1
|
Javorskis T, Rakickas T, Janku̅naitė A, Vaitekonis Š, Ulčinas A, Orentas E. Maskless, Reusable Visible-Light Direct-Write Stamp for Microscale Surface Patterning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11259-11267. [PMID: 36797999 PMCID: PMC11008783 DOI: 10.1021/acsami.2c20568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We report a straightforward method for creating large-area, microscale resolution patterns of functional amines on self-assembled monolayers by the photoinduced local acidification of a flat elastomeric stamp enriched with photoacid. The limited diffusivity of the photoactivated merocyanine acid in poly(dimethylsiloxane) (PDMS) enabled to confine efficient deprotection of N-tert-butyloxycarbonyl amino group (N-Boc) to line widths below 10 μm. The experimental setup is very simple and is built around the conventional HD-DVD optical pickup. The method allows cost-efficient, maskless, large-area chemical patterning while avoiding potentially cytotoxic photochemical reaction products. The activation of the embedded photoacid occurs within the stamp upon illumination with the laser beam and the process is fully reversible. Preliminary positive results highlight the possibility of repeatable use of the same stamp for the creation of different patterns.
Collapse
Affiliation(s)
- Tomas Javorskis
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Tomas Rakickas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Alberta Janku̅naitė
- Department
of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Šaru̅nas Vaitekonis
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Artu̅ras Ulčinas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
| | - Edvinas Orentas
- Department
of Nanoengineering, Center for Physical
Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
- Department
of Organic Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
2
|
Aktas Eken G, Ober CK. Strong Polyelectrolyte Brushes via Alternating Copolymers of Styrene and Maleimides: Synthesis, Properties, and Stability. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gozde Aktas Eken
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Christopher K. Ober
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Javorskis T, Rakickas T, Jankūnaitė A, Talaikis M, Niaura G, Ulčinas A, Orentas E. Meso-scale surface patterning of self-assembled monolayers with water. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Rodríguez-Nuévalos S, Parra M, Gil S, Gaviña P, Arroyo P, Sáez JA, Costero AM. Heteroditopic chemosensor to detect γ-hydroxybutyric acid (GHB) in soft drinks and alcoholic beverages. Analyst 2021; 146:5601-5609. [PMID: 34378566 DOI: 10.1039/d1an01084k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Drug-Facilitated Sexual Assault (DFSA) is a problem of considerable dimensions on a global scale. Among the different compounds used in DFSA assaults, 4-hydroxybutyric acid (GHB) is one of the most elusive due to its physical and biological characteristics. Therefore, the development of real-time detection methods to detect GHB not only in drinks but also in urine is very important for personal and social security. Here, we report two new heteroditopic chemosensors capable of recognizing and detecting GHB in soft drinks, alcoholic beverages and synthetic urine. The compounds have two moieties: a trifluoroacetyl group and a thiourea, which are able to interact respectively with the hydroxyl and the carboxylic groups present in the GHB structure. In addition, the distance between these two groups has been optimized to allow a double interaction which guarantees the recognition even in very competitive media such as beverages or urine samples.
Collapse
Affiliation(s)
- Silvia Rodríguez-Nuévalos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain.
| | - Margarita Parra
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain. and Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain and CIBER de Bioingeniería, Biometariales y Nanomedicina (CIBER-BBN), Spain
| | - Salvador Gil
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain. and Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain and CIBER de Bioingeniería, Biometariales y Nanomedicina (CIBER-BBN), Spain
| | - Pablo Gaviña
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain. and Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain and CIBER de Bioingeniería, Biometariales y Nanomedicina (CIBER-BBN), Spain
| | - Pau Arroyo
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain. and Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain
| | - José A Sáez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain. and Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Ana M Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain. and Departamento de Química Orgánica, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain and CIBER de Bioingeniería, Biometariales y Nanomedicina (CIBER-BBN), Spain
| |
Collapse
|
5
|
Sakunkaewkasem S, Gonzalez MA, Marquez MD, Lee TR. Olefin-Bridged Bidentate Adsorbates for Generating Self-Assembled Monolayers on Gold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10699-10707. [PMID: 32803985 DOI: 10.1021/acs.langmuir.0c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of custom-designed olefin-bridged bidentate adsorbates composed of an olefin group linking symmetrical hydrocarbon moieties of varying chain lengths was synthesized and used for the preparation of self-assembled monolayers (SAMs) on gold. The structures of the adsorbates are in the form Z-[CH3(CH2)m]2(C═C)[CH2SH]2 (OBCnSH) where m = 12-15 and n = m + 3 (OBC15SH, OBC16SH, OBC17SH, and OBC18SH). The influence of the olefin linker on the structural and interfacial properties of the SAMs was investigated and compared to SAMs formed from analogous n-alkanethiols. Characterization techniques included ellipsometry, X-ray photoelectron spectroscopy (XPS), polarization modulation-infrared reflection-adsorption spectroscopy (PM-IRRAS), and contact angle measurements. The OBCnSH SAMs exhibited ellipsometric thicknesses that were similar to their monodentate counterparts, suggesting that the new olefin-bridged adsorbates pack similarly to the monodentate analogs. Characterization by PM-IRRAS revealed that the OBCnSH SAMs were as conformationally ordered as those derived from the reference n-alkanethiols with the exception of the adsorbate with the shortest chain length OBC15SH, which exhibited low coverage and a liquid-like structure. Unlike the SAMs derived from the n-alkanethiols, the OBCnSH SAMs failed to exhibit "odd-even" effects. However, the OBCnSH SAMs displayed similar hexadecane contact angles as their n-alkanethiol counterparts with the exception of OBC15SH, which exhibited markedly diminished hexadecane contact angles. The similar structural and interfacial properties of the OBCnSH SAMs, when compared to analogous n-alkanethiol SAMs, render the molecular architecture of the olefin-bridged dithiol as a robust platform for the synthesis of adsorbates with two chemically distinct tailgroups for use in the preparation and study of phase-incompatible "conflicted" interfaces.
Collapse
Affiliation(s)
- Siwakorn Sakunkaewkasem
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Mario A Gonzalez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Maria D Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|
6
|
Aberkane F, Barakat A, Elaissari A, Zine N, Bendaikha T, Errachid A. Electrochemical Sensor Based on Thioether Oligomer Poly(N‐vinylpyrrolidone)‐modified Gold Electrode for Bisphenol A Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201900060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fairouz Aberkane
- University of Batna 1, Laboratory LCCE, Faculty of matter sciencesDepartment of chemistry 05000 Batna Algeria
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, LAGEP-UMR 5007 F-69622 Lyon France
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| | - Abdoullatif Barakat
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| | - Abdelhamid Elaissari
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, LAGEP-UMR 5007 F-69622 Lyon France
| | - Nadia Zine
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| | - Tahar Bendaikha
- University of Batna 1, Laboratory LCCE, Faculty of matter sciencesDepartment of chemistry 05000 Batna Algeria
| | - Abdelhamid Errachid
- Univ LyonUniversity Claude Bernard Lyon 1, CNRS, ISA-UMR 5280 F-69622 Lyon France
| |
Collapse
|
7
|
Hoang J, Park CS, Lee HJ, Marquez MD, Zenasni O, Gunaratne PH, Lee TR. Quaternary Ammonium-Terminated Films Formed from Mixed Bidentate Adsorbates Provide a High-Capacity Platform for Oligonucleotide Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40890-40900. [PMID: 30335936 DOI: 10.1021/acsami.8b12244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The exposure of quaternary ammonium groups on surfaces allows self-assembled monolayers (SAMs) to serve as architectural platforms for immobilizing oligonucleotides. The current study describes the preparation of SAMs derived from four unique bidentate adsorbates containing two different ammonium termini (i.e., trimethyl- and triethyl-) and comparison to their monodentate analogs. Our studies found that SAMs derived from the bidentate adsorbates offered considerable enhancements in oligonucleotide binding when compared to SAMs derived from their monodentate analogs. The generated SAMs were analyzed using ellipsometry, X-ray photoelectron spectroscopy, contact angle goniometry, polarization modulation infrared reflection-absorption spectroscopy, and electrochemical quartz crystal microbalance. These analyses showed that the immobilization of oligonucleotides was affected by changes in the terminal functionalities and the relative packing densities of the monolayers. In efforts to enhance further the immobilization of oligonucleotides on these SAM surfaces, we explored the use of adsorbates having aliphatic linkers with systematically varying chain lengths to form binary SAMs on gold. Mixed monolayers with 50:50 ratios of adsorbates showed the greatest oligonucleotide binding. These studies lay the groundwork for oligonucleotide delivery using gold-based nanoparticles and nanoshells.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology and Biochemistry , University of Houston , Houston , Texas 77204-5001 , United States
| | - Chul Soon Park
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Han Ju Lee
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Maria D Marquez
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Oussama Zenasni
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry , University of Houston , Houston , Texas 77204-5001 , United States
| | - T Randall Lee
- Departments of Chemistry and Chemical Engineering and the Texas Center for Superconductivity , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
8
|
Rittikulsittichai S, Park CS, Marquez MD, Jamison AC, Frank T, Wu CH, Wu JI, Lee TR. Inhibiting Reductive Elimination as an Intramolecular Disulfide Dramatically Enhances the Thermal Stability of SAMs on Gold Derived from Bidentate Adsorbents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6645-6652. [PMID: 29739193 DOI: 10.1021/acs.langmuir.7b03973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The bidentate aromatic adsorbate, 5-(octadecyloxy)-1,3-benzenedimethanethiol (R1ArmDT), with a specific design of extended S-S distance and a geometric constraint to resist cyclic disulfide formation was synthesized. The film formation and thermal stability of self-assembled monolayers (SAMs) derived from R1ArmDT were investigated and compared to those of SAMs derived from an analogous bidentate dithiol 2-(4-(octadecyloxy)-phenyl)propane-1,3-dithiol (R1ArDT), in which the two sulfur atoms can readily form a cyclic disulfide upon reductive elimination from the surface. Although the SAMs derived from R1ArmDT were less densely packed than those derived from R1ArDT, as judged by the data obtained by X-ray photoelectron spectroscopy and polarization modulation infrared reflection absorption spectroscopy, the SAMs derived from R1ArmDT were markedly more thermally stable than those derived from R1ArDT. The greater thermal stability of the R1ArmDT SAMs can be rationalized on the basis of the structure of the bidentate R1ArmDT headgroup, in which the two pendant sulfur atoms cannot access each other intramolecularly to form a cyclic disulfide upon reductive elimination from the surface.
Collapse
|
9
|
Li XQ, Liang HQ, Cao Z, Xiao Q, Xiao ZL, Song LB, Chen D, Wang FL. Simple and rapid mercury ion selective electrode based on 1-undecanethiol assembled Au substrate and its recognition mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:26-33. [DOI: 10.1016/j.msec.2016.11.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/02/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
|
10
|
Chinwangso P, Lee HJ, Jamison AC, Marquez MD, Park CS, Lee TR. Structure, Wettability, and Thermal Stability of Organic Thin-Films on Gold Generated from the Molecular Self-Assembly of Unsymmetrical Oligo(ethylene glycol) Spiroalkanedithiols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1751-1762. [PMID: 28107018 DOI: 10.1021/acs.langmuir.6b03803] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Organic thin-films on gold were prepared from a set of new, custom-designed bidentate alkanethiols possessing a mixture of normal alkane and methoxy-terminated tri(ethylene glycol) chains. The new unsymmetrical spiroalkanedithiol adsorbates were of the form [CH3O(CH2CH2O)3(CH2)5]-[CH3(CH2)n+1]C[CH2SH]2 where n = 3 and 14; designated EG3C7-C7 and EG3C7-C18, respectively. Their corresponding self-assembled monolayers (SAMs) on gold were characterized and compared with monothiol SAMs derived from an analogous normal alkanethiol (C18SH) and an alkanethiol terminated with an oligo(ethylene glycol) (OEG) moiety (i.e., EG3C7SH). Ellipsometric data revealed reduced film thicknesses for the double-chained dithiolate SAMs, which perhaps arose from the phase-incompatible merger of a hydrocarbon chain with an OEG moiety, contributing to disorder in the films and/or an increase in chain tilt. The comparable wettabilities of the SAMs derived from EG3C7SH and EG3C7-C7, using water as the contacting liquid, are consistent with exposure of the OEG moieties at both interfaces, whereas the lower wettability of the SAM derived from EG3C7-C18 is consistent with exposure of hydrocarbon chains at the interface. The data collected by X-ray photoelectron spectroscopy confirmed the formation of the new OEG-terminated dithiolate SAMs, and also revealed them as less densely packed monolayers due in part to the large molecular cross section of the OEG moieties and to their double-chained structure with dual surface bonds. Mixed SAMs formed from pairs of monothiols having chain compositions analogous to those of the chains of the new dithiols showed that an EG3C7SH/heptanethiol-mixed SAM and the EG3C7-C7 SAM produced almost identical characterization data, revealing the favorable film formation dynamics for adsorbate structures where the alkyl chains can assemble beneath the phase-incompatible OEG termini. For the mixed SAM formed from EG3C7SH/C18SH, the data indicate that the EG3C7SH component failed to incorporate in the film, demonstrating that the blending of phase-incompatible chains is sometimes best accomplished when both chains exist on a single adsorbate structure. Furthermore, the results of solution-phase thermal desorption tests revealed that the OEG-terminated films generated from the bidentate EG3C7-C7 and EG3C7-C18 adsorbates exhibit enhanced thermal stability when compared to the film generated from monodentate EG3C7SH. In a brief study of protein adsorption, the multicomponent SAMs showed a greater ability to resist the adsorption of fibrinogen on their surfaces when compared to the SAM derived from C18SH, but not better than the monolayer derived from EG3C7SH.
Collapse
Affiliation(s)
- Pawilai Chinwangso
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Han Ju Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Andrew C Jamison
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Maria D Marquez
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Chul Soon Park
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|
11
|
Park CS, Lee HJ, Jamison AC, Lee TR. Robust Maleimide-Functionalized Gold Surfaces and Nanoparticles Generated Using Custom-Designed Bidentate Adsorbates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7306-7315. [PMID: 27385466 DOI: 10.1021/acs.langmuir.6b01299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A series of custom-designed alkanethioacetate ligands were synthesized to provide a facile method of attaching maleimide-terminated adsorbates to gold nanostructures via thiolate bonds. Monolayers on flat gold substrates derived from both mono- and dithioacetates, with and without oligo(ethylene glycol) (OEG) moieties in their alkyl spacers, were characterized using X-ray photoelectron spectroscopy, polarization modulation infrared reflection-absorption spectroscopy, ellipsometry, and contact angle goniometry. For all adsorbates, the resulting monolayers revealed that a higher packing density and more homogeneous surface were generated when the film was formed in EtOH, but a higher percentage of bound thiolate was obtained in THF. A series of gold nanoparticles (AuNPs) capped with each adsorbate were prepared to explore how adsorbate structure influences aqueous colloidal stability under extreme conditions, as examined visually and spectroscopically. The AuNPs coated with adsorbates that include OEG moieties exhibited enhanced stability under high salt concentration, and AuNPs capped with dithioacetate adsorbates exhibited improved stability against ligand exchange in competition with dithiothreitol (DTT). Overall, the best results were obtained with a chelating dithioacetate adsorbate that included OEG moieties in its alkyl spacer, imparting improved stability via enhanced solubility in water and superior adsorbate attachment owing to the chelate effect.
Collapse
Affiliation(s)
- Chul Soon Park
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Han Ju Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Andrew C Jamison
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|
12
|
Lee HJ, Jamison AC, Lee TR. Entropy-Driven Conformational Control of α,ω-Difunctional Bidentate-Dithiol Azo-Based Adsorbates Enables the Fabrication of Thermally Stable Surface-Grafted Polymer Films. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15691-15699. [PMID: 27219525 DOI: 10.1021/acsami.6b02025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Thermally stable radical initiator monolayers were prepared from uniquely designed α,ω-difunctional adsorbates with bidentate headgroups for the growth of nanoscale polymer films on metal surfaces. The length of the spacer separating the bidentate headgroups was varied to afford 4,4'-(diazene-1,2-diyl)bis(N-(16-(3,5-bis(mercaptomethyl)phenoxy)hexadecyl)-4-cyanopentanamide) (B16), 4,4'-(diazene-1,2-diyl)bis(N-(16-(3,5-bis(mercapto-methyl)phenoxy)decyl)-4-cyanopentanamide) (B10), and 4,4'-(diazene-1,2-diyl)bis(N-(4-(3,5-bis(mercaptomethyl)phenoxy)butyl)-4-cyanopentanamide) (B4). The structural features of the self-assembled monolayers (SAMs) derived from B16, B10, and B4 were characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and compared to those derived from an analogous α,ω-difunctional adsorbate with monodentate headgroups, 4,4'-(diazene-1,2-diyl)bis(4-cyano-N-(16-mercaptohexadecyl)pentanamide (M). These studies demonstrate that the conformation (i.e., hairpin vs standing up) of the bidentate initiator adsorbates on gold surfaces was easily controlled by adjusting the concentration of the adsorbates in solution. The results of solution-phase thermal desorption tests revealed that the radical initiator monolayers generated from B16, B10, and B4 exhibit an enhanced thermal stability when compared to those generated from M. Furthermore, a study of the growth of polymer films was performed to evaluate the utility of these new bidentate adsorbate SAMs as film-development platforms for new functional materials and devices. Specifically, surface-grafted polystyrene films were successfully generated from SAMs derived from B16. In contrast, attempts to grow polystyrene films from SAMs derived from M under a variety of analogous conditions were unsuccessful.
Collapse
Affiliation(s)
- Han Ju Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Andrew C Jamison
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|
13
|
Chinwangso P, Lee HJ, Lee TR. Self-Assembled Monolayers Generated from Unsymmetrical Partially Fluorinated Spiroalkanedithiols. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13341-9. [PMID: 26575960 DOI: 10.1021/acs.langmuir.5b03392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Self-assembled monolayers (SAMs) were prepared on gold substrates from an unsymmetrical partially fluorinated spiroalkanedithiol adsorbate with the specific structure of [CH3(CH2)7][CF3(CF2)7(CH2)8]C[CH2SH]2 (SADT) and compared to SAMs formed from the semifluorinated monothiol F8H10SH [CF3(CF2)7(CH2)10SH] of analogous chain length and n-octadecanethiol. The adsorbate with two alkyl chains, one terminally fluorinated and the other nonfluorinated, was designed to form monolayers in which the bulky helical fluorocarbon segments assemble on top of an underlying layer of well-packed trans-extended alkyl chains. Different combinations of deposition solvents and temperatures were used to produce the bidentate SAMs. Characterization of the resulting monolayers revealed that SAMs formed in DMF at room temperature allow complete binding of the sulfur headgroups to the surface and exhibit higher conformational order than those produced using alternative solvent/temperature combinations. The reduced film thicknesses and enhanced wettability of the SADT SAMs, as compared to the SAMs generated from F8H10SH, suggest loose packing and an increase in the tilt of the terminal fluorocarbon chain segments. Nevertheless, the density of the underlying hydrocarbon chains of the SADT SAMs was higher than that of the F8H10SH SAMs, owing to the double-chained structure of the new adsorbate. The conformational orders of the SAM systems were observed to decrease as follows: C18SH > F8H10SH > SADT. However, the SAMs formed from this new double-chained bidentate adsorbate in DMF expose a fluorinated interface with a relatively low surface roughness, as determined by contact-angle hysteresis.
Collapse
Affiliation(s)
- Pawilai Chinwangso
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - Han Ju Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| | - T Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston , 4800 Calhoun Road, Houston, Texas 77204-5003, United States
| |
Collapse
|