
- P. R. China
| | - Ying Lu
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- 215123 Suzhou
- P. R. China
| | - Hao-Di Wu
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- 215123 Suzhou
- P. R. China
| | - Ge-Bo Pan
- Suzhou Institute of Nano-tech and Nano-bionics
- Chinese Academy of Sciences
- 215123 Suzhou
- P. R. China
| |
Collapse
|
27
|
Liu S, Zhao L, Xiao Y, Huang T, Li J, Huang J, Yan Y. Allostery in molecular self-assemblies: metal ions triggered self-assembly and emissions of terthiophene. Chem Commun (Camb) 2016; 52:4876-9. [DOI: 10.1039/c6cc00492j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Allostery in molecular self-assembly: binding of Ag+ to the head of a coordinating amphiphile TTC4L changes the emission color of the terthiophene group attached to the chain end via a conformation triggered self-assembly.
Collapse
Affiliation(s)
- Shuai Liu
- Beijing National Laboratory for Molecular Sciences
- Institution College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Li Zhao
- School of Food and Chemical Engineering
- Beijing Technology and Business University
- Beijing
- China
| | - Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences
- Institution College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Tian Huang
- Beijing National Laboratory for Molecular Sciences
- Institution College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences
- Institution College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences
- Institution College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences
- Institution College of Chemistry and Molecular Engineering
- Peking University
- Beijing
- China
| |
Collapse
|
28
|
Li Q, Yue X, Shang P, Quan Y, Ren M, Ma Y, Chen X. Environmental stimuli induced phase transition in the aqueous mixture solution of Gemini surfactants and sodium deoxycholate. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.10.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Ji X, Shi C, Li N, Wang K, Li Z, Luan Y. Catanionic drug-derivative nano-objects constructed by chlorambucil and its derivative for efficient leukaemia therapy. Colloids Surf B Biointerfaces 2015; 136:1081-8. [PMID: 26595388 DOI: 10.1016/j.colsurfb.2015.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/30/2015] [Accepted: 11/08/2015] [Indexed: 02/06/2023]
Abstract
A new carrier-free catanionic drug-derivative nano-object strategy is developed for leukaemia therapy. The as-prepared drug-derivative nano-objects are formed by ionic pairs of hydrophobic anticancer drug chlorambucil (CLB) and its derivative N-(2-Amino-ethyl)-4-{4-[bis-(2-chloro-ethyl)-amino]-phenyl}-butyramide (CLBM). The designed drug delivery system has the advantage of 100% drug content without additional carrier materials. The ionic pairs are formed by proton exchange between CLB and CLBM. Due to the amphiphilicity of the ionic pairs, they can assemble into well-defined drug-derivative (CLB-CLBM) nano-objects. Series of techniques such as transmission electron microscopy (TEM), dynamic light scattering (DLS) and electrical conductivity are used to investigate the property of the solution and aggregation behaviour of as-prepared drug-derivative ionic pairs. In vitro drug release study of the as-prepared nano-objects shows their prolonged drug release behavior. Specifically, in vitro cytotoxicity results of these nano-objects show obviously higher cytotoxicity, which is promising for clinical efficacy. This study may pave the way for the fabrication of carrier-free drug delivery system with efficient cancer therapy.
Collapse
Affiliation(s)
- Xiaoqing Ji
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Chunhuan Shi
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Nuannuan Li
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Kaiming Wang
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China
| | - Zhonghao Li
- Key Lab of Colloid & Interface Chemistry, Shandong University, Ministry of Education, 250100, PR China
| | - Yuxia Luan
- School of Pharmaceutical Science, Shandong University, 44 West Wenhua Road, Jinan, Shandong Province, 250012, PR China.
| |
Collapse
|
30
|
Gallego-Yerga L, Blanco-Fernández L, Urbiola K, Carmona T, Marcelo G, Benito JM, Mendicuti F, Tros de Ilarduya C, Ortiz Mellet C, García Fernández JM. Host-Guest-Mediated DNA Templation of Polycationic Supramolecules for Hierarchical Nanocondensation and the Delivery of Gene Material. Chemistry 2015; 21:12093-104. [PMID: 26184887 DOI: 10.1002/chem.201501678] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 12/14/2022]
Abstract
Only a few examples of monodisperse molecular entities that can compact exogenous nucleic acids into nanocomplexes, protect the cargo from the biological environment, facilitate cell internalization, and promote safe transfection have been reported up to date. Although these species open new venues for fundamental studies on the structural requirements that govern the intervening processes and their application in nonviral gene-vector design, the synthesis of these moieties generally requires a relatively sophisticated chemistry, which hampers further development in gene therapy. Herein, we report an original strategy for the reversible complexation and delivery of DNA based on the supramolecular preorganization of a β-cyclodextrin-scaffolded polycationic cluster facilitated by bisadamantane guests. The resulting gemini-type, dual-cluster supramolecules can then undergo DNA-templated self-assembly at neutral pH value by bridging parallel DNA oligonucleotide fragments. This hierarchical DNA condensation mechanism affords transfectious nanoparticles with buffering capabilities, thus facilitating endosomal escape following cell internalization. Protonation also destabilizes the supramolecular dimers and consequently the whole supramolecular edifice, thus assisting DNA release. Our advanced hypotheses are supported by isothermal titration calorimetry, NMR and circular dichroism spectroscopic analysis, gel electrophoresis, dynamic light scattering, TEM, molecular mechanics, molecular dynamics, and transfection studies conducted in vitro and in vivo.
Collapse
Affiliation(s)
- Laura Gallego-Yerga
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain)
| | - Laura Blanco-Fernández
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Koldo Urbiola
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain)
| | - Thais Carmona
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Gema Marcelo
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain)
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain)
| | - Francisco Mendicuti
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Universidad de Alcalá, Edificio de Farmacia, Campus Universitario, Ctra, Madrid-Barcelona Km 33.600, 28871 Alcalá de Henares, Madrid (Spain).
| | - Conchita Tros de Ilarduya
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Navarra, 31080, Pamplona (Spain).
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Sevilla, c/Prof. García González 1, 41012 Sevilla (Spain).
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - University of Sevilla, Avda. Americo Vespucio 49, 41092 Sevilla (Spain).
| |
Collapse
|
31
|
Zhou J, Yin P, Gao Y, Hu L, Liu T. Spontaneous Self-Assembly of γ-Cyclodextrins in Dilute Solutions with Tunable Sizes and Thermodynamic Stability. Chemistry 2015; 21:9563-8. [DOI: 10.1002/chem.201501115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Indexed: 11/09/2022]
|
32
|
Ghosh S, Roy A, Banik D, Kundu N, Kuchlyan J, Dhir A, Sarkar N. How does the surface charge of ionic surfactant and cholesterol forming vesicles control rotational and translational motion of rhodamine 6G perchlorate (R6G ClO₄)? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2310-2320. [PMID: 25643899 DOI: 10.1021/la504819v] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The rotational dynamics and translational diffusion of a hydrophilic organic molecule, rhodamine 6G perchlorate (R6G ClO4) in small unilamellar vesicles formed by two different ionic surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), with cholesterol have been investigated using fluorescence spectroscopic methods. Moreover, in this article the formation of vesicle using anionic surfactant, SDS at different cholesterol-to-surfactant molar ratio (expressed by Q value (Q = [cholesterol]/[surfactant])) has also been reported. Visual observation, dynamic light scattering (DLS) study, turbidity measurement, steady state fluorescence anisotropy (r0) measurement, and eventually microscopic images reveal the formation of small unilamellar vesicles in aqueous solution. Also, in this study, an attempt has been made to observe whether the cationic probe molecule, rhodamine 6G (R6G) experiences similar or different microenvironment in cholesterol-SDS and cholesterol-CTAB assemblies with increase in cholesterol concentration. The influence of cholesterol on rotational and translational diffusion of R6G molecules has been investigated by monitoring UV-vis absorption, fluorescence, time-resolved fluorescence anisotropy, and finally fluorescence correlation spectroscopy (FCS) measurements. In cholesterol-SDS assemblies, due to the strong electrostatic attractive interaction between the negatively charged surface of vesicle and cationic R6G molecules, the rotational and diffusion motion of R6G becomes slower. However, in cholesterol-CTAB aggregates, the enhanced hydrophobicity and electrostatic repulsion induces the migration of R6G from vesicle bilayer to aqueous phase. The experimental observations suggest that the surface charge of vesicles has a stronger influence than the hydrophobicity of the vesicle bilayer on the rotational and diffusion motion of R6G molecules.
Collapse
Affiliation(s)
- Surajit Ghosh
- Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, West Bengal, India
| | | | | | | | | | | | | |
Collapse
|
33
|
Jin Y, Xia Y, Wang S, Yan L, Zhou Y, Fan J, Song B. Concentration-dependent and light-responsive self-assembly of bolaamphiphiles bearing α-cyanostilbene based photochromophore. SOFT MATTER 2015; 11:798-805. [PMID: 25503396 DOI: 10.1039/c4sm02392g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper, a new bolaamphiphile bearing 1-cyano-1,2-bis(phenyl)ethene (CNBE) has been synthesized. The self-assembly of this molecule in aqueous solution is concentration-dependent. Two distinct morphologies, monomolecular layered lamellas and helical nanofibres have been obtained with the as-prepared molecular configuration. Note worthily, the helical nanofibres provide an experimental evidence for the pure twisted structure in the liquid crystals, which is theoretically proposed by De Gennes. Due to the photoisomerization of CNBE, the self-assembled nanostructures undergo morphological changes upon irradiation. Although various nanostructures were observed in the solution-state, only nanofibres were obtained after the solution was cast on a substrate, which was attributed to a strong dewetting effect. This work illustrates concentration-dependent and light-responsive self-assembly and provides a novel avenue for fabricating smart soft materials.
Collapse
Affiliation(s)
- Yingzhi Jin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Xia Y, Dong L, Jin Y, Wang S, Yan L, Yin S, Zhou S, Song B. Water-soluble nano-fluorogens fabricated by self-assembly of bolaamphiphiles bearing AIE moieties: towards application in cell imaging. J Mater Chem B 2015; 3:491-497. [DOI: 10.1039/c4tb01546k] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-soluble nano-fluorogens with AIE properties are fabricated by self-assembly of a bolaamphiphile, and successfully applied in cell imaging.
Collapse
Affiliation(s)
- Yijun Xia
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Lin Dong
- College of Material Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Yingzhi Jin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Shuai Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Li Yan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Shouchun Yin
- College of Material Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Shixin Zhou
- Department of Cell Biology
- School of Basic Medicine
- Peking University Health Science Center
- Beijing 100191
- China
| | - Bo Song
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
35
|
Ma M, Gu J, Yang M, Li Z, Lu Z, Zhang Y, Xing P, Li S, Chu X, Wang Y, Li Q, Lin M, Hao A. Controllable self-assemblies of sodium benzoate in different solvent environments. RSC Adv 2015. [DOI: 10.1039/c5ra13026c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sodium benzoate is an important and widely used food additive, however, it's self-assembly properties in diverse solvents have been rarely studied. Here, we systematically report its various self-assemblies in different solvents environments.
Collapse
|