1
|
Thakur N, Singh B. Designing network structure hydrogels derived from carrageenan- phosphated polymers by covalent and supramolecular interactions for potential biomedical applications. Int J Biol Macromol 2024; 274:133527. [PMID: 38945329 DOI: 10.1016/j.ijbiomac.2024.133527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Recently, various efforts have been made to explore the potential of natural polysaccharides derived from sea weeds to promote sustainable development. Herein, carrageenan (CG), a polysaccharide extracted from red sea algae, was utilized to design network structures as hydrogels, aimed at significant applications in drug delivery (DD) systems. Hydrogels were designed by graft copolymerization reaction of poly(bis [2-methacryloyloxy] ethyl phosphate [poly(BMEP)] and poly(acrylic acid) [poly(AAc)] onto CG in the presence of a crosslinking agent. Hydrogels were developed by covalent linkage by graft copolymerization and supramolecular interactions, existing in the copolymers. Copolymers were characterized by Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), and X-ray diffraction (XRD) instrumentations. The drug diffusion exhibited a sustained pattern due to polymer-drug interactions. The drug release followed non-Fickian diffusion mechanism and the release profile was most accurately depicted by first order kinetic model. The biocompatible nature of the copolymer was demonstrated from the hemolytic index value signifying minimal adverse interactions with blood component upon exposure. A protein adsorption test was performed using bovine serum albumin (BSA), exhibiting 8.15 ± 0.26 % albumin adsorption. Polymers exhibited mucoadhesive character, evidenced by their requirement of a detachment force measuring 195 ± 4.72 mN for separation from the membrane during interactions with the mucosal surface. The hydrogels exhibited antioxidant properties, evidenced by 2, 2'-Diphenylpicrylhydrazyl (DPPH) assay, revealing copolymer capable of scavenging 58.21 ± 2.26 % of free radical. The hydrogel revealed antimicrobial activity against P. aeruginosa and S. aureus bacteria, a property further enhanced in hydrogels with the drug doxycycline. These findings suggest suitability of these hydrogels for biomedical applications, with a significant emphasis on drug delivery.
Collapse
Affiliation(s)
- Nistha Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla -171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla -171005, India.
| |
Collapse
|
2
|
Roslan MNF, Naharudin I, Musa N, Anuar NK. Bioadhesive polymer in antifungal drug delivery for therapeutic treatment of candidiasis. J Adv Pharm Technol Res 2024; 15:139-143. [PMID: 39290549 PMCID: PMC11404442 DOI: 10.4103/japtr.japtr_538_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 09/19/2024] Open
Abstract
Candida species are the primary cause of candidiasis, a common yeast infection, with Candida albicans being the most prevalent pathogen. These infections often infiltrate the body through cutaneous and vaginal routes. Given the potential severity of some Candida infections, particularly invasive cases, there is a critical need for effective antifungal treatments. Controlled drug delivery strategies have been developed to achieve optimal release kinetics and precise targeting of active agents, especially in fungal infection therapeutics. Consequently, significant attention has been focused on exploring and utilizing bioadhesive polymers to enhance the performance of drug delivery systems for antifungal medications. Bioadhesive drug delivery systems aim to sustain the release of therapeutic agents, reducing the need for frequent dosing. This article provides a comprehensive review of scientific investigations into the use of antifungal drugs within bioadhesive drug delivery systems for treating candidiasis, locally and systemically. The evaluation covers the efficacy of these systems against candidiasis, factors affecting prolonged contact at the application site, and the underlying mechanisms of drug delivery.
Collapse
Affiliation(s)
- Muhamad Naquib Faisal Roslan
- Jabatan Farmasi Hospital Tengku Ampuan Rahimah, Klang, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Idanawati Naharudin
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Nafisah Musa
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nor Khaizan Anuar
- Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Nondestructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, Puncak Alam, Selangor, Malaysia
- Food Process and Engineering Research Group (FOPERG), Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Thakur N, Singh B. Evaluating physiochemical characteristics of tragacanth gum-gelatin network hydrogels designed through graft copolymerization technique. Int J Biol Macromol 2024; 266:131082. [PMID: 38537849 DOI: 10.1016/j.ijbiomac.2024.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
The present work deals with the evaluation of the physiochemical and biomedical properties of hydrogels derived from copolymerization of tragacanth gum (TG) and gelatin for use in drug delivery (DD) applications. Copolymers were characterized by field emission-scanning electron micrographs (FE-SEM), electron dispersion X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), 13C-nuclear magnetic resonance (NMR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis. FE-SEM revealed heterogeneous morphology and XRD analysis demonstrated an amorphous nature with short range pattern of polymer chains within the copolymers. The release of the drug ofloxacin occurred through a non-Fickian diffusion mechanism and the release profile was best described by the Korsmeyer-Peppas kinetic model. The hydrogels exhibited blood compatibility and demonstrated a thrombogenicity value of 75.63 ± 1.98 % during polymer-blood interactions. Polymers revealed mucoadhesive character during polymer-mucous membrane interactions and required 119 ± 8.54 mN detachment forces to detach from the biological membrane. The copolymers illustrated the antioxidant properties as evidenced by 2, 2'-diphenylpicrylhydrazyl (DPPH) assay which demonstrated a 65.71 ± 3.68 % free radical inhibition. Swelling properties analysis demonstrated that by change in monomer and cross linker content during the reaction increased the crosslinking of the network. These results suggest that the pore size of network hydrogels could be controlled as per the requirement of DD systems. The copolymers were prepared at optimized reaction conditions using 14.54 × 10-1 molL-1 of acrylic acid monomer and 25.0 × 10-3 molL-1 of crosslinker NNMBA. The optimized hydrogels exhibited a crosslink density of 2.227 × 10-4 molcm-3 and a mesh size of 7.966 nm. Additionally, the molecular weight between two neighboring crosslinks in the hydrogels was determined to be 5332.209 gmol-1.The results indicated that the combination of protein-polysaccharide has led to the development of hydrogels suitable for potential applications in sustained drug delivery.
Collapse
Affiliation(s)
- Nistha Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
4
|
Sharma D, Sharma A, Bala R, Singh B. Investigations on physiochemical and biomedical properties of Aloe vera - Sterculia gum copolymeric dressings impregnated with antibiotic-anesthetic drugs to enhance wound healing. Int J Biol Macromol 2024; 267:131363. [PMID: 38583847 DOI: 10.1016/j.ijbiomac.2024.131363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Recently, various innovative advancements have been made in carbohydrate research to design versatile materials for biomedical applications. The current research focuses on the development of copolymeric hydrogel wound dressings (HWD) using a combination of aloe vera (AV) - sterculia gum (SG) - poly (vinylsulfonic acid) (VSA)-based with the aim to enhancing their efficacy in drug delivery (DD) applications. These hydrogel dressings were encapsulated with levofloxacin and lidocaine to address both microbial infection and pain. Copolymers were characterized by FESEM, SEM, EDS, AFM, 13C NMR, FTIR, XRD, and TGA-DTG analysis. Hydrogel exhibited a fluid absorption capacity of 4.52 ± 0.12 g per gram of polymeric dressing in simulated wound conditions. The hydrogels displayed a sustained release of drugs, demonstrating a non-Fickian diffusion mechanism. Polymer dressings revealed antibacterial, mucoadhesive, antioxidant, biocompatible and non-cytotoxic properties. Additionally, HWD displayed permeability to O2 and water vapour, yet was impermeable to microbial penetration. Overall, the findings of physiological, biochemical and drug delivery properties demonstrated the suitability of materials for wound dressing applications.
Collapse
Affiliation(s)
- Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Ashima Sharma
- Department of Physiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Ritu Bala
- Department of Chemistry, Government College Dharamshala, Himachal Pradesh, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
5
|
Kapourani A, Andriotis EG, Chachlioutaki K, Kontogiannopoulos KN, Klonos PA, Kyritsis A, Pavlidou E, Bikiaris DN, Fatouros DG, Barmpalexis P. High-Drug-Loading Amorphous Solid Dispersions via In Situ Thermal Cross-Linking: Unraveling the Mechanisms of Stabilization. Mol Pharm 2021; 18:4393-4414. [PMID: 34699238 DOI: 10.1021/acs.molpharmaceut.1c00563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article takes a step forward in understanding the mechanisms involved during the preparation and performance of cross-linked high-drug-loading (HDL) amorphous solid dispersions (ASDs). Specifically, ASDs, having 90 wt % poorly water-soluble drug indomethacin (IND), were prepared via in situ thermal cross-linking of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA) and thoroughly evaluated in terms of physical stability and in vitro supersaturation. Results showed that HDL ASDs having excellent active pharmaceutical ingredient (API) amorphous stability and prolonged in vitro supersaturation were prepared by fine tuning the cross-linking procedure. Unraveling of the processes involved during ASD's formation shed light on the significant role of the cross-linking conditions (i.e., temperature and time), the physicochemical properties of the API, and the hydrolysis level of the cross-linker as key factors in modulating ASD's stability. In-depth analysis of the prepared systems revealed the (1) reduction of API's molecular motions within the cross-linked polymeric networks (through API's strong spatial confinement), (2) the structural changes in the prepared cross-linked matrices (induced by the high API drug loading), and (3) the tuning of the cross-linking density via utilization of low-hydrolyzed PVA as the major mechanisms responsible for ASD's exceptional performance. Complementary analysis by means of molecular dynamics simulations also highlighted the vital role of strong drug-polymer intermolecular interactions evolving among the ASD components. Overall, the impression of the complexity of in situ cross-linked ASDs has been reinforced with the excessive variation of parameters investigated in the current study, offering thus insights up to the submolecular level to lay the groundwork and foundations for the comprehensive assessment of a new emerging class of HDL amorphous API formulations.
Collapse
Affiliation(s)
- Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleftherios G Andriotis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantina Chachlioutaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos N Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Panagiotis A Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Eleni Pavlidou
- Solid State Section, Physics Department, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios G Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.,Natural Products Research Centre of Excellence-AUTH (NatPro-AUTH), Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
6
|
Evaluation of solute diffusion and polymer relaxation in cross-linked hyaluronic acid hydrogels: experimental measurement and relaxation modeling. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03224-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Water retention and controlled release of KCl by using microwave-assisted green synthesis of xanthan gum-cl-poly (acrylic acid)/AgNPs hydrogel nanocomposite. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02990-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Sethi S, Kaith BS, Kaur M, Sharma N, Khullar S. Study of a cross-linked hydrogel of Karaya gum and Starch as a controlled drug delivery system. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1687-1708. [DOI: 10.1080/09205063.2019.1659710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sapna Sethi
- Department of Chemistry, DAV University Jalandhar, Punjab, India
| | - Balbir Singh Kaith
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Mandeep Kaur
- Department of Chemistry, DAV University Jalandhar, Punjab, India
| | - Neeraj Sharma
- Department of Chemistry, DAV University Jalandhar, Punjab, India
| | - Sadhika Khullar
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
9
|
Azarniya A, Tamjid E, Eslahi N, Simchi A. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int J Biol Macromol 2019; 134:280-289. [DOI: 10.1016/j.ijbiomac.2019.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
|
10
|
Jalababu R, Satya Veni S, Reddy KVNS. Development, characterization, swelling, and network parameters of amino acid grafted guar gum based pH responsive polymeric hydrogels. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2019. [DOI: 10.1080/1023666x.2019.1594058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- R. Jalababu
- Department of Chemistry, University College of Engineering Kakinada, Jawaharlal Nehru Technological University Kakinada, Kakinada, India
| | - S. Satya Veni
- Department of Chemistry, University College of Engineering Kakinada, Jawaharlal Nehru Technological University Kakinada, Kakinada, India
| | - K. V. N. S. Reddy
- Department of Chemistry, GITAM Institute of Technology, GITAM (Deemed to be University), Visakhapatnam, India
| |
Collapse
|
11
|
Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 2018; 36:1984-2016. [PMID: 30165173 PMCID: PMC6209323 DOI: 10.1016/j.biotechadv.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Collapse
Affiliation(s)
- Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Stanisław Wacławek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
12
|
Controlled biofertilizer release kinetics and moisture retention in gum xanthan-based IPN. IRANIAN POLYMER JOURNAL 2017. [DOI: 10.1007/s13726-017-0539-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Crosslinking of poly(vinylpyrrolidone)/acrylic acid with tragacanth gum for hydrogels formation for use in drug delivery applications. Carbohydr Polym 2017; 157:185-195. [DOI: 10.1016/j.carbpol.2016.09.086] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/21/2022]
|