1
|
Sai Manogna K, Deva Prasad Raju B, Rajasekhara Reddy G, Kallem P, Shaik MI, John Sushma N. Investigations on anticancer activity of Eu 3+ doped hydroxyapatite nanocomposites against MCF7 and 4T1 breast cancer cell lines: A structural and luminescence Perspective. Heliyon 2024; 10:e25064. [PMID: 38352738 PMCID: PMC10862524 DOI: 10.1016/j.heliyon.2024.e25064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Breast cancer remains a significant global health concern, necessitating the development of novel therapeutic approaches. In this study, we investigate the role of Eu3+ doped hydroxyapatite nanocomposites (Han: Eu3+) in the treatment of MCF7 and 4T1 breast cancer cell lines. Furthermore, we explored the structural and luminescent properties of these nanocomposites. Han: Eu3+ were synthesized using a modified co-precipitation method, and their morphology and crystal structure were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) in which the average crystalline size of Han: Eu3+ was found to be 25 nm, rendering them suitable for cellular uptake and targeted therapy. To gain insights into the luminescent properties of Han: Eu3+, their excitation and emission spectra were recorded using photoluminescence spectrometer. The characteristic red emission of Eu3+ ions was observed upon excitation, validating the successful doping of Eu3+ into the Han lattice, which was confirmed by the CIE chromaticity coordinate study. These luminescent properties of Han: Eu3+ hold promise for potential applications in bioimaging. To evaluate the efficacy of Han: Eu3+ in breast cancer treatment, MCF7 and 4T1 cell lines were exposed to varying concentrations of the nanocomposites. Cell viability assays revealed a concentration-dependent reduction in cell viability, indicating the potential anticancer activity of Han: Eu3+. The findings of this study contribute to the expanding field of nanomedicine, bringing targeted breast cancer treatments and us closer to more effective.
Collapse
Affiliation(s)
- K Sai Manogna
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, (Women's University) Tirupati-517 502, India
| | - B Deva Prasad Raju
- Department of Physics, Sri Venkateswara University, Tirupati - 517501, India
| | - G Rajasekhara Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Parashuram Kallem
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Mannur Ismail Shaik
- Faculty of Fisheries and Food Science, University Malaysia Terengganu, KulaNerus-21030, Terengganu, Malaysia
| | - N John Sushma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, (Women's University) Tirupati-517 502, India
| |
Collapse
|
2
|
Oltolina F, Santaella Escolano MDC, Jabalera Y, Prat M, Jimenez Lopez C. mAb-Functionalized Biomimetic MamC-Mediated-Magnetoliposomes as Drug Delivery Systems for Cancer Therapy. Int J Mol Sci 2023; 24:13958. [PMID: 37762260 PMCID: PMC10531091 DOI: 10.3390/ijms241813958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In cancer therapy, new therapeutic nanoformulations able to mediate targeted chemotherapy are required. Recently, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC, a magnetosome protein from Magnetococcus marinus MC-1, have proven, in vitro and in vivo, to be effective drug nanocarriers (following the application of an external gradient magnetic field) and to allow combination with hyperthermia. However, these nanoassemblies require further optimization to improve cytocompatibility, stability and active targeting ability. Herein, we describe the production of the magnetoliposomes (LP) embedding BMNPs functionalized (or not) with doxorubicin (DOXO), [LP(+/-DOXO-BMNPs)], and their surface modification with the DO-24 mAb, which targets the human Met/HGF receptor's ectodomain (overexpressed in many cancers). Nanoformulations were extensively characterized using TEM, DLS, FTIR and when tested in vitro, the lipid coating increased the colloidal stability and their biocompatibility, favoring the cellular uptake in cells overexpressing the cognate receptor. Indeed, the magnetoliposomes mAb-LP(+/-DOXO-BMNPs) exerted a specific active targeting ability by the presence of the mAb that preserved its immunocompetence. Both LP(BMNPs) and mAb-LP(BMNPs) were not toxic to cells, while +/-mAb-LP(DOXO-BMNPs) nanoformulations were indeed cytotoxic. Therefore, this study represents a proof of concept for the development of promising drug carriers for cancer therapy based on local chemotherapy directed by mAbs.
Collapse
Affiliation(s)
- Francesca Oltolina
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | | | - Ylenia Jabalera
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez Lopez
- Department of Microbiology, Faculty of Sciences, University of Granada, 18071 Granada, Spain; (M.d.C.S.E.); (Y.J.); (C.J.L.)
| |
Collapse
|
3
|
Quiñonero F, Parra-Torrejón B, Ramírez-Rodríguez GB, Garcés V, Delgado-López JM, Jiménez-Luna C, Perazzoli G, Melguizo C, Prados J, Ortíz R. Combining Olaparib and Ascorbic Acid on Nanoparticles to Enhance the Drug Toxic Effects in Pancreatic Cancer. Int J Nanomedicine 2023; 18:5075-5093. [PMID: 37701822 PMCID: PMC10493099 DOI: 10.2147/ijn.s415631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 09/14/2023] Open
Abstract
Introduction Pancreatic cancer (PC) shows a very poor response to current treatments. Development of drug resistance is one of the causes of the therapy failure, being PARP1 (poly ADP-ribose polymerase 1) a relevant protein in the resistance mechanism. In this work, we have functionalized calcium phosphate-based nanoparticles (NPs) with Olaparib (OLA, a PARP-1 inhibitor) in combination with ascorbic acid (AA), a pro-oxidative agent, to enhance their individual effects. Methods Amorphous Calcium Phosphate (ACP) NPs were synthesized through a biomimetic approach and then functionalized with OLA and AA (NP-ACP-OLA-AA). After evaluation of the loading capacity and release kinetic, cytotoxicity, cell migration, immunofluorescence, and gene expression assays were performed using pancreatic tumor cell lines. In vivo studies were carried out on tumors derived from the PANC-1 line in NOD SCID gamma (NSG) mice. Results NP-ACP-OLA-AA was loaded with 13%wt of OLA (75% loading efficiency) and 1% of AA, respectively. The resulting dual nanosystem exhibited a gradual release of OLA and AA, being the latter protected from degradation in solution. This ensured the simultaneous availability of OLA and AA for a longer period, at least, during the entire time of in vitro cell experiments (72 hours). In vitro studies indicated that NP-ACP-OLA-AA showed the best cytotoxic effect outperforming that of the free OLA and a higher genotoxicity and apoptosis-mediated cytotoxic effect in human pancreatic ductal adenocarcinoma cell line. Interestingly, the in vivo assays using immunosuppressed mice with PANC-1-induced tumors revealed that NP-ACP-OLA-AA produced a higher tumor volume reduction (59.1%) compared to free OLA (28.3%) and increased the mice survival. Conclusion Calcium phosphate NPs, a highly biocompatible and biodegradable system, were an ideal vector for the OLA and AA co-treatment in PC, inducing significant therapeutic benefits relative to free OLA, including cytotoxicity, induction of apoptosis, inhibition of cell migration, tumor growth, and survival.
Collapse
Affiliation(s)
- Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
| | - Belén Parra-Torrejón
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | | | - Victor Garcés
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Granada, 18071, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Raul Ortíz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, 18014, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| |
Collapse
|
4
|
Zhao P, Huang X, Li Y, Huo X, Feng Q, Zhao X, Xu C, Wang J. An artificialed protein corona coating the surface of magnetic nanoparicles:a simple and efficient method for label antibody. Heliyon 2023; 9:e13860. [PMID: 36923872 PMCID: PMC10008981 DOI: 10.1016/j.heliyon.2023.e13860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Background Protein Corona (PC) of nanoparticles is a structure which composed of one or more layers of proteins adsorbed on the surface of nanomaterials, and the formation of PC is a universal process of spontaneous randomness. We take advantage of the formation principle of the PC, developed a simple and efficient method for label protein to nanoparticles. Methods The artificialed protein corona (APC) on the surface of nanoparticles was synthesized via the artificialed methods of desolvation aggregation and crosslinking with control. Results The dosage of precipitator and the ratio of protein to magnetic nanoparticles (MNPs)(particle size: 3 nm) were optimized, and the core-shell nanoparticles with narrow particle size (particle size: 10 nm) distribution were obtained. The MNPs with APC were characterized by transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Additionally, a hemolysis test on prepared MNPs was conducted with APC. The presence of APC coating on the surface of MNPs showed an improving effect to reduce the cytotoxicity. Cellular toxicity of MNPs with APC was also investigated on HFF1 cell lines. And the cells survival in the presence of APC coated MNPs and display neither reduced metabolism nor cytostatic effect. The functional test of the MNPs with APC showed that proteins can be modified and labeled onto magnetic nanoparticles and retain their original activity. Conclusions This marking method is gentle and effective. And the properties of the APC propose MNPs as a promising candidate for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Penghua Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yaping Li
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xueping Huo
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qing Feng
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiangrong Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Cuixiang Xu
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| | - Jianhua Wang
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| |
Collapse
|
5
|
Mesas C, Garcés V, Martínez R, Ortiz R, Doello K, Dominguez-Vera JM, Bermúdez F, Porres JM, López-Jurado M, Melguizo C, Delgado-López JM, Prados J. Colon cancer therapy with calcium phosphate nanoparticles loading bioactive compounds from Euphorbia lathyris: In vitro and in vivo assay. Biomed Pharmacother 2022; 155:113723. [PMID: 36156367 DOI: 10.1016/j.biopha.2022.113723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 02/07/2023] Open
Abstract
Amorphous calcium phosphate nanoparticles (ACP NPs) exhibit excellent biocompatibility and biodegradability properties. ACP NPs were functionalized with two coumarin compounds (esculetin and euphorbetin) extracted from Euphorbia lathyris seeds (BC-ACP NPs) showing high loading capacity (0.03% and 0.34% (w/w) for esculetin and euphorbetin, respectively) and adsorption efficiency (2.6% and 33.5%, respectively). BC-ACP NPs, no toxic to human blood cells, showed a more selective cytotoxicity against colorectal cancer (CRC) cells (T-84 cells) (IC50, 71.42 µg/ml) compared to non-tumor (CCD18) cells (IC50, 420.77 µg/ml). Both, the inhibition of carbonic anhydrase and autophagic cell death appeared to be involved in their action mechanism. Interestingly, in vivo treatment with BC-ACPs NPs using two different models of CRC induction showed a significant reduction in tumor volume (62%) and a significant decrease in the number and size of polyps. A poor development of tumor vasculature and invasion of normal tissue were also observed. Moreover, treatment increased the bacterial population of Akkermansia by restoring antioxidant systems in the colonic mucosa of mice. These results show a promising pathway to design innovative and more efficient therapies against CRC based on biomimetic calcium phosphate NPs loaded with natural products.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Víctor Garcés
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Rosario Martínez
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Raúl Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| | - Kevin Doello
- Medical Oncology Service, Virgen de las Nieves Hospital, 18014 Granada, Spain
| | - Jose M Dominguez-Vera
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Francisco Bermúdez
- Cellbitec S.L., N.I.F. B04847216, Scientific Headquarters of the Almería Technology Park, Universidad de Almería, La Cañada, 04128 Almería, Spain
| | - Jesús M Porres
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - María López-Jurado
- Department of Physiology, Institute of Nutrition and Food Technology (INyTA), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain.
| | - José M Delgado-López
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18014 Granada, Spain
| |
Collapse
|
6
|
Yamada I, Shiba K, Galindo TGP, Tagaya M. Drug Molecular Immobilization and Photofunctionalization of Calcium Phosphates for Exploring Theranostic Functions. Molecules 2022; 27:5916. [PMID: 36144659 PMCID: PMC9504434 DOI: 10.3390/molecules27185916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Theranostics (bifunction of therapeutics and diagnostics) has attracted increasing attention due to its efficiency that can reduce the physical and financial burden on patients. One of the promising materials for theranostics is calcium phosphate (CP) and it is biocompatible and can be functionalized not only with drug molecules but also with rare earth ions to show photoluminescence that is necessary for the diagnostic purpose. Such the CP-based hybrids are formed in vivo by interacting between functional groups of organic molecules and inorganic ions. It is of great importance to elucidate the interaction of CP with the photofunctional species and the drug molecules to clarify the relationship between the existing state and function. Well-designed photofunctional CPs will contribute to biomedical fields as highly-functional ormultifunctional theranostic materials at the nanoscales. In this review, we describe the hybridization between CPs and heterogeneous species, mainly focusing on europium(III) ion and methylene blue molecule as the representative photofunctional species for theranostics applications.
Collapse
Affiliation(s)
- Iori Yamada
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Niigata, Japan
| | - Kota Shiba
- Center for Functional Sensor & Actuator (CFSN), Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | | | - Motohiro Tagaya
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka 940-2188, Niigata, Japan
| |
Collapse
|
7
|
Luminescent Citrate-Functionalized Terbium-Substituted Carbonated Apatite Nanomaterials: Structural Aspects, Sensitized Luminescence, Cytocompatibility, and Cell Uptake Imaging. NANOMATERIALS 2022; 12:nano12081257. [PMID: 35457965 PMCID: PMC9032902 DOI: 10.3390/nano12081257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022]
Abstract
This work explores the preparation of luminescent and biomimetic Tb3+-doped citrate-functionalized carbonated apatite nanoparticles. These nanoparticles were synthesized employing a citrate-based thermal decomplexing precipitation method, testing a nominal Tb3+ doping concentration between 0.001 M to 0.020 M, and a maturation time from 4 h to 7 days. This approach allowed to prepare apatite nanoparticles as a single hydroxyapatite phase when the used Tb3+ concentrations were (i) ≤ 0.005 M at all maturation times or (ii) = 0.010 M with 4 h of maturation. At higher Tb3+ concentrations, amorphous TbPO4·nH2O formed at short maturation times, while materials consisting of a mixture of carbonated apatite prisms, TbPO4·H2O (rhabdophane) nanocrystals, and an amorphous phase formed at longer times. The Tb3+ content of the samples reached a maximum of 21.71 wt%. The relative luminescence intensity revealed an almost linear dependence with Tb3+ up to a maximum of 850 units. Neither pH, nor ionic strength, nor temperature significantly affected the luminescence properties. All precipitates were cytocompatible against A375, MCF7, and HeLa carcinogenic cells, and also against healthy fibroblast cells. Moreover, the luminescence properties of these nanoparticles allowed to visualize their intracellular cytoplasmic uptake at 12 h of treatment through flow cytometry and fluorescence confocal microscopy (green fluorescence) when incubated with A375 cells. This demonstrates for the first time the potential of these materials as nanophosphors for living cell imaging compatible with flow cytometry and fluorescence confocal microscopy without the need to introduce an additional fluorescence dye. Overall, our results demonstrated that Tb3+-doped citrate-functionalized apatite nanoparticles are excellent candidates for bioimaging applications.
Collapse
|
8
|
Biomimetic Citrate-Coated Luminescent Apatite Nanoplatforms for Diclofenac Delivery in Inflammatory Environments. NANOMATERIALS 2022; 12:nano12030562. [PMID: 35159907 PMCID: PMC8838995 DOI: 10.3390/nano12030562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/16/2022]
Abstract
Luminescent nanoparticles are innovative tools for medicine, allowing the imaging of cells and tissues, and, at the same time, carrying and releasing different types of molecules. We explored and compared the loading/release ability of diclofenac (COX-2 antagonist), in both undoped- and luminescent Terbium3+ (Tb3+)-doped citrate-coated carbonated apatite nanoparticles at different temperatures (25, 37, 40 °C) and pHs (7.4, 5.2). The cytocompatibility was evaluated on two osteosarcoma cell lines and primary human osteoblasts. Biological effects of diclofenac-loaded-nanoparticles were monitored in an in vitro osteoblast’s cytokine–induced inflammation model by evaluating COX-2 mRNA expression and production of PGE2. Adsorption isotherms fitted the multilayer Langmuir-Freundlich model. The maximum adsorbed amounts at 37 °C were higher than at 25 °C, and particularly when using the Tb3+ -doped particles. Diclofenac-release efficiencies were higher at pH 5.2, a condition simulating a local inflammation. The luminescence properties of diclofenac-loaded Tb3+ -doped particles were affected by pH, being the relative luminescence intensity higher at pH 5.2 and the luminescence lifetime higher at pH 7.4, but not influenced either by the temperature or by the diclofenac-loaded amount. Both undoped and Tb3+-doped nanoparticles were cytocompatible. In addition, diclofenac release increased COX-2 mRNA expression and decreased PGE2 production in an in vitro inflammation model. These findings evidence the potential of these nanoparticles for osteo-localized delivery of anti-inflammatory drugs and the possibility to localize the inflammation, characterized by a decrease in pH, by changes in luminescence.
Collapse
|
9
|
Lu L, Duong VT, Shalash AO, Skwarczynski M, Toth I. Chemical Conjugation Strategies for the Development of Protein-Based Subunit Nanovaccines. Vaccines (Basel) 2021; 9:563. [PMID: 34071482 PMCID: PMC8228360 DOI: 10.3390/vaccines9060563] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
The production of subunit nanovaccines relies heavily on the development of a vaccine delivery system that is safe and efficient at delivering antigens to the target site. Nanoparticles have been extensively investigated for vaccine delivery over the years, as they often possess self-adjuvanting properties. The conjugation of antigens to nanoparticles by covalent bonds ensures co-delivery of these components to the same subset of immune cells in order to trigger the desired immune responses. Herein, we review covalent conjugation strategies for grafting protein or peptide antigens onto other molecules or nanoparticles to obtain subunit nanovaccines. We also discuss the advantages of chemical conjugation in developing these vaccines.
Collapse
Affiliation(s)
| | | | | | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia; (L.L.); (V.T.D.); (A.O.S.)
| |
Collapse
|
10
|
Gómez-Morales J, Fernández-Penas R, Romero-Castillo I, Verdugo-Escamilla C, Choquesillo-Lazarte D, D’Urso A, Prat M, Fernández-Sánchez JF. Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:322. [PMID: 33513811 PMCID: PMC7910970 DOI: 10.3390/nano11020322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/26/2022]
Abstract
Luminescent lanthanide-containing biocompatible nanosystems represent promising candidates as nanoplatforms for bioimaging applications. Herein, citrate-functionalized calcium-doped terbium phosphate hydrate nanophosphors of the rhabdophane type were prepared at different synthesis times and different Ca2+/Tb3+ ratios by a bioinspired crystallization method consisting of thermal decomplexing of Ca2+/Tb3+/citrate/phosphate/carbonate solutions. Nanoparticles were characterized by XRD, TEM, SEM, HR-TEM, FTIR, Raman, Thermogravimetry, inductively coupled plasma spectroscopy, thermoanalysis, dynamic light scattering, electrophoretic mobility, and fluorescence spectroscopy. They displayed ill-defined isometric morphologies with sizes ≤50 nm, hydration number n ~ 0.9, tailored Ca2+ content (0.42-8.11 wt%), and long luminescent lifetimes (800-2600 µs). Their relative luminescence intensities in solid state are neither affected by Ca2+, citrate content, nor by maturation time for Ca2+ doping concentration in solution below 0.07 M Ca2+. Only at this doping concentration does the maturation time strongly affect this property, decreasing it. In aqueous suspensions, neither pH nor ionic strength nor temperature affect their luminescence properties. All the nanoparticles displayed high cytocompatibility on two human carcinoma cell lines and cell viability correlated positively with the amount of doping Ca2+. Thus, these nanocrystals represent promising new luminescent nanoprobes for potential biomedical applications and, if coupled with targeting and therapeutic moieties, they could be effective tools for theranostics.
Collapse
Affiliation(s)
- Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Raquel Fernández-Penas
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Ismael Romero-Castillo
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Cristóbal Verdugo-Escamilla
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Avda. Las Palmeras, nº 4, 18100 Granada, Spain; (R.F.-P.); (I.R.-C.); (C.V.-E.); (D.C.-L.)
| | - Annarita D’Urso
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Via Solaroli, 17, 28100 Novara, Italy;
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 28100 Novara, Italy
| | | |
Collapse
|
11
|
Oltolina F, Peigneux A, Colangelo D, Clemente N, D’Urso A, Valente G, Iglesias GR, Jiménez-Lopez C, Prat M. Biomimetic Magnetite Nanoparticles as Targeted Drug Nanocarriers and Mediators of Hyperthermia in an Experimental Cancer Model. Cancers (Basel) 2020; 12:cancers12092564. [PMID: 32916816 PMCID: PMC7564965 DOI: 10.3390/cancers12092564] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The application of simultaneous and different strategies to treat cancer appears a promising therapeutic approach. Herein we proposed the application of chemotherapy combined with a magnetic nanocarrier delivery system to an in vitro and an in vivo experimental mammary carcinoma model. Drug-loaded biomimetic magnetic nanoparticle can be directed and concentrated on the tumor cells or site by the apposition of a magnet. Moreover, these nanoparticles can respond to an alternating magnetic field by developing hyperthermia around 43 °C, a temperature at which tumor cells, but not healthy cells, are particularly sensitive and thus induced to death. Indeed, when this nanoformulation is injected in vivo in the tumor site, and hyperthermia is generated, the combined chemo-thermal therapy mediated by these drug-loaded magnetic nanoparticles have a stronger therapeutic benefit compared to that carried out by the chemotherapeutic alone. These nanoformulation and strategy are thus promising tools for translational applications in cancer therapy. Abstract Biomimetic magnetic nanoparticles mediated by magnetosome proteins (BMNPs) are potential innovative tools for cancer therapy since, besides being multifunctional platforms, they can be manipulated by an external gradient magnetic field (GMF) and/or an alternating magnetic field (AMF), mediating targeting and hyperthermia, respectively. We evaluated the cytocompatibility/cytotoxicity of BMNPs and Doxorubicin (DOXO)-BMNPs in the presence/absence of GMF in 4T1 and MCF-7 cells as well as their cellular uptake. We analyzed the biocompatibility and in vivo distribution of BMNPs as well as the effect of DOXO-BMNPs in BALB/c mice bearing 4T1 induced mammary carcinomas after applying GMF and AMF. Results: GMF enhanced the cell uptake of both BMNPs and DOXO-BMNPs and the cytotoxicity of DOXO-BMNPs. BMNPs were biocompatible when injected intravenously in BALB/c mice. The application of GMF on 4T1 tumors after each of the repeated (6×) iv administrations of DOXO-BMNPs enhanced tumor growth inhibition when compared to any other treatment, including that with soluble DOXO. Moreover, injection of DOXO-BMNPs in the tumor combined with application of an AMF resulted in a significant tumor weight reduction. These promising results show the suitability of BMNPs as magnetic nanocarriers for local targeted chemotherapy and as local agents for hyperthermia.
Collapse
Affiliation(s)
- Francesca Oltolina
- Department of Health Sciences, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy; (F.O.); (D.C.); (N.C.); (A.D.)
| | - Ana Peigneux
- Department of Microbiology, University of Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain;
| | - Donato Colangelo
- Department of Health Sciences, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy; (F.O.); (D.C.); (N.C.); (A.D.)
| | - Nausicaa Clemente
- Department of Health Sciences, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy; (F.O.); (D.C.); (N.C.); (A.D.)
| | - Annarita D’Urso
- Department of Health Sciences, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy; (F.O.); (D.C.); (N.C.); (A.D.)
| | - Guido Valente
- Department of Translational Medicine, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy;
| | - Guillermo R. Iglesias
- Department of Applied Physic, University of Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain;
| | - Concepcion Jiménez-Lopez
- Department of Microbiology, University of Granada, Campus Fuentenueva, s/n, 18071 Granada, Spain;
- Correspondence: (C.J.-L.); (M.P.)
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale A. Avogadro, Via Solaroli 17, 28100 Novara, Italy; (F.O.); (D.C.); (N.C.); (A.D.)
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Trieste, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) Piazza Umberto I 1, 70121 Bari, Italy
- Centro Interdipartimentale di Medicina Rigenerativa (CIMeR), Via Montpellier, 1, 00133 Roma, Italy
- Correspondence: (C.J.-L.); (M.P.)
| |
Collapse
|
12
|
Nanoformulation Design Including MamC-Mediated Biomimetic Nanoparticles Allows the Simultaneous Application of Targeted Drug Delivery and Magnetic Hyperthermia. Polymers (Basel) 2020; 12:polym12081832. [PMID: 32824256 PMCID: PMC7465699 DOI: 10.3390/polym12081832] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies. In fact, MNPs can be used simultaneously as drug nanocarriers and magnetic hyperthermia agents and, moreover, they can be guided toward the target by an external magnetic field and by their functionalization with a specific probe. However, it is difficult to find a system based on MNPs that exhibits optimal conditions as a drug nanocarrier and as a magnetic hyperthermia agent. In this work, a novel nanoformulation is proposed to be used as a multifunctional platform that also allows dual complementary guidance. This nanoformulation is based on mixtures of inorganic magnetic nanoparticles (M) that have been shown to be optimal hyperthermia agents, and biomimetic magnetic nanoparticles (BM), that have been shown to be highly efficient drug nanocarriers. The presence of the magnetosome protein MamC at the surface of BM confers novel surface properties that allow for the efficient and stable functionalization of these nanoparticles without the need of further coating, with the release of the relevant molecule being pH-dependent, improved by magnetic hyperthermia. The BM are functionalized with Doxorubicin (DOXO) as a model drug and with an antibody that allows for dual guidance based on a magnetic field and on an antibody. The present study represents a proof of concept to optimize the nanoformulation composition in order to provide the best performance in terms of the magnetic hyperthermia agent and drug nanocarrier.
Collapse
|
13
|
Rimsueb N, Cherdchom S, Aksornkitti V, Khotavivattana T, Sereemaspun A, Rojanathanes R. Feeding Cells with a Novel "Trojan" Carrier: Citrate Nanoparticles. ACS OMEGA 2020; 5:7418-7423. [PMID: 32280883 PMCID: PMC7144169 DOI: 10.1021/acsomega.0c00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/12/2020] [Indexed: 06/11/2023]
Abstract
In this work, the preparation of novel calcium citrate (CaCit) nanoparticles (NPs) has been disclosed and the use of these NPs as "Trojan" carriers has been demonstrated. The concentration ratio between calcium ions and citrate ions was optimized, yielding spherical NPs with size in the range of 100-200 nm. Additionally, a fluorescent dye, fluorescein isothiocyanate (FITC), was successfully encapsulated by the coprecipitation method. The products were characterized by thermogravimetric analysis and scanning electron microscopy. The cellular uptake was investigated by incubating the synthesized fluorescent-tagged NPs with human keratinocytes using a confocal microscope. The accumulation of the FITC in the cells suggested that the CaCit NPs can potentially be used as novel drug carriers.
Collapse
Affiliation(s)
- Natchanon Rimsueb
- Faculty
of Science, Department of Chemistry, Chulalongkorn
University, Phayathai Road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Sarocha Cherdchom
- Chula
Medical Innovation Center (CMIC), Nanomedicine Research Unit, Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road,
Patumwan, Bangkok 10330, Thailand
| | - Vitavat Aksornkitti
- Chula
Medical Innovation Center (CMIC), Nanomedicine Research Unit, Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road,
Patumwan, Bangkok 10330, Thailand
| | - Tanatorn Khotavivattana
- Center
of Excellence in Natural Products Chemistry, Department of Chemistry, Chulalongkorn University, Phayathai Road, Wangmai, Patumwan, Bangkok 10330, Thailand
| | - Amornpun Sereemaspun
- Chula
Medical Innovation Center (CMIC), Nanomedicine Research Unit, Department
of Anatomy, Faculty of Medicine, Chulalongkorn
University, Rama 4 Road,
Patumwan, Bangkok 10330, Thailand
| | - Rojrit Rojanathanes
- Center
of Excellence in Materials and Bio-Interfaces Faculty of Science, Chulalongkorn University, Phayathai Road, Wangmai, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Jabalera Y, Oltolina F, Prat M, Jimenez-Lopez C, Fernández-Sánchez JF, Choquesillo-Lazarte D, Gómez-Morales J. Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E199. [PMID: 31979272 PMCID: PMC7074876 DOI: 10.3390/nano10020199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/04/2022]
Abstract
In the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir-Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.29 ± 0.02 mg Doxo mg Eu:cit-cAp-1 (Qmax). The affinity constant KFL for this binding is 44 ± 2 mL mg-1, and the cooperativity coefficient r is 6 ± 1. The nanoparticle suspensions presented charge reversion from negative to positive after loading with Doxo as revealed by the ζ-potential versus pH characterization. The release of drug from the loaded nanoparticles was found to be strongly pH-dependent, being around 5 wt % at physiological pH 7.4 and 20 wt % at pH 5, in experiments lasting 24 h. Luminescence spectroscopic measurements of Doxo-loaded nanoparticles revealed the increase of luminescence with a decrease in the amount of adsorbed Doxo, due to the so-called inner filter effect. The nanoparticles free of Doxo were cytocompatible when interacted with two human cell lines derived respectively from a gastric carcinoma (GTL-16), and a hepatocarcinoma (Huh7), while Doxo-loaded nanoparticles displayed significant toxicity in a dose-dependent relationship. Therefore, the new nanoassemblies might have a dual function, as nanoprobes in bioimaging by detecting the fate of the nanoparticles in biological environments, and for monitoring the delivery of the drug in such environments, by measuring the rise of the luminescence provided by the desorption of Doxo.
Collapse
Affiliation(s)
- Ylenia Jabalera
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Francesca Oltolina
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy;
| | - Concepcion Jimenez-Lopez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Campus de Fuentenueva s/n, 18002 Granada, Spain; (Y.J.); (F.O.); (C.J.-L.)
| | - Jorge F. Fernández-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain;
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT-CSIC-Universidad de Granada, Avda. Las Palmeras, 4, 18100 Armilla, Spain;
| |
Collapse
|
15
|
Oltolina F, Colangelo D, Miletto I, Clemente N, Miola M, Verné E, Prat M, Follenzi A. Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1575. [PMID: 31698869 PMCID: PMC6915337 DOI: 10.3390/nano9111575] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Tumor-targeted drug-loaded nanocarriers represent innovative and attractive tools for cancer therapy. Several magnetic nanoparticles (MNPs) were analyzed as potential tumor-targeted drug-loaded nanocarriers after functionalization with anti-Met oncogene (anti-Met/HGFR) monoclonal antibody (mAb) and doxorubicin (DOXO). Their cytocompatibility, stability, immunocompetence (immunoprecipitation), and their interactions with cancer cells in vitro (Perl's staining, confocal microscopy, cytotoxic assays: MTT, real time toxicity) and with tumors in vivo (Perl's staining) were evaluated. The simplest silica- and calcium-free mAb-loaded MNPs were the most cytocompatible, the most stable, and showed the best immunocompetence and specificity. These mAb-functionalized MNPs specifically interacted with the surface of Met/HGFR-positive cells, and not with Met/HGFR-negative cells; they were not internalized, but they discharged in the targeted cells DOXO, which reached the nucleus, exerting cytotoxicity. The presence of mAbs on DOXO-MNPs significantly increased their cytotoxicity on Met/HGFR-positive cells, while no such effect was detectable on Met/HGFR-negative cells. Bare MNPs were biocompatible in vivo; mAb presence on MNPs induced a better dispersion within the tumor mass when injected in situ in Met/HGFR-positive xenotumors in NOD/SCID-γnull mice. These MNPs may represent a new and promising carrier for in vivo targeted drug delivery, in which applied gradient and alternating magnetic fields can enhance targeting and induce hyperthermia respectively.
Collapse
Affiliation(s)
- Francesca Oltolina
- Laboratory of Histology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Donato Colangelo
- Laboratory of Pharmacology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Ivana Miletto
- Department of Science and Technological Innovation (DISIT), Università del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15100 Alessandria, Italy
| | - Nausicaa Clemente
- Laboratory of Immunology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Marta Miola
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Enrica Verné
- Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Maria Prat
- Laboratory of Histology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 28100 Novara, Italy
| | - Antonia Follenzi
- Laboratory of Histology, Department of Health Sciences (DSS), Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
- Consorzio Interuniversitario per Biotecnologie (CIB), Località Padriciano 99, 34149 Area di Ricerca, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 28100 Novara, Italy
| |
Collapse
|
16
|
Li A, Zhao J, Fu J, Cai J, Zhang P. Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian J Pharm Sci 2019; 16:161-174. [PMID: 33995611 PMCID: PMC8105416 DOI: 10.1016/j.ajps.2019.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
The lack of effective methods of diagnosis and treatment presents a major barrier to combat against tumor. The biomimetic concept is an emerging field that expresses great application potential in tumor fighting. Strategy for combining nano-systems with biomimetic technology has gained increasing attention that is proved bioinspired, environmentally benign, and promising. Herein, we provide an up-to-date review of biomimetic nano-systems as well as their applications in tumor therapy. In addition, the challenges and future directions of biomimetic nano-systems to achieve clinical translation are also pointed out.
Collapse
Affiliation(s)
- Anning Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiawei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingru Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Cai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
17
|
Bioinspired crystallization, sensitized luminescence and cytocompatibility of citrate-functionalized Ca-substituted europium phosphate monohydrate nanophosphors. J Colloid Interface Sci 2019; 538:174-186. [PMID: 30504057 DOI: 10.1016/j.jcis.2018.11.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
Biocompatible nanosystems exhibiting long-lifetime (∼millisecond) luminescence features are particularly relevant in the field of bioimaging. In this study, citrate-functionalized calcium-doped europium phosphates nanophosphors of the rhabdophane type were prepared at different synthesis times by a bioinspired crystallization route, consisting in thermal decomplexing of Ca2+/Eu3+ /citrate/phosphate/carbonate solutions. The general formula of this material is CaαEu1-α(PO4)1-α(HPO4)α·nH2O, with α ranging from 0 to 0.58 and n ∼ 1. A thorough characterization of the nanoparticles has been carried out by XRD (including data processing with Topas 6.0), HR-TEM, TEM, FTIR, TG/DTA, ICP, dynamic light scattering (DLS), electrophoretic mobility, and fluorescence spectroscopy. Based on these results a crystallization mechanism involving the filling of cationic sites with Ca2+ions associated to a concomitant adjustment of the PO4/HPO4 ratio was proposed. Upon calcium doping, the aspect ratio of the nanoparticles as well as of the crystalline domains decreased and the relative luminescence intensity (R.L.I.) could be modulated. Neither the pH nor the ionic strength, nor the temperature (from 25 to 37 °C) affected significantly the R.L.I. of particles after resuspension in water, leading to rather steady luminescence features usable in a large domain of conditions. This new class of luminescent compounds has been proved to be fully cytocompatible relative to GTL-16 human carcinoma cells and showed an improved cytocompatibility as the Ca2+ content increased when contacted with the more sensitive m17. ASC murine mesenchymal stem cells. These biocompatible nanoparticles thus appear as promising new tailorable tools for biomedical applications as luminescent nanoprobes.
Collapse
|
18
|
Tan J, Jin X, Chen M. Bio-inspired synthesis of aqueous nanoapatite liquid crystals. Sci Rep 2019; 9:466. [PMID: 30679530 PMCID: PMC6345739 DOI: 10.1038/s41598-018-36843-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/28/2018] [Indexed: 12/17/2022] Open
Abstract
The macroscopically ordered structure of rod-like nanoapatites within the collagen matrix is of great significance for the mechanical performance of bones and teeth. However, the synthesis of macroscopically ordered nanoapatite remains a challenge. Inspired by the effect of citrate molecules on apatite crystals in natural bone and the similarities between these ordered rod-like nanoapatites and the nematic phase of inorganic liquid crystals (LCs), we synthesized aqueous liquid crystal from rod-like nanoapatites with the aid of sodium citrate. Following a similar procedure, aqueous Mg(OH)2 and Mg3(PO4)2 LCs were also prepared. These findings lay the foundation for the fabrication of macroscopically assembled nanoapatite-based functional materials for biomedical applications and offer a green chemical synthesis platform for the development of new types of inorganic LCs. This process may reduce the difficulties in synthesizing large quantities of inorganic LCs so that they can be applied to the fabrication of functional materials.
Collapse
Affiliation(s)
- Junjun Tan
- Hubei Province Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center for Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan, 430068, P. R. China.
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China.
| | - Xiaoying Jin
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, Hubei, P. R. China
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China.
| |
Collapse
|
19
|
Svechkarev D, Mohs AM. Organic Fluorescent Dye-based Nanomaterials: Advances in the Rational Design for Imaging and Sensing Applications. Curr Med Chem 2019; 26:4042-4064. [PMID: 29484973 PMCID: PMC6703954 DOI: 10.2174/0929867325666180226111716] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022]
Abstract
Self-assembled fluorescent nanomaterials based on small-molecule organic dyes are gaining increasing popularity in imaging and sensing applications over the past decade. This is primarily due to their ability to combine spectral properties tunability and biocompatibility of small molecule organic fluorophores with brightness, chemical and colloidal stability of inorganic materials. Such a unique combination of features comes with rich versatility of dye-based nanomaterials: from aggregates of small molecules to sophisticated core-shell nanoarchitectures involving hyperbranched polymers. Along with the ongoing discovery of new materials and better ways of their synthesis, it is very important to continue systematic studies of fundamental factors that regulate the key properties of fluorescent nanomaterials: their size, polydispersity, colloidal stability, chemical stability, absorption and emission maxima, biocompatibility, and interactions with biological interfaces. In this review, we focus on the systematic description of various types of organic fluorescent nanomaterials, approaches to their synthesis, and ways to optimize and control their characteristics. The discussion is built on examples from reports on recent advances in the design and applications of such materials. Conclusions made from this analysis allow a perspective on future development of fluorescent nanomaterials design for biomedical and related applications.
Collapse
Affiliation(s)
- Denis Svechkarev
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| | - Aaron M. Mohs
- University of Nebraska Medical Center, Department of Pharmaceutical Sciences, Fred and Pamela Buffett Cancer Center, Omaha, United States
| |
Collapse
|
20
|
Qi C, Lin J, Fu LH, Huang P. Calcium-based biomaterials for diagnosis, treatment, and theranostics. Chem Soc Rev 2018; 47:357-403. [PMID: 29261194 DOI: 10.1039/c6cs00746e] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
Collapse
Affiliation(s)
- Chao Qi
- Guangdong Key Laboratory for Biomedical, Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | | | | | | |
Collapse
|
21
|
Gómez-Morales J, Verdugo-Escamilla C, Fernández-Penas R, Parra-Milla CM, Drouet C, Maube-Bosc F, Oltolina F, Prat M, Fernández-Sánchez JF. Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: physico-chemistry and cytocompatibility. RSC Adv 2018; 8:2385-2397. [PMID: 35541482 PMCID: PMC9077401 DOI: 10.1039/c7ra12536d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 12/24/2017] [Indexed: 11/28/2022] Open
Abstract
Nanomedicine covers the application of nanotechnologies in medicine. Of particular interest is the setup of highly-cytocompatible nanoparticles for use as drug carriers and/or for medical imaging. In this context, luminescent nanoparticles are appealing nanodevices with great potential for imaging of tumor or other targetable cells, and several strategies are under investigation. Biomimetic apatite nanoparticles represent candidates of choice in nanomedicine due to their high intrinsic biocompatibility and to the highly accommodative properties of the apatite structure, allowing many ionic substitutions. In this work, the preparation of biomimetic (bone-like) citrate-coated carbonated apatite nanoparticles doped with europium ions is explored using the citrate-based thermal decomplexing approach. The technique allows the preparation of the single apatitic phase with nanosized dimensions only at Eu3+ doping concentrations ≤0.01 M at some timepoints. The presence of the citrate coating on the particle surface (as found in bone nanoapatites) and Eu3+ substituting Ca2+ is beneficial for the preparation of stable suspensions at physiological pH, as witnessed by the ζ-potential versus pH characterizations. The sensitized luminescence features of the solid particles, as a function of the Eu3+ doping concentrations and the maturation times, have been thoroughly investigated, while those of particles in suspensions have been investigated at different pHs, ionic strengths and temperatures. Their cytocompatibility is illustrated in vitro on two selected cell types, the GTL-16 human carcinoma cells and the m17.ASC murine mesenchymal stem cells. This contribution shows the potentiality of the thermal decomplexing method for the setup of luminescent biomimetic apatite nanoprobes with controlled features for use in bioimaging.
Collapse
Affiliation(s)
- Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Cristóbal Verdugo-Escamilla
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Raquel Fernández-Penas
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Carmen María Parra-Milla
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR) Avda. Las Palmeras, No. 4. E-18100 Armilla Granada Spain
| | - Christophe Drouet
- CIRIMAT, Université de Toulouse, UMR CNRS/INPT/UPS 5085, Ensiacet 4 Allée Emile Monso 31030 Toulouse Cedex 4 France
| | - Françoise Maube-Bosc
- CIRIMAT, Université de Toulouse, UMR CNRS/INPT/UPS 5085, Ensiacet 4 Allée Emile Monso 31030 Toulouse Cedex 4 France
| | - Francesca Oltolina
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale A. Avogadro Via Solaroli, 17 28100 Novara Italy
| | - Maria Prat
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale A. Avogadro Via Solaroli, 17 28100 Novara Italy
| | | |
Collapse
|
22
|
Kampmann AL, Grabe T, Jaworski C, Weberskirch R. Synthesis of well-defined core–shell nanoparticles based on bifunctional poly(2-oxazoline) macromonomer surfactants and a microemulsion polymerization process. RSC Adv 2016. [DOI: 10.1039/c6ra22896h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Surface-functional nanoparticles have been fabricated by utilizing bifunctional poly(2-oxazoline) macromonomers as surfactants in a microemulsion process.
Collapse
Affiliation(s)
| | - Tobias Grabe
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| | - Carolin Jaworski
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| | - Ralf Weberskirch
- Faculty of Chemistry and Chemical Biology
- D-44227 Dortmund
- Germany
| |
Collapse
|
23
|
Liu L, Shi Y, Yang Y, Li M, Long Y, Huang Y, Zheng H. Fluorescein as an artificial enzyme to mimic peroxidase. Chem Commun (Camb) 2016; 52:13912-13915. [DOI: 10.1039/c6cc07896f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescein was found to possess intrinsic peroxidase-like activity, which could catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) by H2O2 to produce a color reaction.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ying Shi
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yufang Yang
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Menglu Li
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yijuan Long
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuming Huang
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Huzhi Zheng
- Key Laboratory on Luminescent and Real-Time Analytical Chemistry
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
24
|
Prat M, Oltolina F, Basilico C. Monoclonal Antibodies against the MET/HGF Receptor and Its Ligand: Multitask Tools with Applications from Basic Research to Therapy. Biomedicines 2014; 2:359-383. [PMID: 28548076 PMCID: PMC5344273 DOI: 10.3390/biomedicines2040359] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure-function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as "bullets" to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy.
Collapse
Affiliation(s)
- Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Francesca Oltolina
- Department of Health Sciences, Università del Piemonte Orientale, via Solaroli 17, 28100 Novara, Italy.
| | - Cristina Basilico
- Laboratory of Exploratory Research, Candiolo Cancer Institute, Str. Prov. 142, 10060 Candiolo, Italy.
| |
Collapse
|