1
|
Polo G, Lionetto F, Giordano ME, Lionetto MG. Interaction of Micro- and Nanoplastics with Enzymes: The Case of Carbonic Anhydrase. Int J Mol Sci 2024; 25:9716. [PMID: 39273668 PMCID: PMC11396312 DOI: 10.3390/ijms25179716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have emerged as significant environmental pollutants with potential detrimental effects on ecosystems and human health. Several studies indicate their interaction with enzymes; this topic represents a multifaceted research field encompassing several areas of interest from the toxicological and ecotoxicological impact of MPs and NPs on humans and wildlife to the biodegradation of plastics by microbial enzymes. This review aims to provide a critical analysis of the state-of-the-art knowledge of the interaction of MPs and NPs on the enzyme carbonic anhydrase (CA), providing recent insights, analyzing the knowledge gaps in the field, and drawing future perspectives of the research and its application. CA is a widespread and crucial enzyme in various organisms; it is critical for various physiological processes in animals, plants, and bacteria. It catalyzes the reversible hydration of CO2, which is essential for respiration, acid-base balance, pH homeostasis, ion transport, calcification, and photosynthesis. Studies demonstrate that MPs and NPs can inhibit CA activity with mechanisms including adsorption to the enzyme surface and subsequent conformational changes. In vitro and in silico studies highlight the role of electrostatic and hydrophobic interactions in these processes. In vivo studies present mixed results, which are influenced by factors like particle type, size, concentration, and organism type. Moreover, the potentiality of the esterase activity of CA for plastic degradation is discussed. The complexity of the interaction between CA and MPs/NPs underscores the need for further research to fully understand the ecological and health impacts of MPs and NPs on CA activity and expression and glimpses of the potentiality and perspectives in this field.
Collapse
Affiliation(s)
- Gregorio Polo
- Department of Mathematics and Physics, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Francesca Lionetto
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Maria Giulia Lionetto
- Department of Environmental and Biological Sciences and Technologies (DiSTeBA), University of Salento, Via per Monteroni, 73100 Lecce, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
2
|
Chen WQ, Wu WJ, Yu YQ, Liu Y, Jiang FL. New Insights on the Size-Dependent Inhibition of Enzymes by Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37366026 DOI: 10.1021/acs.langmuir.3c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Particle size might affect the inhibition behaviors of gold nanoparticles (AuNPs) on enzyme activity by influencing the density of binding sites (ρ), the association constant (Ka), the steric hindrance of enzymes by AuNPs, the binding orientations of the enzyme on AuNPs, as well as the structural changes of enzymes. In previous studies, the effects of the above-mentioned factors, which could not be ignored in the applications of enzymatic electrochemistry, were often overshadowed by the effects of surface area. In order to study the size effect on the inhibition types and inhibitory ability of enzymes by AuNPs, we investigated the inhibition behaviors of chymotrypsin (ChT) by AuNPs with three different sizes (D1-AuNCs, D3-AuNPs, and D6-AuNPs) under the same surface area concentration. The results showed that both of the inhibition types and the inhibition ability varied with the particle size of AuNPs. D1-AuNCs inhibited ChT noncompetitively, while D3/D6-AuNPs inhibited ChT competitively. Contrary to the common sense, D6-AuNPs showed a weaker inhibitory ability than D3-AuNPs. By means of zeta potential, agarose gel electrophoresis, isothermal titration calorimetry, synchronous fluorescence spectroscopy, and circular dichroism, the mechanism of the weak inhibitory ability of D6-AuNPs was found to be the standing binding orientation caused by the small curvature. This work had certain guiding significance for the biosafety of AuNPs, the development of nanoinhibitors, as well as the applications of AuNPs in enzymatic electrochemistry.
Collapse
Affiliation(s)
- Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Wen-Jing Wu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ying-Qi Yu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
3
|
Su DD, Aissou K, Zhang Y, Gervais V, Ulrich S, Barboiu M. Squalene–polyethyleneimine–dynamic constitutional frameworks enhancing the enzymatic activity of carbonic anhydrase. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02290c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carbonic anhydrase is an essential enzyme that catalyzes the hydration/dehydration of carbon dioxide, which is highly relevant to carbon capture processes. It's encapsulation in dynameric capsules enhance its activity, durability and stability.
Collapse
Affiliation(s)
- Dan-Dan Su
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, F-34095, France
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Karim Aissou
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, F-34095, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, P.R. China
| | - Virginie Gervais
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sebastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Mihail Barboiu
- Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM-CNRS, Place E. Bataillon CC047, Montpellier, F-34095, France
| |
Collapse
|
4
|
Interaction of silver nanoparticles with plasma transport proteins: A systematic study on impacts of particle size, shape and surface functionalization. Chem Biol Interact 2020; 335:109364. [PMID: 33359597 DOI: 10.1016/j.cbi.2020.109364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/26/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Metallic nanoparticles are an important and widely used materials in development of nano-enabled medicine. For that reason, their interaction with biological molecules has to be systematically examined, as use of nanoparticles can lead to altered biological functions. In this study, we evaluated the interaction between silver nanoparticles (AgNPs) and two important plasma transport proteins - albumin and α-1-acid glycoprotein. To investigate comprehensively how different physico-chemical properties impact interaction of proteins with nanosurface, AgNPs of different size, shape and surface coating was prepared. The study was conducted using UV-Vis absorption, fluorescence, inductively coupled plasma mass spectrometry, circular dichroism spectroscopy, transmission electron microscopy, dynamic and electrophoretic light scattering techniques. The results showed significant complexities of the nano-bio interface and binding affinities of proteins onto surface of different AgNPs, which were affected by both AgNPs and protein properties. The most significant role on AgNPs-protein interaction had the coating agents used for AgNPs surface stabilization. Our findings should improve safe-by-design approach to development of the metallic nanomaterials for medical use.
Collapse
|
5
|
Lundqvist M, Cedervall T. Three Decades of Research about the Corona Around Nanoparticles: Lessons Learned and Where to Go Now. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000892. [PMID: 33107223 DOI: 10.1002/smll.202000892] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/02/2020] [Indexed: 06/11/2023]
Abstract
The research about how a nanoparticle (NP) interacts with a complex biological solution has been conducted, according to the literature, for almost three decades. A significant amount of data has been generated, especially in the last one and a half decade. First, it became its own research field which was later divided into many subresearch fields. This outlook does not aim to be a comprehensive review of the field or any of its subresearch fields. There is too much data published to attempt that. Instead, here it has been tried to highlight what, in the opinion, is the main step taken during these three decades. Thereafter, the weaknesses and end are pointed out with what needs to be the main focus for the future to understand the protein corona formation in the bloodstream, which is a prerequisite for the developing of true target specific drug-delivering nanoparticles.
Collapse
|
6
|
Cabaleiro-Lago C, Lundqvist M. The Effect of Nanoparticles on the Structure and Enzymatic Activity of Human Carbonic Anhydrase I and II. Molecules 2020; 25:E4405. [PMID: 32992797 PMCID: PMC7582742 DOI: 10.3390/molecules25194405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022] Open
Abstract
Human carbonic anhydrases (hCAs) belong to a well characterized group of metalloenzymes that catalyze the conversion of carbonic dioxide into bicarbonate. There are currently 15 known human isoforms of carbonic anhydrase with different functions and distribution in the body. This links to the relevance of hCA variants to several diseases such as glaucoma, epilepsy, mountain sickness, ulcers, osteoporosis, obesity and cancer. This review will focus on two of the human isoforms, hCA I and hCA II. Both are cytosolic enzymes with similar topology and 60% sequence homology but different catalytic efficiency and stability. Proteins in general adsorb on surfaces and this is also the case for hCA I and hCA II. The adsorption process can lead to alteration of the original function of the protein. However, if the function is preserved interesting biotechnological applications can be developed. This review will cover the knowledge about the interaction between hCAs and nanomaterials. We will highlight how the interaction may lead to conformational changes that render the enzyme inactive. Moreover, the importance of different factors on the final effect on hCAs, such as protein stability, protein hydrophobic or charged patches and chemistry of the nanoparticle surface will be discussed.
Collapse
Affiliation(s)
- Celia Cabaleiro-Lago
- Department of Environmental Science and Bioscience, Kristianstad University, 29188 Kristianstad, Sweden;
| | - Martin Lundqvist
- Department of Biochemistry and Structural Biology, Lund University, 22100 Lund, Sweden
| |
Collapse
|
7
|
Bijari N, Falsafi M, Pouraghajan K, Khodarahmi R. Synthesis and spectroscopic characterization of new sulfanilamide-functionalized magnetic nanoparticles, and the usability for carbonic anhydrase purification: is there perspective for ‘cancer treatment’ application? J Biomol Struct Dyn 2020; 39:7093-7106. [DOI: 10.1080/07391102.2020.1805360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nooshin Bijari
- Medical Biology Research Center (MBRC), Health Technology Institute, Kermanshah University of Medical Science, Kermanshah, Iran
- Department of Biology, Faculty of Basic Sciences, Semnan University, Semnan, Iran
| | - Monireh Falsafi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | | | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Health Technology Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
8
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
9
|
Zhou A, Du J, Jiao M, Xie D, Wang Q, Xue L, Ju C, Hua Z, Zhang C. Co-delivery of TRAIL and siHSP70 using hierarchically modular assembly formulations achieves enhanced TRAIL-resistant cancer therapy. J Control Release 2019; 304:111-124. [DOI: 10.1016/j.jconrel.2019.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023]
|
10
|
Varsou DD, Afantitis A, Tsoumanis A, Melagraki G, Sarimveis H, Valsami-Jones E, Lynch I. A safe-by-design tool for functionalised nanomaterials through the Enalos Nanoinformatics Cloud platform. NANOSCALE ADVANCES 2019; 1:706-718. [PMID: 36132268 PMCID: PMC9473200 DOI: 10.1039/c8na00142a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 05/16/2023]
Abstract
Multi-walled carbon nanotubes are currently used in numerous industrial applications and products, therefore fast and accurate evaluation of their biological and toxicological effects is of utmost importance. Computational methods and techniques, previously applied in the area of cheminformatics for the prediction of adverse effects of chemicals, can also be applied in the case of nanomaterials (NMs), in an effort to reduce expensive and time consuming experimental procedures. In this context, a validated and predictive nanoinformatics model has been developed for the accurate prediction of the biological and toxicological profile of decorated multi-walled carbon nanotubes. The nanoinformatics workflow was fully validated according to the OECD principles before it was released online via the Enalos Cloud platform. The web-service is a ready-to-use, user-friendly application whose purpose is to facilitate decision making, as part of a safe-by-design framework for novel carbon nanotubes.
Collapse
Affiliation(s)
- Dimitra-Danai Varsou
- Nanoinformatics Department, Novamechanics Ltd Nicosia 1065 Cyprus
- School of Chemical Engineering, National Technical University of Athens 157 80 Athens Greece
| | | | | | | | - Haralambos Sarimveis
- School of Chemical Engineering, National Technical University of Athens 157 80 Athens Greece
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham B15 2TT Birmingham UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham B15 2TT Birmingham UK
| |
Collapse
|
11
|
Lira AL, Ferreira RS, Torquato RJS, Oliva MLV, Schuck P, Sousa AA. Allosteric inhibition of α-thrombin enzymatic activity with ultrasmall gold nanoparticles. NANOSCALE ADVANCES 2019; 1:378-388. [PMID: 30931428 PMCID: PMC6394888 DOI: 10.1039/c8na00081f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/21/2018] [Indexed: 05/20/2023]
Abstract
The catalytic activity of enzymes can be regulated by interactions with synthetic nanoparticles (NPs) in a number of ways. To date, however, the potential use of NPs as allosteric effectors has not been investigated in detail. Importantly, targeting allosteric (distal) sites on the enzyme surface could afford unique ways to modulate the activity, allowing for either enzyme activation, partial or full inhibition. Using p-mercaptobenzoic acid-coated ultrasmall gold NPs (AuMBA) and human α-thrombin as a model system, here we experimentally tested the hypothesis that enzyme activity could be regulated through ultrasmall NP interactions at allosteric sites. We show that AuMBA interacted selectively and reversibly around two positively charged regions of the thrombin surface (exosites 1 and 2) and away from the active site. NP complexation at the exosites transmitted long-range structural changes over to the active site, altering both substrate binding affinity and catalysis. Significantly, thrombin activity was partially reduced - but not completely inhibited - by interactions with AuMBA. These findings indicate that interactions of proteins with ultrasmall NPs may mimic a typical biomolecular complexation event, and suggest the prospect of using ultrasmall particles as synthetic receptors to allosterically regulate protein function.
Collapse
Affiliation(s)
- André L Lira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Rodrigo S Ferreira
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Ricardo J S Torquato
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Maria Luiza V Oliva
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering , National Institutes of Health , Bethesda , MD , USA
| | - Alioscka A Sousa
- Department of Biochemistry , Federal University of São Paulo , São Paulo , SP , Brazil .
| |
Collapse
|
12
|
Yoshimoto M, Walde P. Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 2018; 34:151. [PMID: 30259182 DOI: 10.1007/s11274-018-2536-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrase (CA) is an essential metalloenzyme in living systems for accelerating the hydration and dehydration of carbon dioxide. CA-catalyzed reactions can be applied in vitro for capturing industrially emitted gaseous carbon dioxide in aqueous solutions. To facilitate this type of practical application, the immobilization of CA on or inside solid or soft support materials is of great importance because the immobilization of enzymes in general offers the opportunity for enzyme recycling or long-term use in bioreactors. Moreover, the thermal/storage stability and reactivity of immobilized CA can be modulated through the physicochemical nature and structural characteristics of the support material used. This review focuses on (i) immobilization methods which have been applied so far, (ii) some of the characteristic features of immobilized forms of CA, and (iii) biotechnological applications of immobilized CA. The applications described not only include the CA-assisted capturing and sequestration of carbon dioxide, but also the CA-supported bioelectrochemical conversion of CO2 into organic molecules, and the detection of clinically important CA inhibitors. Furthermore, immobilized CA can be used in biomimetic materials synthesis involving cascade reactions, e.g. for bone regeneration based on calcium carbonate formation from urea with two consecutive reactions catalyzed by urease and CA.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube, 755-8611, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| |
Collapse
|
13
|
Maeshima K, Yoshimoto M. Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles. Enzyme Microb Technol 2017; 105:9-17. [PMID: 28756864 DOI: 10.1016/j.enzmictec.2017.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/15/2017] [Accepted: 06/03/2017] [Indexed: 11/27/2022]
Abstract
The biomimetic approach using immobilized enzymes is useful for the synthesis of structurally defined inorganic materials. In this work, carbonic anhydrase (CA) from bovine erythrocytes was covalently conjugated at 25°C to the liposomes composed of 15mol% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (NG-POPE), and the zwitterionic and anionic phospholipids with the same acyl chains as NG-POPE. For the conjugation, the carboxyl groups of liposomal NG-POPE were activated with 11mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 4.6mM N-hydroxysulfosuccinimide (sulfo-NHS). The carbonic anhydrase-conjugated liposomes (CALs) with the mean hydrodynamic diameter of 149nm showed the esterase activity corresponding to on average 5.5×102 free CA molecules per liposome. On the other hand, the intrinsic fluorescence and absorbance measurements consistently revealed that on average 1.4×103 CA molecules were conjugated to a liposome, suggesting that the molecular orientation of enzyme affected its activity. The formation of calcium carbonate particles was significantly accelerated by the CALs ([lipid]=50μ M) in the 0.3M Tris solution at 10-40°C with dissolved CO2 (≈17mM) and CaCl2 (46mM). The anionic CALs were adsorbed with calcium as revealed with the ζ-potential measurements. The CAL system offered the calcium-rich colloidal interface where the bicarbonate ions were catalytically produced by the liposome-conjugated CA molecules. The CALs also functioned in the external loop airlift bubble column operated with a model flue gas (10vol/vo% CO2), yielding partly agglomerated calcium carbonate particles as observed with the scanning electron microscopy (SEM).
Collapse
Affiliation(s)
- Keisuke Maeshima
- Department of Applied Molecular Bioscience, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan.
| |
Collapse
|
14
|
Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Sci Rep 2016; 6:26508. [PMID: 27216374 PMCID: PMC4877924 DOI: 10.1038/srep26508] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/04/2016] [Indexed: 11/08/2022] Open
Abstract
Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes.
Collapse
|
15
|
Assarsson A, Nasir I, Lundqvist M, Cabaleiro-Lago C. Kinetic and thermodynamic study of the interactions between human carbonic anhydrase variants and polystyrene nanoparticles of different size. RSC Adv 2016. [DOI: 10.1039/c6ra06175c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The protein packing at the surface may increase as the size of particles decreases given the right particle–protein characteristics.
Collapse
Affiliation(s)
- A. Assarsson
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| | - I. Nasir
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| | - M. Lundqvist
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| | - C. Cabaleiro-Lago
- Lund University
- Division of Biochemistry and Structural Biology
- Lund
- Sweden
| |
Collapse
|
16
|
Nasir I, Lundqvist M, Cabaleiro-Lago C. Size and surface chemistry of nanoparticles lead to a variant behavior in the unfolding dynamics of human carbonic anhydrase. NANOSCALE 2015; 7:17504-15. [PMID: 26445221 DOI: 10.1039/c5nr05360a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The adsorption induced conformational changes of human carbonic anhydrase I (HCAi) and pseudo wild type human carbonic anhydrase II truncated at the 17th residue at the N-terminus (trHCAii) were studied in presence of nanoparticles of different sizes and polarities. Isothermal titration calorimetry (ITC) studies showed that the binding to apolar surfaces is affected by the nanoparticle size in combination with the inherent protein stability. 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence revealed that HCAs adsorb to both hydrophilic and hydrophobic surfaces, however the dynamics of the unfolding at the nanoparticle surfaces drastically vary with the polarity. The size of the nanoparticles has opposite effects depending on the polarity of the nanoparticle surface. The apolar nanoparticles induce seconds timescale structural rearrangements whereas polar nanoparticles induce hours timescale structural rearrangements on the same charged HCA variant. Here, a simple model is proposed where the difference in the timescales of adsorption is correlated with the energy barriers for initial docking and structural rearrangements which are firmly regulated by the surface polarity. Near-UV circular dichorism (CD) further supports that both protein variants undergo structural rearrangements at the nanoparticle surfaces regardless of being "hard" or "soft". However, the conformational changes induced by the apolar surfaces differ for each HCA isoform and diverge from the previously reported effect of silica nanoparticles.
Collapse
Affiliation(s)
- Irem Nasir
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, SE 221 00, Lund, Sweden.
| | | | | |
Collapse
|
17
|
Nasir I, Fatih W, Svensson A, Radu D, Linse S, Cabaleiro Lago C, Lundqvist M. High Throughput Screening Method to Explore Protein Interactions with Nanoparticles. PLoS One 2015; 10:e0136687. [PMID: 26313757 PMCID: PMC4551901 DOI: 10.1371/journal.pone.0136687] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/06/2015] [Indexed: 12/01/2022] Open
Abstract
The interactions of biological macromolecules with nanoparticles underlie a wide variety of current and future applications in the fields of biotechnology, medicine and bioremediation. The same interactions are also responsible for mediating potential biohazards of nanomaterials. Some applications require that proteins adsorb to the nanomaterial and that the protein resists or undergoes structural rearrangements. This article presents a screening method for detecting nanoparticle-protein partners and conformational changes on time scales ranging from milliseconds to days. Mobile fluorophores are used as reporters to study the interaction between proteins and nanoparticles in a high-throughput manner in multi-well format. Furthermore, the screening method may reveal changes in colloidal stability of nanomaterials depending on the physicochemical conditions.
Collapse
Affiliation(s)
- Irem Nasir
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | | | | | | | - Sara Linse
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Celia Cabaleiro Lago
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - Martin Lundqvist
- Center for Molecular Protein Science, Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
- Upper 2nd school, Klippan, Sweden
- * E-mail:
| |
Collapse
|
18
|
Ahmad Khanbeigi R, Abelha TF, Woods A, Rastoin O, Harvey RD, Jones MC, Forbes B, Green MA, Collins H, Dailey LA. Surface chemistry of photoluminescent F8BT conjugated polymer nanoparticles determines protein corona formation and internalization by phagocytic cells. Biomacromolecules 2015; 16:733-42. [PMID: 25590257 DOI: 10.1021/bm501649y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conjugated polymer nanoparticles are being developed for a variety of diagnostic and theranostic applications. The conjugated polymer, F8BT, a polyfluorene derivative, was used as a model system to examine the biological behavior of conjugated polymer nanoparticle formulations stabilized with ionic (sodium dodecyl sulfate; F8BT-SDS; ∼207 nm; -31 mV) and nonionic (pegylated 12-hydroxystearate; F8BT-PEG; ∼175 nm; -5 mV) surfactants, and compared with polystyrene nanoparticles of a similar size (PS200; ∼217 nm; -40 mV). F8BT nanoparticles were as hydrophobic as PS200 (hydrophobic interaction chromatography index value: 0.96) and showed evidence of protein corona formation after incubation with serum-containing medium; however, unlike polystyrene, F8BT nanoparticles did not enrich specific proteins onto the nanoparticle surface. J774A.1 macrophage cells internalized approximately ∼20% and ∼60% of the F8BT-SDS and PS200 delivered dose (calculated by the ISDD model) in serum-supplemented and serum-free conditions, respectively, while cell association of F8BT-PEG was minimal (<5% of the delivered dose). F8BT-PEG, however, was more cytotoxic (IC50 4.5 μg cm(-2)) than F8BT-SDS or PS200. The study results highlight that F8BT surface chemistry influences the composition of the protein corona, while the properties of the conjugated polymer nanoparticle surfactant stabilizer used determine particle internalization and biocompatibility profile.
Collapse
Affiliation(s)
- Raha Ahmad Khanbeigi
- Institute of Pharmaceutical Science, Franklin-Wilkins Building, King's College London , 150 Stamford Street, London SE1 9NH, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|