1
|
Morimoto T, Yoshida M, Sato-Tomita A, Nozawa S, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Vapor-Induced Assembly of a Platinum(II) Complex Loaded on Layered Double Hydroxide Nanoparticles. Chemistry 2023; 29:e202301993. [PMID: 37581259 DOI: 10.1002/chem.202301993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlled self-assembly of PtII complexes is key to the development of optical and stimuli-responsive materials, but designing and precisely controlling them is still difficult owing to weak intermolecular interactions. Herein, we report the successful water-vapor-induced assembly of an anionic PtII complex [Pt(CN)2 (ppy)]- (Hppy=2-phenylpyridine) electrostatically loaded onto cationically charged layered double hydroxide (LDH) nanoparticles consisting of Mg2+ and Al3+ ions. When the PtII complexes were densely loaded onto the LDH nanoparticles, the assembly was maintained, even in dilute aqueous media. In the case of sparse loading, the PtII complexes were loaded discretely in the dry state; however, when water vapor was adsorbed, the increased mobility of the PtII complexes led to their assembly on the LDH nanoparticles. The presence of water vapor led to a drastic change in luminescence from green to orange.
Collapse
Affiliation(s)
- Tamami Morimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
2
|
Li X, Chen Y, Xu J, Lynch I, Guo Z, Xie C, Zhang P. Advanced nanopesticides: Advantage and action mechanisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108051. [PMID: 37820512 DOI: 10.1016/j.plaphy.2023.108051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/24/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The use of various chemical substances to control pests, diseases, and weeds in the field is a necessary part of the agricultural development process in every country. While the application of pesticides can improve the quality and yield of crops, plant resistance and the harm caused by pesticide residues to the environment and humans have led to the search for greener and safer pesticide formulations to improve the current situation. In recent years, nanopesticides (NPts) have shown great potential in agriculture due to their high efficiency, low toxicity, targeting, resistance, and controlled slow release demonstrated in the experimental stage. Commonly used approaches to prepare NPts include the use of nanoscale metal materials as active ingredients (AI) (ingredients that can play a role in insecticide, sterilization and weeding) or the construction of carriers based on commonly used pesticides to make them stable in nano-sized form. This paper systematically summarizes the advantages and effects of NPts over conventional pesticides, analyzes the formation and functions of NPts in terms of structure, AI, and additives, and describes the mechanism of action of NPts. Despite the feasibility of NPts use, there is not enough comprehensive research on NPts, which must be supplemented by more experiments in terms of biotoxicology and ecological effects to provide strong support for NPts application.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Yiqing Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Jianing Xu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Changjian Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong, China.
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Peng L, Gineste S, Coudret C, Ciuculescu-Pradines D, Benoît-Marquié F, Mingotaud C, Marty JD. Iron-based hybrid polyionic complexes as chemical reservoirs for the pH-triggered synthesis of Prussian blue nanoparticles. J Colloid Interface Sci 2023; 649:900-908. [PMID: 37390537 DOI: 10.1016/j.jcis.2023.06.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023]
Abstract
HYPOTHESIS Hybrid polyion complexes (HPICs) obtained from the complexation in aqueous solution of a double hydrophilic block copolymer and metal ions can act as efficient precursors for the controlled synthesis of nanoparticles. In particular, the possibility to control the availability of metal ions by playing on the pH conditions is of special interest to obtain nanoparticles with controlled size and composition. EXPERIMENTS HPICs based on Fe3+ ions were used to initiate the formation of Prussian blue (PB) nanoparticles in presence of potassium ferrocyanide in reaction media with varying pH values. FINDINGS Complexed Fe3+ ions within HPICs can be easily released by adjusting the pH value either through the addition of a base/acid or by using a merocyanine photoacid. This allows to modulate the reactivity of Fe3+ ions with potassium ferrocyanide present in solution. As a result, PB nanoparticles with different structures (core, core-shell), composition and controlled size are obtained.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Coudret
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Diana Ciuculescu-Pradines
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Florence Benoît-Marquié
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
4
|
Gineste S, Mingotaud C. Double-hydrophilic block copolymer-metal ion associations: Structures, properties and applications. Adv Colloid Interface Sci 2023; 311:102808. [PMID: 36442323 DOI: 10.1016/j.cis.2022.102808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Hybrid polyionic complexes (HPICs), constructed from double-hydrophilic block copolymers and metal ions, have been largely developed with increasing interest in the past decade in the fields of catalysis, materials science and biological applications. The chemical natures of both blocks are very versatile, but one block should be able to interact with ions, and the second one should be neutral. Many metals have been used to form HPICs, which have, in their simplest architectural form, a core-shell structure of a few tens of nanometers in radius with an external shell made of the neutral block of the copolymer. In this review, we focus our discussion on the stability, shape, size and inner structure of these hybrid micelles. We then describe the most recent applications of HPICs, as reported in the literature, and point out the current challenges, missing structural information and future perspectives for this class of organized structures.
Collapse
Affiliation(s)
- Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
5
|
Foster C, Shaw S, Neill TS, Bryan N, Sherriff N, Natrajan LS, Wilson H, Lopez-Odriozola L, Rigby B, Haigh SJ, Zou YC, Harrison R, Morris K. Hydrotalcite Colloidal Stability and Interactions with Uranium(VI) at Neutral to Alkaline pH. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2576-2589. [PMID: 35166554 PMCID: PMC9098172 DOI: 10.1021/acs.langmuir.1c03179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
In the United Kingdom, decommissioning of legacy spent fuel storage facilities involves the retrieval of radioactive sludges that have formed as a result of corrosion of Magnox nuclear fuel. Retrieval of sludges may re-suspend a colloidal fraction of the sludge, thereby potentially enhancing the mobility of radionuclides including uranium. The colloidal properties of the layered double hydroxide (LDH) phase hydrotalcite, a key product of Magnox fuel corrosion, and its interactions with U(VI) are of interest. This is because colloidal hydrotalcite is a potential transport vector for U(VI) under the neutral-to-alkaline conditions characteristic of the legacy storage facilities and other nuclear decommissioning scenarios. Here, a multi-technique approach was used to investigate the colloidal stability of hydrotalcite and the U(VI) sorption mechanism(s) across pH 7-11.5 and with variable U(VI) surface loadings (0.01-1 wt %). Overall, hydrotalcite was found to form stable colloidal suspensions between pH 7 and 11.5, with some evidence for Mg2+ leaching from hydrotalcite colloids at pH ≤ 9. For systems with U present, >98% of U(VI) was removed from the solution in the presence of hydrotalcite, regardless of pH and U loading, although the sorption mode was affected by both pH and U concentrations. Under alkaline conditions, U(VI) surface precipitates formed on the colloidal hydrotalcite nanoparticle surface. Under more circumneutral conditions, Mg2+ leaching from hydrotalcite and more facile exchange of interlayer carbonate with the surrounding solution led to the formation of uranyl carbonate species (e.g., Mg(UO2(CO3)3)2-(aq)). Both X-ray absorption spectroscopy (XAS) and luminescence analysis confirmed that these negatively charged species sorbed as both outer- and inner-sphere tertiary complexes on the hydrotalcite surface. These results demonstrate that hydrotalcite can form pseudo-colloids with U(VI) under a wide range of pH conditions and have clear implications for understanding the uranium behavior in environments where hydrotalcite and other LDHs may be present.
Collapse
Affiliation(s)
- Chris Foster
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Samuel Shaw
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Thomas S. Neill
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nick Bryan
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- National
Nuclear Laboratory, Chadwick
House, Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K.
| | - Nick Sherriff
- National
Nuclear Laboratory, Chadwick
House, Warrington Road, Birchwood Park, Warrington WA3 6AE, U.K.
| | - Louise S. Natrajan
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Hannah Wilson
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Laura Lopez-Odriozola
- Centre
for Radiochemistry Research, Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Bruce Rigby
- Sellafield
Ltd., Hinton House, Birchwood Park Avenue, Risley, Warrington, Cheshire WA3
6GR, U.K.
| | - Sarah J. Haigh
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Yi-Chao Zou
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Robert Harrison
- Nuclear
Fuel
Centre of Excellence, Department of Mechanical, Aerospace and Civil
Engineering, The University of Manchester, Sackville Street, Manchester M13 9PL, U.K.
| | - Katherine Morris
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth & Environmental Sciences, The
University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
6
|
Tokudome Y, Poologasundarampillai G, Tachibana K, Murata H, Naylor AJ, Yoneyama A, Nakahira A. Curable Layered Double Hydroxide Nanoparticles‐Based Perfusion Contrast Agents for X‐Ray Computed Tomography Imaging of Vascular Structures. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yasuaki Tokudome
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | | | - Koki Tachibana
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Hidenobu Murata
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| | - Amy J. Naylor
- Institute of Inflammation and Ageing University of Birmingham Birmingham B15 2TT UK
| | - Akio Yoneyama
- SAGA Light Source 8-7 Yayoigaoka Tosu Saga 841-0005 Japan
| | - Atsushi Nakahira
- Department of Materials Science Graduate School of Engineering Osaka Prefecture University Sakai Osaka 599-8531 Japan
| |
Collapse
|
7
|
Cantarano A, Yao J, Matulionyte M, Lifante J, Benayas A, Ortgies DH, Vetrone F, Ibanez A, Gérardin C, Jaque D, Dantelle G. Autofluorescence-Free In Vivo Imaging Using Polymer-Stabilized Nd 3+-Doped YAG Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51273-51284. [PMID: 33156603 DOI: 10.1021/acsami.0c15514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Neodymium-doped yttrium aluminum garnet (YAG:Nd3+) has been widely developed during roughly the past 60 years and has been an outstanding fluorescent material. It has been considered as the gold standard among multipurpose solid-state lasers. Yet, the successful downsizing of this system into the nanoregimen has been elusive, so far. Indeed, the synthesis of a garnet structure at the nanoscale, with enough crystalline quality for optical applications, was found to be quite challenging. Here, we present an improved solvothermal synthesis method producing YAG:Nd3+ nanocrystals of remarkably good structural quality. Adequate surface functionalization using asymmetric double-hydrophilic block copolymers, constituted of a metal-binding block and a neutral water-soluble block, provides stabilized YAG:Nd3+ nanocrystals with long-term colloidal stability in aqueous suspensions. These newly stabilized nanoprobes offer spectroscopic quality (long lifetimes, narrow emission lines, and large Stokes shifts) close to that of bulk YAG:Nd3+. The narrow emission lines of YAG:Nd3+ nanocrystals are exploited by differential infrared fluorescence imaging, thus achieving an autofluorescence-free in vivo readout. In addition, nanothermometry measurements, based on the ratiometric fluorescence of the stabilized YAG:Nd3+ nanocrystals, are demonstrated. The progress here reported paves the way for the implementation of this new stabilized YAG:Nd3+ system in the preclinical arena.
Collapse
Affiliation(s)
- Alexandra Cantarano
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Jingke Yao
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Marija Matulionyte
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes (Québec) J3X 1S2, Canada
| | - José Lifante
- Fluorescence Imaging Group, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Avda. Arzobispo Morcillo, 2, Madrid 28029, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Antonio Benayas
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Dirk H Ortgies
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650 Boul. Lionel-Boulet, Varennes (Québec) J3X 1S2, Canada
| | - Alain Ibanez
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Corine Gérardin
- ICGM, Univ. Montpellier, CNRS UMR 5253, ENSCM, 240 Avenue E. Jeanbrau, 34296 Montpellier cedex 5, France
| | - Daniel Jaque
- Fluorescence Imaging Group, Departamento de Física de Materiales, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Nanobiology Group, Instituto Ramón y Cajal de Investigación Sanitaria IRYCIS, Ctra. Colmenar km 9.100, 28034 Madrid, Spain
| | - Géraldine Dantelle
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
8
|
Mestivier M, Li JR, Camy A, Frangville C, Mingotaud C, Benoît‐Marquié F, Marty J. Copper‐Based Hybrid Polyion Complexes for Fenton‐Like Reactions. Chemistry 2020; 26:14152-14158. [DOI: 10.1002/chem.202002362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Mathieu Mestivier
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Jun Rong Li
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Aurèle Camy
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Camille Frangville
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Christophe Mingotaud
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Florence Benoît‐Marquié
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| | - Jean‐Daniel Marty
- IMRCP UMR CNRS 5623 Bat 2R1 Université de Toulouse 118 Route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
9
|
Magana JR, Sproncken CCM, Voets IK. On Complex Coacervate Core Micelles: Structure-Function Perspectives. Polymers (Basel) 2020; 12:E1953. [PMID: 32872312 PMCID: PMC7565781 DOI: 10.3390/polym12091953] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
The co-assembly of ionic-neutral block copolymers with oppositely charged species produces nanometric colloidal complexes, known, among other names, as complex coacervates core micelles (C3Ms). C3Ms are of widespread interest in nanomedicine for controlled delivery and release, whilst research activity into other application areas, such as gelation, catalysis, nanoparticle synthesis, and sensing, is increasing. In this review, we discuss recent studies on the functional roles that C3Ms can fulfil in these and other fields, focusing on emerging structure-function relations and remaining knowledge gaps.
Collapse
Affiliation(s)
| | | | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (J.R.M.); (C.C.M.S.)
| |
Collapse
|
10
|
Chen B, Sun Q, Wang D, Zeng XF, Wang JX, Chen JF. High-Gravity-Assisted Synthesis of Surfactant-Free Transparent Dispersions of Monodispersed MgAl-LDH Nanoparticles. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bo Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qian Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiao-Fei Zeng
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jie-Xin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jian-Feng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
11
|
Zuo H, Chen W, Cooper HM, Xu ZP. A Facile Way of Modifying Layered Double Hydroxide Nanoparticles with Targeting Ligand-Conjugated Albumin for Enhanced Delivery to Brain Tumour Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20444-20453. [PMID: 28574700 DOI: 10.1021/acsami.7b06421] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Active targeting of nanoparticles (NPs) for cancer treatment has attracted increasing interest in the past decades. Various ligand modification strategies have been used to enhance the targeting of NPs to the tumor site. However, how to reproducibly fabricate diverse targeting NPs with narrowly changeable biophysiochemical properties remains as a major challenge. In this study, layered double hydroxide (LDH) NPs were modified as a target delivery system. Two brain tumor targeting ligands, i.e., angiopep-2 and rabies virus glycoprotein, were conjugated to the LDH NPs via an intermatrix protein moiety, bovine serum albumin (BSA), simultaneously endowing the LDHs with excellent colloidal stability and targeting capability. The ligands were first covalently linked with BSA through the heterobifunctional cross-linker sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate. Then, the ligand-linked BSA and pristine BSA were together coated onto the surface of LDHs through electrostatic interaction, followed by cross-linking with the cross-linker glutaraldehyde to immobilize these BSAs on the LDH surface. In this way, we are able to readily prepare colloidally stabilized tumor-targeted LDH NPs. The targeting efficacy of the ligand-conjugated LDH delivery system has been evidenced in the uptake by two neutral cells (U87 and N2a) compared to unmodified LDHs. This new approach provides a promising strategy for rational design and preparation of target nanoparticles as a selective and effective therapeutic treatment for brain tumors.
Collapse
Affiliation(s)
- Huali Zuo
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Weiyu Chen
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Helen M Cooper
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology and ‡The Queensland Brain Institute, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Varga G, Timár Z, Muráth S, Kónya Z, Kukovecz Á, Carlson S, Sipos P, Pálinkó I. Ni-Amino Acid–CaAl-Layered Double Hydroxide Composites: Construction, Characterization and Catalytic Properties in Oxidative Transformations. Top Catal 2017. [DOI: 10.1007/s11244-017-0824-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kacheff A, Prouzet E. Stability and dynamics of silicate/organic hybrid micelles. CR CHIM 2017. [DOI: 10.1016/j.crci.2016.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Pavlovic M, Rouster P, Bourgeat-Lami E, Prevot V, Szilagyi I. Design of latex-layered double hydroxide composites by tuning the aggregation in suspensions. SOFT MATTER 2017; 13:842-851. [PMID: 28078336 DOI: 10.1039/c6sm02608g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1205 Geneva, Switzerland.
| | - Paul Rouster
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1205 Geneva, Switzerland.
| | - Elodie Bourgeat-Lami
- Univ. Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP Group, 43, Bd. du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Vanessa Prevot
- Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10446, F-63000 Clermont-Ferrand, France and CNRS, UMR 6296, F-63178 Aubière, France
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1205 Geneva, Switzerland.
| |
Collapse
|
15
|
Pavlovic M, Rouster P, Oncsik T, Szilagyi I. Tuning Colloidal Stability of Layered Double Hydroxides: From Monovalent Ions to Polyelectrolytes. Chempluschem 2016; 82:121-131. [DOI: 10.1002/cplu.201600295] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/18/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Marko Pavlovic
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Paul Rouster
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Tamas Oncsik
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| |
Collapse
|
16
|
Tokudome Y, Morimoto T, Tarutani N, Vaz PD, Nunes CD, Prevot V, Stenning GBG, Takahashi M. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry. ACS NANO 2016; 10:5550-5559. [PMID: 27124717 DOI: 10.1021/acsnano.6b02110] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.
Collapse
Affiliation(s)
- Yasuaki Tokudome
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University , Sakai, Osaka 599-8531, Japan
| | - Tsuyoshi Morimoto
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University , Sakai, Osaka 599-8531, Japan
| | - Naoki Tarutani
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University , Sakai, Osaka 599-8531, Japan
| | - Pedro D Vaz
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa , Campo Grande, Ed. C8,1749-016 Lisboa, Portugal
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Carla D Nunes
- Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa , Campo Grande, Ed. C8,1749-016 Lisboa, Portugal
| | - Vanessa Prevot
- Université Clermont Auvergne Université Blaise Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France
- CNRS, UMR 6296, ICCF, F-63171 Aubiere, France
| | - Gavin B G Stenning
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University , Sakai, Osaka 599-8531, Japan
| |
Collapse
|
17
|
Cui Y, Jiang X, Feng C, Gu G, Xu J, Huang X. First double hydrophilic graft copolymer bearing a poly(2-hydroxylethyl acrylate) backbone synthesized by sequential RAFT polymerization and SET-LRP. Polym Chem 2016. [DOI: 10.1039/c6py00489j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article reports the first synthesis of well-defined double hydrophilic graft copolymers with a PHEA backbone, by the combination of RAFT polymerization, SET-LRP, and a grafting-from strategy.
Collapse
Affiliation(s)
- Yinan Cui
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiuyu Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Chun Feng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Guangxin Gu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Jie Xu
- Department of Materials Science
- Fudan University
- Shanghai 200433
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
18
|
Layrac G, Gérardin C, Tichit D, Harrisson S, Destarac M. Hybrid polyion complex micelles from poly(vinylphosphonic acid)-based double hydrophilic block copolymers and divalent transition metal ions. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Kuo YM, Kuthati Y, Kankala RK, Wei PR, Weng CF, Liu CL, Sung PJ, Mou CY, Lee CH. Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin. J Mater Chem B 2015; 3:3447-3458. [DOI: 10.1039/c4tb01989j] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of nanoparticle charge in biodistribution is evaluated by modifying the external surface of layered double hydroxides with various charges and a fluorescent dye (Cy5.5) is doped to assess the biodistribution.
Collapse
Affiliation(s)
- Yue-Ming Kuo
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
| | - Yaswanth Kuthati
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
| | - Ranjith Kumar Kankala
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
| | - Pei-Ru Wei
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
| | - Chen-Lun Liu
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
| | - Ping-Jyun Sung
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
- Graduate Institute of Marine Biotechnology
| | - Chung-Yuan Mou
- Department of Chemistry
- National Taiwan University
- Taipei
- Taiwan
| | - Chia-Hung Lee
- Department of Life Science and Institute of Biotechnology
- National Dong Hwa University
- Hualien
- Taiwan
| |
Collapse
|