1
|
Bhagavathi Kandy S, Neithalath N, Bauchy M, Kumar A, Garboczi E, Gaedt T, Srivastava S, Sant G. Electrosteric Control of the Aggregation and Yielding Behavior of Concentrated Portlandite Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10395-10405. [PMID: 37462925 DOI: 10.1021/acs.langmuir.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Portlandite (calcium hydroxide: CH: Ca(OH)2) suspensions aggregate spontaneously and form percolated fractal aggregate networks when dispersed in water. Consequently, the viscosity and yield stress of portlandite suspensions diverge at low particle loadings, adversely affecting their processability. Even though polycarboxylate ether (PCE)-based comb polyelectrolytes are routinely used to alter the particle dispersion state, water demand, and rheology of similar suspensions (e.g., ordinary portland cement suspensions) that feature a high pH and high ionic strength, their use to control portlandite suspension rheology has not been elucidated. This study combines adsorption isotherms and rheological measurements to elucidate the role of PCE composition (i.e., charge density, side chain length, and grafting density) in controlling the extent of PCE adsorption, particle flocculation, suspension yield stress, and thermal response of portlandite suspensions. We show that longer side-chain PCEs are more effective in affecting suspension viscosity and yield stress, in spite of their lower adsorption saturation limit and fractional adsorption. The superior steric hindrance induced by the longer side chain PCEs results in better efficacy in mitigating particle aggregation even at low dosages. However, when dosed at optimal dosages (i.e., a dosage that induces a dynamically equilibrated dispersion state of particle aggregates), different PCE-dosed portlandite suspensions exhibit identical fractal structuring and rheological behavior regardless of the side chain length. Furthermore, it is shown that the unusual evolution of the rheological response of portlandite suspensions with temperature can be tailored by adjusting the PCE dosage. The ability of PCEs to modulate the rheology of aggregating charged particle suspensions can be generally extended to any colloidal suspension with a strong screening of repulsive electrostatic interactions.
Collapse
Affiliation(s)
- Sharu Bhagavathi Kandy
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
- Institute for Carbon Management (ICM), University of California, Los Angeles, California 90095, United States
| | - Narayanan Neithalath
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 86587, United States
| | - Mathieu Bauchy
- Institute for Carbon Management (ICM), University of California, Los Angeles, California 90095, United States
- Laboratory for the Physics of AmoRphous and Inorganic Solids (PARISlab), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Aditya Kumar
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Edward Garboczi
- Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Torben Gaedt
- Department of Chemistry, Technische Universität München, Lehrstuhl für Bauchemie, Lichtenbergstrasse 4, Garching bei München D-85747, Germany
| | - Samanvaya Srivastava
- Institute for Carbon Management (ICM), University of California, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
- UCLA Center for Biological Physics, University of California, Los Angeles, California 90095, United States
- California Nanosystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
| | - Gaurav Sant
- Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
- Institute for Carbon Management (ICM), University of California, Los Angeles, California 90095, United States
- California Nanosystems Institute (CNSI), University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Martinez MR, Dworakowska S, Gorczyński A, Szczepaniak G, Bossa FDL, Matyjaszewski K. Kinetic comparison of isomeric oligo(ethylene oxide) (meth)acrylates: Aqueous polymerization of oligo(ethylene oxide) methyl ether methacrylate and methyl 2‐(oligo(ethylene oxide) methyl ether)acrylate macromonomers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael R. Martinez
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Sylwia Dworakowska
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Department of Biotechnology and Renewable Materials, Faculty of Chemical Engineering and Technology Cracow University of Technology Cracow Poland
| | - Adam Gorczyński
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
- Faculty of Chemistry Adam Mickiewicz University Poznań Poland
| | - Grzegorz Szczepaniak
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Ferdinando De Luca Bossa
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
3
|
Klimkevicius V, Voronovic E, Jarockyte G, Skripka A, Vetrone F, Rotomskis R, Katelnikovas A, Karabanovas V. Polymer brush coated upconverting nanoparticles with improved colloidal stability and cellular labeling. J Mater Chem B 2022; 10:625-636. [PMID: 34989749 DOI: 10.1039/d1tb01644j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Upconverting nanoparticles (UCNPs) possess great potential for biomedical application. UCNPs absorb and convert near-infrared (NIR) radiation in the biological imaging window to visible (Vis) and even ultraviolet (UV) radiation. NIR excitation offers reduced scattering and diminished autofluorescence in biological samples, whereas the emitted UV-Vis and NIR photons can be used for cancer treatment and imaging, respectively. However, UCNPs are usually synthesized in organic solvents and are not readily suitable for biomedical application due to the hydrophobic nature of their surface. Herein, we have removed the hydrophobic ligands from the synthesized UCNPs and coated the bare UCNPs with two custom-made hydrophilic polyelectrolytes (synthesized via the reversible addition-fragmentation chain transfer (RAFT) polymerization method). Polymers containing different amounts of PEGylated and carboxylic groups were studied. Coating with both polymers increased the upconversion (UC) emission intensity and photoluminescence lifetime values of the UCNPs, which directly translates to more efficient cancer cell labeling nanoprobes. The polymer composition plays a crucial role in the modification of UCNPs, not only with respect to their colloidal stability, but also with respect to the cellular uptake. Colloidally unstable bare UCNPs aggregate in cell culture media and precipitate, rendering themselves unsuitable for any biomedical use. However, stabilization with polymers prevents UCNPs from aggregation, increases their uptake in cells, and improves the quality of cellular labeling. This investigation sheds light on the appropriate coating for UCNPs and provides relevant insights for the rational development of imaging and therapeutic tools.
Collapse
Affiliation(s)
- Vaidas Klimkevicius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Evelina Voronovic
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania.,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Greta Jarockyte
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Life Science Center, Vilnius University, Sauletekio av. 7, LT-10257, Vilnius, Lithuania
| | - Artiom Skripka
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique, Centre Énergie, Matériaux et Télécommunications, Université du Québec, 1650, boul. Lionel-Boulet, J3X 1S2, Varennes, QC, Canada
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Biophotonics Group of Laser Research Centre, Vilnius University, Saulėtekio 9, c.3, LT-10222, Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania.
| | - Vitalijus Karabanovas
- Biomedical Physics Laboratory of National Cancer Institute, Baublio 3B, LT-08406, Vilnius, Lithuania. .,Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
4
|
Fujimoto K, Yamawaki-Ogata A, Narita Y, Kotsuchibashi Y. Fabrication of Cationic Poly(vinyl alcohol) Films Cross-Linked Using Copolymers Containing Quaternary Ammonium Cations, Benzoxaborole, and Carboxy Groups. ACS OMEGA 2021; 6:17531-17544. [PMID: 34278139 PMCID: PMC8280637 DOI: 10.1021/acsomega.1c02013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/16/2021] [Indexed: 05/26/2023]
Abstract
Water-insoluble cationic poly(vinyl alcohol) (PVA) films were fabricated using a mixed aqueous solution of PVA and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride (METAC)-co-methacrylic acid (MAAc)-co-5-methacrylamido-1,2-benzoxaborole (MAAmBO)) copolymer (3D). The surface of the PVA film is typically negatively charged, and simple fabrication methods for water-insoluble PVA films with cationic surface charges are required to expand their application fields. METAC, which has a permanent positive charge owing to the presence of a quaternary ammonium cation, was selected as the cationic unit. The MAAc and MAAmBO units were used as two types of cross-linking structures for the thermal cross-linking of the hydroxy and carboxy groups of the MAAc unit (covalent bonding) as well as the diol and benzoxaborole groups of the MAAmBO unit (dynamic covalent bonding). The films were thermally cross-linked at 135 °C for 4 h without the addition of materials. After immersion in surplus water at 80 °C for 3 h, the cross-linked PVA/3D films retained almost 100% of their weights. The ζ-potential of the water-insoluble PVA/3D film was 9.4 ± 0.8 mV. The PVA/3D film was strongly dyed using anionic acid red 1 (AR1) because of its positively charged surface. Interestingly, it could also be slightly dyed using cationic methylene blue (MB) and became transparent (original state) after immersion in water for 2 days. These results suggested that positive and negative charges coexisted in the PVA/3D film, and the surface properties were positively inclined. Moreover, the degree of hemolysis of the PVA/3D films was similar to that of the negative control, which showed high blood compatibility. To our knowledge, this is the first report on the fabrication of water-insoluble cationic PVA films using two types of cross-linking structures containing carboxy and benzoxaborole groups. The cross-linked PVA films were analyzed using Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and contact angle (CA) and ζ-potential measurement, as well as by determining the mechanical properties, adsorption of charged molecules, and biocompatibility. These readily fabricated water-insoluble PVA films with positive charges can show potential applications in sensors, adsorption systems, and antimicrobial materials.
Collapse
Affiliation(s)
- Kazuma Fujimoto
- Department
of Materials and Life Science, Shizuoka
Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| | - Aika Yamawaki-Ogata
- Department
of Cardiac Surgery, Nagoya University Graduate
School of Medicine, 65
Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuji Narita
- Department
of Cardiac Surgery, Nagoya University Graduate
School of Medicine, 65
Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yohei Kotsuchibashi
- Department
of Materials and Life Science, Shizuoka
Institute of Science and Technology, 2200-2 Toyosawa, Fukuroi, Shizuoka 437-8555, Japan
| |
Collapse
|
5
|
Klimkevicius V, Janulevicius M, Babiceva A, Drabavicius A, Katelnikovas A. Effect of Cationic Brush-Type Copolymers on the Colloidal Stability of GdPO 4 Particles with Different Morphologies in Biological Aqueous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7533-7544. [PMID: 32493012 PMCID: PMC7467769 DOI: 10.1021/acs.langmuir.0c01130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Indexed: 06/11/2023]
Abstract
In this study, we present the synthesis of cationic brush-type polyelectrolytes and their use in the stabilization of GdPO4 particles in aqueous media. Polymers of various compositions were synthesized via the RAFT polymerization route. SEC equipped with triple detection (RI, DP, RALS, and LALS) was used to determine the molecular parameters (Mn, Mw, Mw/Mn). The exact composition of synthesized polymers was determined using NMR spectroscopy. Cationic brush-type polymers were used to improve the stability of aqueous GdPO4 particle dispersions. First, the IEPs of GdPO4 particles with different morphologies (nanorods, hexagonal nanoprisms, and submicrospheres) were determined by measuring the zeta potential of bare particle dispersions at various pH values. Afterward, cationic brush-type polyelectrolytes with different compositions were used for the surface modification of GdPO4 particles (negatively charged in alkaline media under a pH value of ∼10.6). The concentration and composition effects of used polymers on the change in particle surface potential and stability (DLS measurements) in dispersions were investigated and presented in this work. The most remarkable result of this study is redispersible GdPO4 nanoparticle colloids with increased biocompatibility and stability as well as new insights into possible cationic brush-type polyelectrolyte applicability in both scientific and commercial fields.
Collapse
Affiliation(s)
- Vaidas Klimkevicius
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Matas Janulevicius
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Aleksandra Babiceva
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Audrius Drabavicius
- Centre
of Physical Science and Technology, Sauletekis av. 3, LT-10257 Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute
of Chemistry, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
6
|
Higuchi M, Kanazawa A, Aoshima S. Design of Graft Architectures via Simultaneous Kinetic Control of Cationic Vinyl-Addition Polymerization of Vinyl Ethers, Coordination Ring-Opening Polymerization of Cyclic Esters, and Merging at the Propagating Chain End. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Motoki Higuchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Arihiro Kanazawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sadahito Aoshima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
7
|
Dobryden I, Steponavičiu Tė M, Klimkevičius V, Makuška R, Dėdinaitė A, Liu X, Corkery RW, Claesson PM. Bioinspired Adhesion Polymers: Wear Resistance of Adsorption Layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15515-15525. [PMID: 31310126 DOI: 10.1021/acs.langmuir.9b01818] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mussel adhesive polymers owe their ability to strongly bind to a large variety of surfaces under water to their high content of 3,4-dihydroxy-l-phenylalanine (DOPA) groups and high positive charge. In this work, we use a set of statistical copolymers that contain medium-length poly(ethylene oxide) side chains that are anchored to the surface in three different ways: by means of (i) electrostatic forces, (ii) catechol groups (as in DOPA), and (iii) the combination of electrostatic forces and catechol groups. A nanotribological scanning probe method was utilized to evaluate the wear resistance of the formed layers as a function of normal load. It was found that the combined measurement of surface topography and stiffness provided an accurate assessment of the wear resistance of such thin layers. In particular, surface stiffness maps allowed us to identify the initiation of wear before a clear topographical wear scar was developed. Our data demonstrate that the molecular and abrasive wear resistance on silica surfaces depends on the anchoring mode and follows the order catechol groups combined with electrostatic forces > catechol groups alone > electrostatic forces alone. The devised methodology should be generally applicable for evaluating wear resistance or "robustness" of thin adsorbed layers on a variety of surfaces.
Collapse
Affiliation(s)
- Illia Dobryden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , SE-100 44 Stockholm , Sweden
| | | | - Vaidas Klimkevičius
- Institute of Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| | - Ričardas Makuška
- Institute of Chemistry , Vilnius University , Naugarduko 24 , LT-03225 Vilnius , Lithuania
| | - Andra Dėdinaitė
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , SE-100 44 Stockholm , Sweden
- Division of Bioscience and Materials , RISE Research Institutes of Sweden , SE-114 86 Stockholm , Sweden
| | - Xiaoyan Liu
- School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , China
| | - Robert W Corkery
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , SE-100 44 Stockholm , Sweden
| | - Per Martin Claesson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , SE-100 44 Stockholm , Sweden
- Division of Bioscience and Materials , RISE Research Institutes of Sweden , SE-114 86 Stockholm , Sweden
| |
Collapse
|
8
|
Laopa P, Vilaivan T. Cationic‐Polymer‐Functionalized Zinc Oxide Quantum Dots: Preparation and Application to Iron(II) Ion Detection. ChemistrySelect 2019. [DOI: 10.1002/slct.201900424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Praethong Laopa
- Department of General Science, Faculty of Science and EngineeringKasetsart UniversityChalermphrakiat Sakon Nakhon Province Campus Sakon Nakhon 47000 Thailand
| | - Tirayut Vilaivan
- Organic Synthesis Research UnitDepartment of Chemistry, Faculty of ScienceChulalongkorn University Phayathai Road, Patumwan Bangkok 10330 Thailand
| |
Collapse
|
9
|
Jia W, Tian J, Bai P, Li S, Zeng H, Zhang W, Tian Y. A novel comb-typed poly(oligo(ethylene glycol) methylether acrylate) as an excellent aqueous lubricant. J Colloid Interface Sci 2018; 539:342-350. [PMID: 30594009 DOI: 10.1016/j.jcis.2018.12.085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 11/16/2022]
Abstract
HYPOTHESIS Aqueous lubricants exhibit versatile advantages over oil-based lubricants. However, it still remains a challenge for the aqueous solutions to obtain excellent lubrication properties with high contact pressure on macroscale. EXPERIMENTS In this work, a comb-typed poly(oligo(ethylene glycol) methylether acrylate) (P(OEGMA)) was successfully synthesized via RAFT polymerization. Rheological, morphological and tribological properties of prepared P(OEGMA) aqueous solutions were characterized via a rheometer, cryo-SEM and ball-on-disk tribometer, respectively. FINDINGS The synthesized P(OEGMA) exhibited a uniformly smaller size than that of the commercial linear polyethylene glycol (PEG), leading to reduced viscosities in aqueous solutions. The obtained P(OEGMA) aqueous solutions achieved outstandingly ultralow friction coefficients (μ < 0.01) and a good wear-resistance under high pressure (>300 MPa, two-fold increase than reported in the previous literature). The desirable lubricating performances can be attributed to the well-established running-in period, a good interfacial adsorption property between polymer molecules and solid surfaces, the hydration effect as well as the hydrodynamic effect. The current finding reveals the excellent aqueous lubrication properties possessed by the synthesized comb-typed P(OEGMA), which can broaden the development of aqueous lubricants in practical engineering fields.
Collapse
Affiliation(s)
- Wenpeng Jia
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinmi Tian
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengpeng Bai
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Shaowei Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenling Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yu Tian
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Zajforoushan Moghaddam S, Zhu K, Nyström B, Thormann E. Thermo-responsive diblock and triblock cationic copolymers at the silica/aqueous interface: A QCM-D and AFM study. J Colloid Interface Sci 2017. [PMID: 28646758 DOI: 10.1016/j.jcis.2017.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Klimkevicius V, Makuska R. Successive RAFT polymerization of poly(ethylene oxide) methyl ether methacrylates with different length of PEO chains giving diblock brush copolymers. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
The effect of acrylamides copolymers on the stability and rheological properties of yellow iron oxide dispersion. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Gao H, Wen D, Tarakina NV, Liang J, Bushby AJ, Sukhorukov GB. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules. NANOSCALE 2016; 8:5170-80. [PMID: 26878702 DOI: 10.1039/c5nr06666b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Designing and fabricating multifunctional microcapsules are of considerable interest in both academic and industrial research aspects. This work reports an innovative approach to fabricate composite capsules with high UV and ultrasound responsive functionalities that can be used as external triggers for controlled release, yet with enhanced mechanical strength that can make them survive in a harsh environment. Needle-like TiO2 nanoparticles (NPs) were produced in situ into layer-by-layer (LbL) polyelectrolyte (PE) shells through the hydrolysis of titanium butoxide (TIBO). These rigid TiO2 NPs yielded the formed capsules with excellent mechanical strength, showing a free standing structure. A possible mechanism is proposed for the special morphology formation of the TiO2 NPs and their reinforcing effects. Synergistically, their response to UV and ultrasound was visualized via SEM, with the results showing an irreversible shell rapture upon exposure to either UV or ultrasound irradiation. As expected, the release studies revealed that the dextran release from the TiO2/PE capsules was both UV-dependent and ultrasound-dependent. Besides, the biocompatibility of the capsules with the incorporation of amorphous TiO2 NPs was confirmed by an MTT assay experiment. All these pieces of evidence suggested a considerable potential medicinal application of TiO2/PE capsules for controlled drug delivery.
Collapse
Affiliation(s)
- Hui Gao
- The School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| | - Dongsheng Wen
- Institute of Particle Science and Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Nadezda V Tarakina
- The School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| | - Jierong Liang
- The School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| | - Andy J Bushby
- The School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| | - Gleb B Sukhorukov
- The School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
14
|
Timin AS, Muslimov AR, Lepik KV, Saprykina NN, Sergeev VS, Afanasyev BV, Vilesov AD, Sukhorukov GB. Triple-responsive inorganic–organic hybrid microcapsules as a biocompatible smart platform for the delivery of small molecules. J Mater Chem B 2016; 4:7270-7282. [DOI: 10.1039/c6tb02289h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We designed novel hybrid inorganic/organic capsules with unique physicochemical features enabling multimodal triggering.
Collapse
Affiliation(s)
| | - Albert R. Muslimov
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Kirill V. Lepik
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Natalia N. Saprykina
- Institution of Russian Academy of Sciences Institute of Macromolecular Compounds Russian Academy of Sciences (IMC RAS)
- Bolshoy Prosp
- 31
- Saint-Petersburg
- Russian Federation
| | - Vladislav S. Sergeev
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Boris V. Afanasyev
- First I. P. Pavlov State Medical University of St. Petersburg
- Lev Tolstoy str
- 6/8
- Saint-Petersburg
- Russian Federation
| | - Alexander D. Vilesov
- Institution of Russian Academy of Sciences Institute of Macromolecular Compounds Russian Academy of Sciences (IMC RAS)
- Bolshoy Prosp
- 31
- Saint-Petersburg
- Russian Federation
| | - Gleb B. Sukhorukov
- RASA Center in Tomsk
- Tomsk Polytechnic University
- Tomsk
- Russian Federation
- RASA Center in St. Petersburg
| |
Collapse
|
15
|
Abstract
This review summarizes recent developments in the field of surfaces functionalized with branched polymers, including the fabrication methods, morphologies, properties and applications.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| |
Collapse
|
16
|
Ohara H, Yamamoto S, Onodera T, Kasai H, Oikawa H, Miyashita T, Mitsuishi M. Nanoscale deposition of metal–organic framework films on polymer nanosheets. RSC Adv 2016. [DOI: 10.1039/c6ra17997e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrate the first example of surface-attached metal–organic framework film deposition on polymer nanosheets fabricated using Langmuir–Blodgett technique.
Collapse
Affiliation(s)
- Hiroaki Ohara
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Shunsuke Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Tsunenobu Onodera
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Hidetoshi Oikawa
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Tokuji Miyashita
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| | - Masaya Mitsuishi
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM)
- Tohoku University
- Sendai 980-8577
- Japan
| |
Collapse
|
17
|
Iijima M, Okamura N, Tatami J. Polyethyleneimine–Oleic Acid Complex as a Polymeric Dispersant for Si3N4 and Si3N4-Based Multicomponent Nonaqueous Slurries. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b03696] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Motoyuki Iijima
- Graduate School of Environment
and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Naoki Okamura
- Graduate School of Environment
and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Junichi Tatami
- Graduate School of Environment
and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
18
|
Yang J, Zheng J, Zhang J, Sun L, Chen F, Fan P, Zhong M. Synthesis and characterization of “comb-like” poly(ionic liquid-co-styrene): expected applications in graphene dispersion and CO2 separation. RSC Adv 2015. [DOI: 10.1039/c4ra17176d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new PIL “comb-like” copolymer was synthesized by directly polymerizing ionic liquid monomer by ATRP using macroinitiator. This polymer is potentially useful in graphene dispersion and CO2 separation.
Collapse
Affiliation(s)
- Jintao Yang
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jiongzhou Zheng
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Jingjing Zhang
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Li Sun
- College of Education Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Feng Chen
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Ping Fan
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Mingqiang Zhong
- College of Material Science & Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|