1
|
Sreelaya P, Bhattacharya S. A Synoptic Update on Smart Lipid Nanocarrier: Cubosomes, and their Design Development, and Recent Challenges. Curr Pharm Biotechnol 2024; 25:434-447. [PMID: 37211845 DOI: 10.2174/1389201024666230519103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 05/23/2023]
Abstract
Cubosomes are a kind of nanoparticle that is distinct from solid particles in that they are liquid crystalline particles formed by self-assembly of a certain surfactant with a current water ratio. Their unique properties as a result of their microstructure are useful in practical applications. Cubosomes, specifically lyotropic nonlamellar liquid crystalline nanoparticles (LCNs) have gained acceptance as a medication delivery strategy for cancer and other disorders. Cubosomes are produced by the fragmentation of a solid-like phase into smaller particles. Because of its particular microstructure, which is physiologically safe and capable of allowing for the controlled release of solubilized compounds, cubic phase particles are garnering considerable attention. These cubosomes are highly adaptable carriers with promising theranostic efficacy because they can be given orally, topically, or intravenously. Throughout its operation, the drug delivery system regulates the loaded anticancer bioactive's target selectivity and drug release characteristics. This compilation examines recent advances and obstacles in the development and application of cubosomes to treat various cancers, as well as the challenges of turning it into a potential nanotechnological invasion.
Collapse
Affiliation(s)
- Putrevu Sreelaya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
2
|
Chavda VP, Dyawanapelly S, Dawre S, Ferreira-Faria I, Bezbaruah R, Rani Gogoi N, Kolimi P, Dave DJ, Paiva-Santos AC, Vora LK. Lyotropic liquid crystalline phases: Drug delivery and biomedical applications. Int J Pharm 2023; 647:123546. [PMID: 37884213 DOI: 10.1016/j.ijpharm.2023.123546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Liquid crystal (LC)-based nanoformulations may efficiently deliver drugs and therapeutics to targeted biological sites. Lyotropic liquid crystalline phases (LLCPs) have received much interest in recent years due to their unique structural characteristics of both isotropic liquids and crystalline solids. These LLCPs can be utilized as promising drug delivery systems to deliver drugs, proteins, peptides and vaccines because of their improved drug loading, stabilization, and controlled drug release. The effects of molecule shape, microsegregation, and chirality are very important in the formation of liquid crystalline phases (LCPs). Homogenization of self-assembled amphiphilic lipids, water and stabilizers produces LLCPs with different types of mesophases, bicontinuous cubic (cubosomes) and inverse hexagonal (hexosomes). Moreover, many studies have also shown higher bioadhesivity and biocompatibility of LCs due to their structural resemblance to biological membranes, thus making them more efficient for targeted drug delivery. In this review, an outline of the engineering aspects of LLCPs and polymer-based LLCPs is summarized. Moreover, it covers parenteral, oral, transdermal delivery and medical imaging of LC in targeting various tissues and is discussed with a scope to design more efficient next-generation novel nanosystems. In addition, a detailed overview of advanced liquid crystal-based drug delivery for vaccines and biomedical applications is reviewed.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad 380009, India; Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India.
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Shilpa Dawre
- Department of Pharmaceutics, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur, India
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Praveen Kolimi
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, USA
| | - Divyang J Dave
- Department of Pharmaceutics & Pharm. Technology, K. B. Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382023, Gujarat, India
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK.
| |
Collapse
|
3
|
Leu JSL, Teoh JJX, Ling ALQ, Chong J, Loo YS, Mat Azmi ID, Zahid NI, Bose RJC, Madheswaran T. Recent Advances in the Development of Liquid Crystalline Nanoparticles as Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051421. [PMID: 37242663 DOI: 10.3390/pharmaceutics15051421] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Due to their distinctive structural features, lyotropic nonlamellar liquid crystalline nanoparticles (LCNPs), such as cubosomes and hexosomes, are considered effective drug delivery systems. Cubosomes have a lipid bilayer that makes a membrane lattice with two water channels that are intertwined. Hexosomes are inverse hexagonal phases made of an infinite number of hexagonal lattices that are tightly connected with water channels. These nanostructures are often stabilized by surfactants. The structure's membrane has a much larger surface area than that of other lipid nanoparticles, which makes it possible to load therapeutic molecules. In addition, the composition of mesophases can be modified by pore diameters, thus influencing drug release. Much research has been conducted in recent years to improve their preparation and characterization, as well as to control drug release and improve the efficacy of loaded bioactive chemicals. This article reviews current advances in LCNP technology that permit their application, as well as design ideas for revolutionary biomedical applications. Furthermore, we have provided a summary of the application of LCNPs based on the administration routes, including the pharmacokinetic modulation property.
Collapse
Affiliation(s)
- Jassica S L Leu
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Jasy J X Teoh
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Angel L Q Ling
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Joey Chong
- School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noor Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Selangor, Malaysia
| | - Rajendran J C Bose
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY 13501, USA
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia
| |
Collapse
|
4
|
Blanco-Fernández G, Blanco-Fernandez B, Fernández-Ferreiro A, Otero-Espinar FJ. Lipidic lyotropic liquid crystals: Insights on biomedical applications. Adv Colloid Interface Sci 2023; 313:102867. [PMID: 36889183 DOI: 10.1016/j.cis.2023.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Liquid crystals (LCs) possess unique physicochemical properties, translatable into a wide range of applications. To date, lipidic lyotropic LCs (LLCs) have been extensively explored in drug delivery and imaging owing to the capability to encapsulate and release payloads with different characteristics. The current landscape of lipidic LLCs in biomedical applications is provided in this review. Initially, the main properties, types, methods of fabrication and applications of LCs are showcased. Then, a comprehensive discussion of the main biomedical applications of lipidic LLCs accordingly to the application (drug and biomacromolecule delivery, tissue engineering and molecular imaging) and route of administration is examined. Further discussion of the main limitations and perspectives of lipidic LLCs in biomedical applications are also provided. STATEMENT OF SIGNIFICANCE: Liquid crystals (LCs) are those systems between a solid and liquid state that possess unique morphological and physicochemical properties, translatable into a wide range of biomedical applications. A short description of the properties of LCs, their types and manufacturing procedures is given to serve as a background to the topic. Then, the latest and most innovative research in the field of biomedicine is examined, specifically the areas of drug and biomacromolecule delivery, tissue engineering and molecular imaging. Finally, prospects of LCs in biomedicine are discussed to show future trends and perspectives that might be utilized. This article is an ampliation, improvement and actualization of our previous short forum article "Bringing lipidic lyotropic liquid crystal technology into biomedicine" published in TIPS.
Collapse
Affiliation(s)
- Guillermo Blanco-Fernández
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Bárbara Blanco-Fernandez
- CIBER in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Anxo Fernández-Ferreiro
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela, Spain; Paraquasil Group, Health Research Institute of Santiago de Compostela (FIDIS), Santiago de Compostela, Spain; Institute of Materials (iMATUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Jiang T, Xie Y, Dong J, Yang X, Qu S, Wang X, Sun C. The dexamethasone acetate cubosomes as a potential transdermal delivery system for treating skin inflammation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Mathews PD, Mertins O, Angelov B, Angelova A. Cubosomal lipid nanoassemblies with pH-sensitive shells created by biopolymer complexes: A synchrotron SAXS study. J Colloid Interface Sci 2021; 607:440-450. [PMID: 34509118 DOI: 10.1016/j.jcis.2021.08.187] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
We report a strategy for sustainable development of pH-responsive cubic liquid crystalline nanoparticles (cubosomes), in which the structure-defining lyotropic nonlamellar lipid and the eventually encapsulated guest molecules can be protected by pH-sensitive polyelectrolyte shells with mucoadhesive properties. Bulk non-lamellar phases as well as pH-responsive polyelectrolyte-modified nanocarriers were formed by spontaneous assembly of the nonlamellar lipid monoolein and two biopolymers tailored in nanocomplexes with pH-dependent net charge. The mesophase particles involved positively charged N-arginine-modified chitosan (CHarg) and negatively charged alginate (ALG) chains assembled at different biopolymer concentrations and charge ratios into a series of pH-responsive complexes. The roles of Pluronic F127 as a dispersing agent and a stabilizer of the nanoscale dispersions were examined. Synchrotron small-angle X-ray scattering (SAXS) investigations were performed at several N-arginine-modified chitosan/alginate ratios (CHarg/ALG with 10, 15 and 20 wt% ALG relative to CHarg) and varying pH values mimicking the pH conditions of the gastrointestinal route. The structural parameters characterizing the inner cubic liquid crystalline organizations of the nanocarriers were determined as well as the particle sizes and stability on storage. The surface charge variations, influencing the measured zeta-potentials, evidenced the inclusion of the CHarg/ALG biopolymer complexes into the lipid nanoassemblies. The polyelectrolyte shells rendered the hybrid cubosome nanocarriers pH-sensitive and influenced the swelling of their lipid-phase core as revealed by the acquired SAXS patterns. The pH-responsiveness and the mucoadhesive features of the cubosomal lipid/polyelectrolyte nanocomplexes may be of interest for in vivo drug delivery applications.
Collapse
Affiliation(s)
- Patrick D Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil
| | - Omar Mertins
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), 04023-062 Sao Paulo, Brazil; Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France.
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, CZ-18221 Prague, Czech Republic
| | - Angelina Angelova
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
7
|
Zhai J, Fan B, Thang SH, Drummond CJ. Novel Amphiphilic Block Copolymers for the Formation of Stimuli-Responsive Non-Lamellar Lipid Nanoparticles. Molecules 2021; 26:3648. [PMID: 34203820 PMCID: PMC8232580 DOI: 10.3390/molecules26123648] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/04/2022] Open
Abstract
Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)-poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Bo Fan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - San H. Thang
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; (B.F.); (S.H.T.)
| | - Calum J. Drummond
- School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
8
|
Zhang X, Wu W. Liquid Crystalline Phases for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2021; 22:81. [PMID: 33619612 DOI: 10.1208/s12249-021-01951-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/21/2022] Open
Abstract
Liquid crystalline phases (LCPs) are generated upon lipolysis of ingested lipids in the gastrointestinal tract. The breaking off and subsequent evolution of LCPs produce more advanced vesicular and micellar structures which facilitate oral absorption of lipids, as well as co-loaded drug entities. Owing to sustained or controlled drug release, bioadhesiveness, and capability of loading drugs of different properties, LCPs are promising vehicles to implement for enhancement of oral bioavailability. This review aims to provide an overview on the classification, preparation and characterization, in vivo generation and transformation, absorption mechanisms, and encouraging applications of LCPs in enhancement of oral bioavailability. In addition, we comment on the merits of LCPs as oral drug delivery carriers, as well as solutions to industrialization utilizing liquid crystalline precursor and preconcentrate formulations.
Collapse
|
9
|
Tien ND, Maurya AK, Fortunato G, Rottmar M, Zboray R, Erni R, Dommann A, Rossi RM, Neels A, Sadeghpour A. Responsive Nanofibers with Embedded Hierarchical Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11787-11797. [PMID: 32936649 DOI: 10.1021/acs.langmuir.0c01487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We introduce the design and study of a hybrid electrospun membrane with a dedicated nanoscale structural hierarchy for controlled functions in the biomedical domain. The hybrid system comprises submicrometer-sized internally self-assembled lipid nanoparticles (ISAsomes or mesosomes) embedded into the electrospun membrane with a nanofibrous polymer network. The internal structure of ISAsomes, studied by small-angle X-ray scattering (SAXS) and electron microscopy, demonstrated a spontaneous response to variations in the environmental conditions as they undergo a bicontinuous inverse cubic phase (cubosomes) in solution to a crystalline lamellar phase in the polymer membrane; nevertheless, this phase reorganization is reversible. As revealed by in situ SAXS measurements, if the membrane was put in contact with aqueous media, the cubic phase reappeared and submicrometer-sized cubosomes were released upon dissolution of the nanofibers. Furthermore, the hybrid membranes exhibited a specific anisotropic feature and morphological response under an external strain. While nanofibers were aligned under external strain in the microscale, the semicrystalline domains from the polymer phase were positioned perpendicular to the lamellae of the lipid phase in the nanoscale. The fabricated membranes and their spontaneous responses offer new strategies for the development of structure-controlled functions in electrospun nanofibers for biomedical applications, such as drug delivery or controlled interactions with biointerfaces.
Collapse
Affiliation(s)
- Nguyen D Tien
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Anjani K Maurya
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Robert Zboray
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Alex Dommann
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Cellular and Biomedical Sciences, Faculty of Medicine, University of Bern, Bern CH-3012, Switzerland
| | - René M Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | - Antonia Neels
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Department of Chemistry, University of Fribourg, Fribourg 79085, Switzerland
| | - Amin Sadeghpour
- Center for X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| |
Collapse
|
10
|
Campos PM, Praça FG, Mussi SV, Figueiredo SA, Fantini MCDA, Fonseca MJV, Torchilin VP, Bentley MVLB. Liquid crystalline nanodispersion functionalized with cell-penetrating peptides improves skin penetration and anti-inflammatory effect of lipoic acid after in vivo skin exposure to UVB radiation. Drug Deliv Transl Res 2020; 10:1810-1828. [PMID: 32803561 DOI: 10.1007/s13346-020-00840-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, the development and the performance of a new targeted liquid crystalline nanodispersion (LCN) by the attachment of cell-penetrating peptides (CPP) onto their surfaces to improve skin delivery of lipoic acid (LA) were evaluated. For that, the synthesis and characterization of this new platform as well as its spatiotemporal analysis from in vitro and in vivo topical application were explored and extensively discussed in this paper. The TAT or D4 peptides were chosen as CPP due to specific target strategies by the charge grouping on the skin surface or target the overexpressed epidermal growth factor receptor (EGFR) of cell membrane of keratinocytes, respectively. Thus, the nanoparticle characterization results when taken together suggested that designed LCNs maintained their hexagonal phase structure, nanoscale particle size, and low polydispersity index even after drug, lipopolymers, and peptide additions, which are proved to be favorable for topical skin delivery. There were no statistical differences among the LCNs investigated, except for superficial charge of LCN conjugated with TAT which may have altered the LCN zeta potential due to cationic charge of TAT amino acid sequence compared with D4. The cumulative amounts of LA retained into the skin were determined to be even higher coming from the targeted LCNs. Moreover, the exogenous antioxidant application of the LA from the LCNs can prevent ROS damage, which was demonstrated by this study with the less myeloperoxidase (MPO) activity and decrease in cytokine levels (TNF-alpha and IL-1β) generated by the oxidative stress modulation. Together, the data presented highlights the potential of these targeted LCNs, and overall, opens new frontiers for preclinical trials.
Collapse
Affiliation(s)
- Patrícia Mazureki Campos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
- Pharmaceutical Sciences Department, State University of Ponta Grossa, 4748 Carlos Cavalcanti Avenue, Ponta Grossa, PR, 84030-900, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Samuel Vidal Mussi
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Sônia Aparecida Figueiredo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | | | - Maria José Vieira Fonseca
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
11
|
Fornasier M, Biffi S, Bortot B, Macor P, Manhart A, Wurm FR, Murgia S. Cubosomes stabilized by a polyphosphoester-analog of Pluronic F127 with reduced cytotoxicity. J Colloid Interface Sci 2020; 580:286-297. [PMID: 32688121 DOI: 10.1016/j.jcis.2020.07.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Lyotropic liquid crystalline nanoparticles with bicontinuous cubic internal nanostructure, known as cubosomes, have been proposed as nanocarriers in various medical applications. However, as these nanoparticles show a certain degree of cytotoxicity, particularly against erythrocytes, their application in systemic administrations is limited to date. Intending to produce a more biocompatible formulation, we prepared cubosomes for the first time stabilized with a biodegradable polyphosphoester-analog of the commonly used Pluronic F127. The ABA-triblock copolymer poly(methyl ethylene phosphate)-block-poly(propylene oxide)-block-poly(methyl ethylene phosphate) (PMEP-b-PPO-b-PMEP) was prepared by organocatalyzed ring-opening polymerization of MEP. The cytotoxic features of the resulting formulation were investigated against two different cell lines (HEK-293 and HUVEC) and human red blood cells. The response of the complement system was also evaluated. Results proved the poly(phosphoester)-based formulation was significantly less toxic than that prepared using Pluronic F127 with respect to all the tested cell lines and, more importantly, hemolysis assay and complement system activation tests demonstrated its very high hemocompatibility. The potentially biodegradable poly(phosphoester)-based cubosomes represent a new and versatile platform for preparation of functional and smart nanocarriers.
Collapse
Affiliation(s)
- Marco Fornasier
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Barbara Bortot
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Italy
| | - Angelika Manhart
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sergio Murgia
- Department of Chemical and Geological Sciences, University of Cagliari, s.s. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
12
|
Mertins O, Mathews PD, Angelova A. Advances in the Design of pH-Sensitive Cubosome Liquid Crystalline Nanocarriers for Drug Delivery Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E963. [PMID: 32443582 PMCID: PMC7281514 DOI: 10.3390/nano10050963] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023]
Abstract
Nanostructure bicontinuous cubic phase self-assembled materials are receiving expanding applications as biocompatible delivery systems in various therapeutic fields. The functionalization of cubosome, spongosome, hexosome and liposome nanocarriers by pH-sensitive lipids and/or pH-sensitive polymer shells offers new opportunities for oral and topical drug delivery towards a new generation of cancer therapies. The electrochemical behavior of drug compounds may favor pH-triggered drug release as well. Here, we highlight recent investigations, which explore the phase behavior of mixed nonlamellar lipid/fatty acid or phospholipid systems for the design of pH-responsive and mucoadhesive drug delivery systems with sustained-release properties. X-ray diffraction and small-angle X-ray scattering (SAXS) techniques are widely used in the development of innovative delivery assemblies through detailed structural analyses of multiple amphiphilic compositions from the lipid/co-lipid/water phase diagrams. pH-responsive nanoscale materials and nanoparticles are required for challenging therapeutic applications such as oral delivery of therapeutic proteins and peptides as well as of poorly water-soluble substances. Perspective nanomedicine developments with smart cubosome nanocarriers may exploit compositions elaborated to overcome the intestinal obstacles, dual-drug loaded pH-sensitive liquid crystalline architectures aiming at enhanced therapeutic efficacy, as well as composite (lipid/polyelectrolyte) types of mucoadhesive controlled release colloidal cubosomal formulations for the improvement of the drugs' bioavailability.
Collapse
Affiliation(s)
- Omar Mertins
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France;
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil;
| | - Patrick D. Mathews
- Laboratory of Nano Bio Materials (LNBM), Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo (UNIFESP), Sao Paulo 04023-062, Brazil;
- Muséum National d’Histoire Naturelle, Sorbonne Université, CP 26, 75231 Paris, France
| | - Angelina Angelova
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, F-92296 Châtenay-Malabry, France;
| |
Collapse
|
13
|
Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today 2019; 24:1405-1412. [DOI: 10.1016/j.drudis.2019.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
|
14
|
Wang H, Zetterlund PB, Boyer C, Boyd BJ, Atherton TJ, Spicer PT. Large Hexosomes from Emulsion Droplets: Particle Shape and Mesostructure Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13662-13671. [PMID: 30350705 DOI: 10.1021/acs.langmuir.8b02638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Soft, rotationally symmetric particles of dispersed hexagonal liquid crystalline phase are produced using a method previously developed for cubosome microparticle production. The technique forms hexosome particles via removal of ethanol from emulsion droplets containing monoolein, water, and one of the various hydrophobic molecules: vitamin E, hexadecane, oleic acid, cyclohexane, or divinylbenzene. The unique rotational symmetry of the particles is characterized by optical microscopy and small-angle X-ray scattering to link particle phase, shape, and structure to composition. Rheology of the soft particles can be varied independently of shape, enabling control of transport, deformation, and biological response by controlling composition and molecular structure of the additives. The direct observations of formation, and the resultant hexosome shapes, link the particle-scale and mesoscale properties of these novel self-assembled particles and broaden their applications. The micron-scale hexosomes provide a route to understanding the effects of particle size, crystallization rate, and rheology on the production of soft particles with liquid crystalline structure and unique shape and symmetry.
Collapse
Affiliation(s)
| | | | | | - Ben J Boyd
- Monash Institute of Pharmaceutical Sciences , Monash University , Melbourne 3800 , Australia
| | - Timothy J Atherton
- Department Physics and Astronomy , Tufts University , Boston 02155 , Massachusetts , United States
| | | |
Collapse
|
15
|
Badie H, Abbas H. Novel small self-assembled resveratrol-bearing cubosomes and hexosomes: preparation, charachterization, and ex vivo permeation. Drug Dev Ind Pharm 2018; 44:2013-2025. [DOI: 10.1080/03639045.2018.1508220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hany Badie
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Damanhour University, Damanhour, Egypt
| |
Collapse
|
16
|
Yu X, Jin Y, Du L, Sun M, Wang J, Li Q, Zhang X, Gao Z, Ding P. Transdermal Cubic Phases of Metformin Hydrochloride: In Silico and in Vitro Studies of Delivery Mechanisms. Mol Pharm 2018; 15:3121-3132. [DOI: 10.1021/acs.molpharmaceut.8b00209] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Yiguang Jin
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jian Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qiu Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida Padre Tomas Pereira, Taipa, Macao SAR, China
| | - Xiangyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zisen Gao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | | |
Collapse
|
17
|
Grace JL, Alcaraz N, Truong NP, Davis TP, Boyd BJ, Quinn JF, Whittaker MR. Lipidated polymers for the stabilization of cubosomes: nanostructured drug delivery vehicles. Chem Commun (Camb) 2018; 53:10552-10555. [PMID: 28890981 DOI: 10.1039/c7cc05842j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipidated polymers, like their protein counterparts, may be useful in fields as diverse as biochemistry and drug delivery. As such, strategies for preparing lipidated polymers with defined molecular architecture are clearly warranted. Herein, we describe a broadly-applicable methodology for synthesizing such lipidated materials, and demonstrate how they can be applied to the preparation of nanostructured drug delivery vehicles.
Collapse
Affiliation(s)
- James L Grace
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
van 't Hag L, Gras SL, Conn CE, Drummond CJ. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 2018; 46:2705-2731. [PMID: 28280815 DOI: 10.1039/c6cs00663a] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).
Collapse
Affiliation(s)
- Leonie van 't Hag
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
19
|
Alcaraz N, Liu Q, Hanssen E, Johnston A, Boyd BJ. Clickable Cubosomes for Antibody-Free Drug Targeting and Imaging Applications. Bioconjug Chem 2017; 29:149-157. [PMID: 29182866 DOI: 10.1021/acs.bioconjchem.7b00659] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The combination of copper-free click chemistry with metabolic labeling offers new opportunities in drug delivery. The objective of this study was to determine whether cubosomes functionalized with azide or dibenzocyclooctyne (DBCO) groups are able to undergo copper-free click chemistry with a strained cyclooctyne or azide, respectively. Phytantriol-based cubosomes were functionalized using phospholipids bearing an azide or DBCO group. The modified cubosome dispersions were characterized using dynamic light scattering, cryo-TEM, and small-angle X-ray scattering. The efficiency of "clickability" was assessed by reacting the cubosomes with a complementary dye and determining bound and unbound dye via size exclusion chromatography. The clickable cubosomes reacted specifically and efficiently with a click-Cy5 dye with minor changes to the size, shape, and structure of the cubosomes. This indicates that cubosomes can retain their unique internal structure while participating in copper-free click chemistry. This proof of concept study paves the way for the use of copper-free click chemistry and metabolic labeling with cubosomes for targeted drug delivery and imaging.
Collapse
Affiliation(s)
- Nicolas Alcaraz
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Monash University , Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Parkville, VIC 3052, Australia
| | - Qingtao Liu
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Monash University , Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Parkville, VIC 3052, Australia
| | - Eric Hanssen
- Advanced Microscopy Unit, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, VIC 3052, Australia
| | - Angus Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Monash University , Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Science, Monash University , Parkville, VIC 3052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences , Parkville, VIC 3052, Australia
| |
Collapse
|
20
|
Novel polyglycerol-dioleate based cubosomal dispersion with tailored physical characteristics for controlled delivery of ondansetron. Colloids Surf B Biointerfaces 2017; 156:44-54. [DOI: 10.1016/j.colsurfb.2017.04.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 01/27/2023]
|
21
|
Bilal MH, Hussain H, Prehm M, Baumeister U, Meister A, Hause G, Busse K, Mäder K, Kressler J. Synthesis of poly(glycerol adipate)- g -oleate and its ternary phase diagram with glycerol monooleate and water. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Ali MA, Kataoka N, Ranneh AH, Iwao Y, Noguchi S, Oka T, Itai S. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes. Chem Pharm Bull (Tokyo) 2017; 65:42-48. [PMID: 28049915 DOI: 10.1248/cpb.c16-00513] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Md Ashraf Ali
- Department of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhai J, Suryadinata R, Luan B, Tran N, Hinton TM, Ratcliffe J, Hao X, Drummond CJ. Amphiphilic brush polymers produced using the RAFT polymerisation method stabilise and reduce the cell cytotoxicity of lipid lyotropic liquid crystalline nanoparticles. Faraday Discuss 2016; 191:545-563. [PMID: 27453499 DOI: 10.1039/c6fd00039h] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Self-assembled lipid lyotropic liquid crystalline nanoparticles such as hexosomes and cubosomes contain internal anisotropic and isotropic nanostructures, respectively. Despite the remarkable potential of such nanoparticles in various biomedical applications, the stabilisers used in formulating the nanoparticles are often limited to commercially available polymers such as the Pluronic block copolymers. This study explored the potential of using Reversible Addition-Fragmentation chain Transfer (RAFT) technology to design amphiphilic brush-type polymers for the purpose of stabilising phytantriol and monoolein-based lipid dispersions. The synthesised brush-type polymers consisted of a hydrophobic C12 short chain and a hydrophilic poly(ethylene glycol)methyl ether acrylate (PEGA) long chain with multiple 9-unit poly(ethylene oxide) (PEO) brushes with various molecular weights. It was observed that increasing the PEO brush density and thus the length of the hydrophilic component improved the stabilisation effectiveness for phytantriol and monoolein-based cubosomes. Synchrotron small-angle X-ray scattering (SAXS) experiments confirmed that the RAFT polymer-stabilised cubosomes had an internal double-diamond cubic phase with tunable water channel sizes. These properties were dependent on the molecular weight of the polymers, which were considered in some cases to be anisotropically distributed within the cubosomes. The in vitro toxicity of the cubosomes was assessed by cell viability of two human adenocarcinoma cell lines and haemolytic activities to mouse erythrocytes. The results showed that phytantriol cubosomes stabilised by the RAFT polymers were less toxic compared to their Pluronic F127-stabilised analogues. This study provides valuable insight into designing non-linear amphiphilic polymers for the effective stabilisation and cellular toxicity improvement of self-assembled lipid lyotropic liquid crystalline nanoparticles.
Collapse
Affiliation(s)
- Jiali Zhai
- School of Science, College of Science, Engineering and Health, RMIT University, PO Box 2476, Melbourne, Victoria, 3001 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Matougui N, Boge L, Groo AC, Umerska A, Ringstad L, Bysell H, Saulnier P. Lipid-based nanoformulations for peptide delivery. Int J Pharm 2016; 502:80-97. [DOI: 10.1016/j.ijpharm.2016.02.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/28/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
|
25
|
Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today 2016; 21:789-801. [PMID: 26780385 DOI: 10.1016/j.drudis.2016.01.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 12/12/2022]
Abstract
Cubosomes are nanostructured liquid crystalline particles, made of certain amphiphilic lipids in definite proportions, known as biocompatible carriers in drug delivery. Cubosomes comprise curved bicontinuous lipid bilayers that are organized in three dimensions as honeycombed structures and divided into two internal aqueous channels that can be exploited by various bioactive ingredients, such as chemical drugs, peptides and proteins. Owing to unique properties such as thermodynamic stability, bioadhesion, the ability of encapsulating hydrophilic, hydrophobic and amphiphilic substances, and the potential for controlled release through functionalization, cubosomes are regarded as promising vehicles for different routes of administration. Based on the most recent reports, this review introduces cubosomes focusing on their structure, preparation methods, mechanism of release and potential routes of administration.
Collapse
Affiliation(s)
- Zahra Karami
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| |
Collapse
|
26
|
Ali MA, Noguchi S, Iwao Y, Oka T, Itai S. Preparation and Characterization of SN-38-Encapsulated Phytantriol Cubosomes Containing α-Monoglyceride Additives. Chem Pharm Bull (Tokyo) 2016; 64:577-84. [DOI: 10.1248/cpb.c15-00984] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Md Ashraf Ali
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
- Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University
| | - Shuji Noguchi
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| | - Yasunori Iwao
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| | - Toshihiko Oka
- Department of Physics, Faculty of Science and Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University
| | - Shigeru Itai
- Laboratory of Pharmaceutical Engineering & Drug Delivery Science, Graduate School of Integrated Pharmaceutical & Nutritional Sciences, University of Shizuoka
| |
Collapse
|
27
|
Rossetti FC, Depieri LV, Praça FG, Del Ciampo JO, Fantini MCA, Pierre MBR, Tedesco AC, Bentley MVLB. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: Nanodispersions of liquid-crystalline phase as nanocarriers. Eur J Pharm Sci 2015; 83:99-108. [PMID: 26657201 DOI: 10.1016/j.ejps.2015.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 02/05/2023]
Abstract
Nanodispersions of liquid-crystalline phases (NLPs) composed of monoolein and oleic acid were chosen as nanocarriers to improve the topical retention of the photosensitizer protoporphyrin IX (PpIX) and thereby optimize photodynamic therapy (PDT) using this photosensitizer. The nanodispersions were characterized by polarized light microscopy, small-angle X-ray diffraction and dynamic light scattering. The stability and encapsulation efficiency (EE%) of the nanodispersions were also evaluated. In vitro and in vivo skin penetration studies were performed to determine the potential of the nanodispersions for cutaneous application. In addition, skin penetration and skin irritancy (in an animal model) after in vivo application were visualized by fluorescence light microscopy. The nanodispersion obtained was characterized as a monodisperse system (~150.0 nm) of hexagonal liquid-crystalline phase, which provided a high encapsulation efficiency of PpIX (~88%) that remained stable over 90 days of investigation. Skin penetration studies demonstrated that the nanodispersion enhanced PpIX skin uptake 11.8- and 3.3-fold (in vitro) and 23.6- and 20.8-fold (in vivo) compared to the PpIX skin uptake of control formulations, respectively. In addition, the hexagonal phase nanodispersion did not cause skin irritation after application for two consecutive days. Overall, the results show that the nanocarrier developed is suitable for use in topical PDT with PpIX.
Collapse
Affiliation(s)
- Fábia Cristina Rossetti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-160, Ribeirão Preto, SP, Brazil
| | - Lívia Vieira Depieri
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-160, Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-160, Ribeirão Preto, SP, Brazil
| | - José Orestes Del Ciampo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-160, Ribeirão Preto, SP, Brazil
| | | | - Maria Bernadete Riemma Pierre
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21.941-902, Rio de Janeiro, RJ, Brazil
| | - Antônio Cláudio Tedesco
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, 14040-160, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
28
|
Zhai J, Hinton TM, Waddington LJ, Fong C, Tran N, Mulet X, Drummond CJ, Muir BW. Lipid-PEG conjugates sterically stabilize and reduce the toxicity of phytantriol-based lyotropic liquid crystalline nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10871-10880. [PMID: 26362479 DOI: 10.1021/acs.langmuir.5b02797] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lyotropic liquid crystalline nanoparticle dispersions are of interest as delivery vectors for biomedicine. Aqueous dispersions of liposomes, cubosomes, and hexosomes are commonly stabilized by nonionic amphiphilic block copolymers to prevent flocculation and phase separation. Pluronic stabilizers such as F127 are commonly used; however, there is increasing interest in using chemically reactive stabilizers for enhanced functionalization and specificity in therapeutic delivery applications. This study has explored the ability of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine conjugated with poly(ethylene glycol) (DSPE-PEGMW) (2000 Da ≤ MW ≤ 5000 Da) to engineer and stabilize phytantriol-based lyotropic liquid crystalline dispersions. The poly(ethylene glycol) (PEG) moiety provides a tunable handle to the headgroup hydrophilicity/hydrophobicity to allow access to a range of nanoarchitectures in these systems. Specifically, it was observed that increasing PEG molecular weight promotes greater interfacial curvature of the dispersions, with liposomes (Lα) present at lower PEG molecular weight (MW 2000 Da), and a propensity for cubosomes (QII(P) or QII(D) phase) at MW 3400 Da or 5000 Da. In comparison to Pluronic F127-stabilized cubosomes, those made using DSPE-PEG3400 or DSPE-PEG5000 had enlarged internal water channels. The toxicity of these cubosomes was assessed in vitro using A549 and CHO cell lines, with cubosomes prepared using DSPE-PEG5000 having reduced cytotoxicity relative to their Pluronic F127-stabilized analogues.
Collapse
Affiliation(s)
- Jiali Zhai
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| | - Tracey M Hinton
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, 5 Portarlington Road, East Geelong, VIC 3219, Australia
| | - Lynne J Waddington
- CSIRO Manufacturing Flagship, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Celesta Fong
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Nhiem Tran
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| | - Xavier Mulet
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| | - Calum J Drummond
- School of Applied Sciences, College of Science, Engineering and Health, RMIT University , GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Benjamin W Muir
- CSIRO Manufacturing Flagship, Private Bag 10, Clayton, VIC 3169, Australia
| |
Collapse
|
29
|
Kim DH, Lim S, Shim J, Song JE, Chang JS, Jin KS, Cho EC. A Simple Evaporation Method for Large-Scale Production of Liquid Crystalline Lipid Nanoparticles with Various Internal Structures. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20438-20446. [PMID: 26305487 DOI: 10.1021/acsami.5b06413] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a simple and industrially accessible method of producing liquid crystalline lipid nanoparticles with various internal structures based on phytantriol, Pluronic F127, and vitamin E acetate. Bilayer vesicles were produced when an ethanolic solution dissolving the lipid components was mixed with deionized water. After the evaporation of ethanol from the aqueous mixture, vesicles were transformed into lipid-filled liquid crystalline nanoparticles with well-defined internal structures such as hexagonal lattices (mostly inverted cubic Pn3m), lined or coiled pattern (inverted hexagonal H2), and disordered structure (inverse microemulsion, L2), depending on the compositions. Further studies suggested that their internal structures were also affected by temperature. The internal structures were characterized from cryo-TEM and small-angle X-ray scattering results. Microcalorimetry studies were performed to investigate the degree of molecular ordering/crystallinity of lipid components within the nanostructures. From the comparative studies, we demonstrated the present method could produce the lipid nanoparticles with similar characteristics to those made from a conventional method. More importantly, the production only requires simple tools for mixing and ethanol evaporation and it is possible to produce 10 kg or so per batch of aqueous lipid nanoparticles dispersions, enabling the large-scale production of the liquid crystalline nanoparticles for various biomedical applications.
Collapse
Affiliation(s)
- Do-Hoon Kim
- Amorepacific Corporation R&D Center , Yonggu-daero, Yongin, 446-729, South Korea
| | - Sora Lim
- Department of Chemical Engineering, Hanyang University , Seoul, 133-791, South Korea
| | - Jongwon Shim
- Amorepacific Corporation R&D Center , Yonggu-daero, Yongin, 446-729, South Korea
| | - Ji Eun Song
- Department of Chemical Engineering, Hanyang University , Seoul, 133-791, South Korea
| | - Jong Soo Chang
- Department of Agricultural Science, Korea National Open University , Seoul, 110-791, South Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory, Pohang University of Science and Technology , 80 Jigokro-127-beongil, Pohang, 790-784, Korea
| | - Eun Chul Cho
- Department of Chemical Engineering, Hanyang University , Seoul, 133-791, South Korea
| |
Collapse
|
30
|
Probing structure in submicronic aqueous assemblies of emulsified microemulsions and charged spherical colloids using SANS and cryo-TEM. J Colloid Interface Sci 2015; 446:114-21. [DOI: 10.1016/j.jcis.2015.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 11/17/2022]
|