1
|
Bruzas I, Brinson BE, Gorunmez Z, Lum W, Ringe E, Sagle L. Surface-Enhanced Raman Spectroscopy of Fluid-Supported Lipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33442-33451. [PMID: 31411450 DOI: 10.1021/acsami.9b09988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Supported lipid bilayers are essential model systems for studying biological membranes and for membrane-based sensor development. Surface-enhanced Raman spectroscopy (SERS) stands to add considerably to our understanding of the dynamics and interactions of these systems through direct chemical information. Despite this potential, SERS of lipid bilayers is not routinely achieved. Here, we carried out the first measurements of a solid-supported lipid bilayer on a SERS-active substrate and characterized the bilayer using SERS, atomic force microscopy, surface plasmon resonance spectroscopy, ellipsometry, and fluorescence recovery after photobleaching (FRAP). The creation of a fluid, SERS-active supported lipid bilayer was accomplished through use of a novel silica-coated silver film-over-nanosphere substrate. These substrates offer a powerful new platform to couple common surface techniques that are challenging on the nanoscale, for example, ellipsometry and FRAP, with SERS for studying biological membranes and their dynamics.
Collapse
Affiliation(s)
| | - Bruce E Brinson
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
| | | | | | - Emilie Ringe
- Department of Chemistry , Rice University , Houston , Texas 77005 , United States
- Department of Materials Science and Metallurgy, Department of Earth Science , University of Cambridge , Cambridge CB2 3EQ , U.K
| | | |
Collapse
|
2
|
Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 2019; 143:3990-4008. [PMID: 30059080 DOI: 10.1039/c8an00606g] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become an essential ultrasensitive analytical tool for biomolecular analysis of small molecules, macromolecular proteins, and even cells. SERS enables label-free, direct detection of molecules through their intrinsic Raman fingerprint. In particular, protein and lipid bilayers are dynamic three-dimensional structures that necessitate label-free methods of characterization. Beyond direct detection and quantitation, the structural information contained in SERS spectra also enables deeper biophysical characterization of biomolecules near metallic surfaces. Therefore, SERS offers enormous potential for such systems, although making measurements in a nonperturbative manner that captures the full range of interactions and activity remains a challenge. Many of these challenges have been overcome through advances in SERS substrate development, which have expanded the applications and targets of SERS for direct biomolecular quantitation and biophysical characterization. In this review, we will first discuss different categories of SERS substrates including solution-phase, solid-supported, tip-enhanced Raman spectroscopy (TERS), and single-molecule substrates for biomolecular analysis. We then discuss detection of protein and biological lipid membranes. Lastly, biophysical insights into proteins, lipids and live cells gained through SERS measurements of these systems are reviewed.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
3
|
Jing H, Sinha S, Sachar HS, Das S. Interactions of gold and silica nanoparticles with plasma membranes get distinguished by the van der Waals forces: Implications for drug delivery, imaging, and theranostics. Colloids Surf B Biointerfaces 2019; 177:433-439. [PMID: 30798064 DOI: 10.1016/j.colsurfb.2019.01.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
Abstract
Making a nanoparticle (NP) approach and interact with a plasma membrane (PM) through the receptor-ligand interaction is key for applications like targeted drug delivery, cellular imaging, and theranostics. In this paper, we show that the van der Waals (vdW) interactions dominate the electrostatics ensuring that a gold NP approached the PM more spontaneously as compared to a silica NP. The negative σ (charge density) of a PM induces a negative electrostatic potential at the surface of the approaching gold NP and the silica NP; however, there is very little difference between these induced values due to a small electric double layer at the physiological salt concentration (c∞). Hence there is very little difference in the electrostatic repulsion between the two cases, while the PM-NP vdW attraction is much more for the gold NP as a result of a larger Hamaker constant. Therefore, in comparison to the gold NP, the silica NP would (a) undergo a promotion of the specific adhesion and a prevention of the non-specific adhesion simultaneously for a larger σ - c∞ phase space including the physiological conditions, (b) necessitate a larger length of the ligands to trigger spontaneous receptor-ligand interactions, and (c) require a larger driving force for force-driven receptor-ligand interactions.
Collapse
Affiliation(s)
- Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Shayandev Sinha
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
4
|
Chiang PC, Tanady K, Huang LT, Chao L. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins. Sci Rep 2017; 7:15139. [PMID: 29123132 PMCID: PMC5680215 DOI: 10.1038/s41598-017-15103-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/20/2017] [Indexed: 01/15/2023] Open
Abstract
Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.
Collapse
Affiliation(s)
- Po-Chieh Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kevin Tanady
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ling-Ting Huang
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
5
|
Askew HJ, Charnley M, Jarvis KL, McArthur SL. pH-dependent lipid vesicle interactions with plasma polymerized thin films. Biointerphases 2017; 12:02C416. [PMID: 28592113 PMCID: PMC5462616 DOI: 10.1116/1.4984261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/26/2023] Open
Abstract
Model lipid vesicle and supported lipid bilayer (SLB) systems are used in a variety of applications including biosensing, cell membrane mimics, and drug delivery. Exposure of a surface to a vesicle solution provides a straightforward method for creating such systems via vesicle adsorption and collapse. However, this process is complex and the relationship between the surface physicochemical properties and vesicle collapse is poorly understood. Plasma polymers are thin conformal films that can be applied to a variety of materials to modify surface properties. This paper uses quartz crystal microbalance with dissipation and fluorescence recovery after photobleaching (FRAP) to explore lipid vesicle interactions with plasma polymerized acrylic acid (ppAAc), allylamine (ppAAm), and ppAAc/ppAAm micropatterns. Vesicle interactions were dependent on plasma polymer chemistry and pH of the buffer solution. Vesicles readily and stably adsorbed to ppAAm over a wide pH range. ppAAc demonstrated limited interactions at pH 7 and vesicle adsorption at pH 4. Vesicle collapse and SLB formation could be induced using a pH change. FRAP was used to explore the fluidity of the lipid structures on both the patterned and unpatterned plasma polymer films. On ppAAm/ppAAc micropatterns, pH transitions combined with the presence of chemically distinct regions on the same substrate enabled immobile lipid islands on ppAAc to be surrounded by fluid lipid regions on ppAAm. This work demonstrates that plasma polymer films could enable spatially controlled vesicle adsorption and SLB formation on a wide variety of different substrates.
Collapse
Affiliation(s)
- Hannah J Askew
- Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Mirren Charnley
- Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia and Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Karyn L Jarvis
- Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia and ANFF-Vic Biointerface Engineering Hub, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Sally L McArthur
- Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia and ANFF-Vic Biointerface Engineering Hub, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
6
|
Salerno M, Shayganpour A, Salis B, Dante S. Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:74-81. [PMID: 28144566 PMCID: PMC5238693 DOI: 10.3762/bjnano.8.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/12/2016] [Indexed: 05/24/2023]
Abstract
Thin anodic porous alumina (tAPA) was fabricated from a 500 nm thick aluminum (Al) layer coated on silicon wafers, through single-step anodization performed in a Teflon electrochemical cell in 0.4 M aqueous phosphoric acid at 110 V. Post-fabrication etching in the same acid allowed obtaining tAPA surfaces with ≈160 nm pore diameter and ≈80 nm corresponding wall thickness to be prepared. The tAPA surfaces were made SERS-active by coating with a thin (≈25 nm) gold (Au) layer. The as obtained tAPA-Au substrates were incubated first with different thiols, namely mercaptobenzoic acid (MbA) and aminothiol (AT), and then with phospholipid vesicles of different composition to form a supported lipid bilayer (SLB). At each step, the SERS substrate functionality was assessed, demonstrating acceptable enhancement (≥100×). The chemisorption of thiols during the first step and the formation of SLB from the vesicles during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view of the use of tAPA-Au substrates as a platform for the development of surface-enhanced Raman spectroscopy (SERS) biosensors on living cells. In the future, these tAPA-Au-SLB substrates will be investigated also for drug delivery of bioactive agents from the APA pores.
Collapse
Affiliation(s)
- Marco Salerno
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Amirreza Shayganpour
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Department of Bioengineering and Robotics, University of Genova, viale Causa 13, I-16145 Genova, Italy
| | - Barbara Salis
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Department of Bioengineering and Robotics, University of Genova, viale Causa 13, I-16145 Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| |
Collapse
|
7
|
Bruzas I, Unser S, Yazdi S, Ringe E, Sagle L. Ultrasensitive Plasmonic Platform for Label-Free Detection of Membrane-Associated Species. Anal Chem 2016; 88:7968-74. [PMID: 27436204 DOI: 10.1021/acs.analchem.6b00801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid membranes and membrane proteins are important biosensing targets, motivating the development of label-free methods with improved sensitivity. Silica-coated metal nanoparticles allow these systems to be combined with supported lipid bilayers for sensing membrane proteins through localized surface plasmon resonance (LSPR). However, the small sensing volume of LSPR makes the thickness of the silica layer critical for performance. Here, we develop a simple, inexpensive, and rapid sol-gel method for preparing thin conformal, continuous silica films and demonstrate its applicability using gold nanodisk arrays with LSPRs in the near-infrared range. Silica layers as thin as ∼5 nm are observed using cross-sectional scanning transmission electron microscopy. The loss in sensitivity due to the thin silica coating was found to be only 16%, and the biosensing capabilities of the substrates were assessed through the binding of cholera toxin B to GM1 lipids. This sensor platform should prove useful in the rapid, multiplexed detection and screening of membrane-associated biological targets.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati , 301 West Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - Sarah Unser
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati , 301 West Clifton Court, Cincinnati, Ohio 45221-0172, United States
| | - Sadegh Yazdi
- Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, MS-325, Houston, Texas 77005, United States
| | - Emilie Ringe
- Department of Materials Science and NanoEngineering, Rice University , 6100 Main Street, MS-325, Houston, Texas 77005, United States
| | - Laura Sagle
- Department of Chemistry, College of Arts and Sciences, University of Cincinnati , 301 West Clifton Court, Cincinnati, Ohio 45221-0172, United States
| |
Collapse
|
8
|
Wu HL, Tsao HK, Sheng YJ. Dynamic and mechanical properties of supported lipid bilayers. J Chem Phys 2016; 144:154904. [DOI: 10.1063/1.4947038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hsing-Lun Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli 320, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
9
|
Kenaan A, Nguyen TD, Dallaporta H, Raimundo JM, Charrier AM. Subpicomolar Iron Sensing Platform Based on Functional Lipid Monolayer Microarrays. Anal Chem 2016; 88:3804-9. [DOI: 10.1021/acs.analchem.5b04834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad Kenaan
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille 13288, France
| | - Tuyen D. Nguyen
- Institute
for Microelectronic Technology and Information, NACENTECH, Ha Noi, Vietnam
| | - Hervé Dallaporta
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille 13288, France
| | | | - Anne M. Charrier
- Aix-Marseille Université, CNRS, CINaM-UMR 7325, Marseille 13288, France
| |
Collapse
|