1
|
Akaya H, Lamnini S, Sehaqui H, Jacquemin J. Amine-Functionalized Cellulose as Promising Materials for Direct CO 2 Capture: A Review. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16380-16395. [PMID: 40038886 DOI: 10.1021/acsami.4c20801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Herein, the potential use of amine-functionalized cellulose as a low-cost and sustainable sorbent for CO2 capture is reviewed. This literature analysis specifically highlights various advanced preparation methods used to synthesize functionalized cellulose supports with an enhanced affinity for the sorption of CO2 molecules. The mechanism of cellulose functionalization with different types of amines is explicitly detailed, considering amine impregnation and grafting to selectively chemisorb CO2 gas with or without the presence of moisture and at different temperatures and pressures. The final section critically discusses the main limitations to scaling up amine-functionalized cellulose sorbents, particularly issues related to amine oxidation, stability, and degradation.
Collapse
Affiliation(s)
- Hicham Akaya
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Soukaina Lamnini
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Houssine Sehaqui
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| | - Johan Jacquemin
- Department of Materials Science and Nanoengineering (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Benguerir, Morocco
| |
Collapse
|
2
|
Kikkawa S, Kataoka M, Yamazoe S. Development of Amino-Functionalized Silica by Co-condensation and Alkylation for Direct Air Capture. ACS OMEGA 2024; 9:49513-49521. [PMID: 39713653 PMCID: PMC11656256 DOI: 10.1021/acsomega.4c07256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024]
Abstract
CO2 chemisorption using amine-based sorbents is one of the most effective techniques for carbon capture and storage. Solid CO2 sorbents with amines immobilized on their surface have been attracting attention due to the easy collection of sorbents and reusability. In this study, we developed a solid CO2 adsorbent by co-condensation of a silanizing reagent having a chloroalkyl group and tetraethyl ethoxysilane, followed by alkylation of the chloroalkyl group with diamine. The fabricated amine-immobilized silica with a high density of amino groups on its surface achieved the chemical adsorption of 400 ppm of CO2 with 4.3 wtCO2 % loading, CO2 release upon heating at 80 °C, and reusability for adsorption and desorption cycles with high amine utilization efficiency (0.20 molCO2 /mol-N). This surface modification method is applicable to various amines bearing more than two amino functional groups, enabling the development of solid CO2 sorbents for the selective capture of low-concentration CO2 directly from the air.
Collapse
Affiliation(s)
- Soichi Kikkawa
- Department of Chemistry,
Graduate School of Science, Tokyo Metropolitan
University, Hachioji, Tokyo 192-0397, Japan
| | - Miori Kataoka
- Department of Chemistry,
Graduate School of Science, Tokyo Metropolitan
University, Hachioji, Tokyo 192-0397, Japan
| | - Seiji Yamazoe
- Department of Chemistry,
Graduate School of Science, Tokyo Metropolitan
University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
3
|
Priyadarshini P, Rim G, Rosu C, Song M, Jones CW. Direct Air Capture of CO 2 Using Amine/Alumina Sorbents at Cold Temperature. ACS ENVIRONMENTAL AU 2023; 3:295-307. [PMID: 37743951 PMCID: PMC10515709 DOI: 10.1021/acsenvironau.3c00010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 09/26/2023]
Abstract
Rising CO2 emissions are responsible for increasing global temperatures causing climate change. Significant efforts are underway to develop amine-based sorbents to directly capture CO2 from air (called direct air capture (DAC)) to combat the effects of climate change. However, the sorbents' performances have usually been evaluated at ambient temperatures (25 °C) or higher, most often under dry conditions. A significant portion of the natural environment where DAC plants can be deployed experiences temperatures below 25 °C, and ambient air always contains some humidity. In this study, we assess the CO2 adsorption behavior of amine (poly(ethyleneimine) (PEI) and tetraethylenepentamine (TEPA)) impregnated into porous alumina at ambient (25 °C) and cold temperatures (-20 °C) under dry and humid conditions. CO2 adsorption capacities at 25 °C and 400 ppm CO2 are highest for 40 wt% TEPA-incorporated γ-Al2O3 samples (1.8 mmol CO2/g sorbent), while 40 wt % PEI-impregnated γ-Al2O3 samples exhibit moderate uptakes (0.9 mmol g-1). CO2 capacities for both PEI- and TEPA-incorporated γ-Al2O3 samples decrease with decreasing amine content and temperatures. The 40 and 20 wt % TEPA sorbents show the best performance at -20 °C under dry conditions (1.6 and 1.1 mmol g-1, respectively). Both the TEPA samples also exhibit stable and high working capacities (0.9 and 1.2 mmol g-1) across 10 cycles of adsorption-desorption (adsorption at -20 °C and desorption conducted at 60 °C). Introducing moisture (70% RH at -20 and 25 °C) improves the CO2 capacity of the amine-impregnated sorbents at both temperatures. The 40 wt% PEI, 40 wt % TEPA, and 20 wt% TEPA samples show good CO2 uptakes at both temperatures. The results presented here indicate that γ-Al2O3 impregnated with PEI and TEPA are potential materials for DAC at ambient and cold conditions, with further opportunities to optimize these materials for the scalable deployment of DAC plants at different environmental conditions.
Collapse
Affiliation(s)
- Pranjali Priyadarshini
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Guanhe Rim
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Cornelia Rosu
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - MinGyu Song
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical &
Biomolecular Engineering, Georgia Institute
of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
4
|
Li S, Cerón MR, Eshelman HV, Varni AJ, Maiti A, Akhade S, Pang SH. Probing the Kinetic Origin of Varying Oxidative Stability of Ethyl- vs. Propyl-spaced Amines for Direct Air Capture. CHEMSUSCHEM 2023; 16:e202201908. [PMID: 36508481 DOI: 10.1002/cssc.202201908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Amine-based adsorbents are promising for direct air capture of CO2 , yet oxidative degradation remains a key unmitigated risk hindering wide-scale deployment. Borrowing wisdom from the basic auto-oxidation scheme, insights are gained into the underlying degradation mechanisms of polyamines by quantum chemical, advanced sampling simulations, adsorbent synthesis, and accelerated degradation experiments. The reaction kinetics of polyamines are contrasted with that of typical aliphatic polymers and they elucidate for the first time the critical role of aminoalkyl hydroperoxide decomposition in the oxidative degradation of amino-oligomers. The experimentally observed variation in oxidative stability of polyamines with different backbone structures is explained by the relationship between the local chemical structure and the free energy barrier of aminoalkyl hydroperoxide decomposition, suggesting that its energetics can be used as a descriptor to screen and design new polyamines with improved stability. The developed computational capability sheds light on radical-induced degradation chemistry of other organic functional materials.
Collapse
Affiliation(s)
- Sichi Li
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA Email Address
| | - Maira R Cerón
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA Email Address
| | - Hannah V Eshelman
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA Email Address
| | - Anthony J Varni
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA Email Address
| | - Amitesh Maiti
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA Email Address
| | - Sneha Akhade
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA Email Address
| | - Simon H Pang
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA Email Address
| |
Collapse
|
5
|
Biesemans B, De Clercq J, Stevens CV, Thybaut JW, Lauwaert J. Recent advances in amine catalyzed aldol condensations. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2048570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bert Biesemans
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Jeriffa De Clercq
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Christian V. Stevens
- SynBioC Research Group, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Joris W. Thybaut
- Laboratory for Chemical Technology (LCT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Technologiepark 125, 9052 Ghent, Belgium
| | - Jeroen Lauwaert
- Industrial Catalysis and Adsorption Technology (INCAT), Department of Materials, Textiles, and Chemical Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| |
Collapse
|
6
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Anyanwu JT, Wang Y, Yang RT. Influence of water on amine loading for ordered mesoporous silica. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Liu RS, Shi XD, Wang CT, Gao YZ, Xu S, Hao GP, Chen S, Lu AH. Advances in Post-Combustion CO 2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice. CHEMSUSCHEM 2021; 14:1428-1471. [PMID: 33403787 DOI: 10.1002/cssc.202002677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Collapse
Affiliation(s)
- Ru-Shuai Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xiao-Dong Shi
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng-Tong Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yu-Zhou Gao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shuang Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
9
|
Said RB, Kolle JM, Essalah K, Tangour B, Sayari A. A Unified Approach to CO 2-Amine Reaction Mechanisms. ACS OMEGA 2020; 5:26125-26133. [PMID: 33073140 PMCID: PMC7557993 DOI: 10.1021/acsomega.0c03727] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 05/19/2023]
Abstract
A unified CO2-amine reaction mechanism applicable to absorption in aqueous or nonaqueous solutions and to adsorption on immobilized amines in the presence of both dry and humid conditions is proposed. Key findings supported by theoretical calculations and experimental evidence are as follows: (1) The formation of the 1,3-zwitterion, RH2N+-COO-, is highly unlikely because not only the associated four-membered mechanism has a high energy barrier, but also it is not consistent with the orbital symmetry requirements for chemical reactions. (2) The nucleophilic attack of CO2 by amines requires the catalytic assistance of a Bro̷nsted base through a six-membered mechanism to achieve proton transfer/exchange. An important consequence of this concerted mechanism is that the N and H atoms added to the C=O double bond do not originate from a single amine group. Using ethylenediamine for illustration, detailed description of the reaction pathway is reported using the reactive internal reaction coordinate as a new tool to visualize the reaction path. (3) In the presence of protic amines, the formation of ammonium bicarbonate/carbonate does not take place through the widely accepted hydration of carbamate/carbamic acid. Instead, water behaves as a nucleophile that attacks CO2 with catalytic assistance by amine groups, and carbamate/carbamic acid decomposes back to amine and CO2. (4) Generalization of the catalytic assistance concept to any Bro̷nsted base established through theoretical calculations was supported by infrared measurements. A unified six-membered mechanism was proposed to describe all possible interactions of CO2 with amines and water, each playing the role of a nucleophile and/or Bro̷nsted base, depending on the actual conditions.
Collapse
Affiliation(s)
- Ridha Ben Said
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51941, Saudi Arabia
| | - Joel Motaka Kolle
- Centre
for Catalysis Research and Innovation, Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Khaled Essalah
- IPEIEM,
Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Campus Farhat Hached, Tunis 2092, Tunisia
| | - Bahoueddine Tangour
- IPEIEM,
Research Unit on Fundamental Sciences and Didactics, Université de Tunis El Manar, Campus Farhat Hached, Tunis 2092, Tunisia
| | - Abdelhamid Sayari
- Centre
for Catalysis Research and Innovation, Department of Chemistry and
Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
10
|
Affiliation(s)
- Jason J. Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
11
|
Gottschling K, Stegbauer L, Savasci G, Prisco NA, Berkson ZJ, Ochsenfeld C, Chmelka BF, Lotsch BV. Molecular Insights into Carbon Dioxide Sorption in Hydrazone-Based Covalent Organic Frameworks with Tertiary Amine Moieties. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:1946-1955. [PMID: 30930535 PMCID: PMC6438324 DOI: 10.1021/acs.chemmater.8b04643] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Indexed: 05/05/2023]
Abstract
Tailorable sorption properties at the molecular level are key for efficient carbon capture and storage and a hallmark of covalent organic frameworks (COFs). Although amine functional groups are known to facilitate CO2 uptake, atomistic insights into CO2 sorption by COFs modified with amine-bearing functional groups are scarce. Herein, we present a detailed study of the interactions of carbon dioxide and water with two isostructural hydrazone-linked COFs with different polarities based on the 2,5-diethoxyterephthalohydrazide linker. Varying amounts of tertiary amines were introduced in the COF backbones by means of a copolymerization approach using 2,5-bis(2-(dimethylamino)ethoxy)terephthalohydrazide in different amounts ranging from 25 to 100% substitution of the original DETH linker. The interactions of the frameworks with CO2 and H2O were comprehensively studied by means of sorption analysis, solid-state NMR spectroscopy, and quantum-chemical calculations. We show that the addition of the tertiary amine linker increases the overall CO2 sorption capacity normalized by the surface area and of the heat of adsorption, whereas surface areas and pore size diameters decrease. The formation of ammonium bicarbonate species in the COF pores is shown to occur, revealing the contributing role of water for CO2 uptake by amine-modified porous frameworks.
Collapse
Affiliation(s)
- Kerstin Gottschling
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
- Nanosystems
Initiative Munich (NIM), Schellingstraße 4, 80799 München, Germany
- Center
for Nanoscience, Schellingstraβe
4, 80799 München, Germany
| | - Linus Stegbauer
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
- Nanosystems
Initiative Munich (NIM), Schellingstraße 4, 80799 München, Germany
| | - Gökcen Savasci
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
- Center
for Nanoscience, Schellingstraβe
4, 80799 München, Germany
| | - Nathan A. Prisco
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Zachariah J. Berkson
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Christian Ochsenfeld
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
- Center
for Nanoscience, Schellingstraβe
4, 80799 München, Germany
| | - Bradley F. Chmelka
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa Barbara, California 93106, United States
| | - Bettina V. Lotsch
- Max
Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Department
of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, 81377 München, Germany
- Nanosystems
Initiative Munich (NIM), Schellingstraße 4, 80799 München, Germany
- Center
for Nanoscience, Schellingstraβe
4, 80799 München, Germany
- E-mail:
| |
Collapse
|
12
|
Afonso R, Sardo M, Mafra L, Gomes JRB. Unravelling the Structure of Chemisorbed CO 2 Species in Mesoporous Aminosilicas: A Critical Survey. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2758-2767. [PMID: 30730709 DOI: 10.1021/acs.est.8b05978] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chemisorbent materials, based on porous aminosilicas, are among the most promising adsorbents for direct air capture applications, one of the key technologies to mitigate carbon emissions. Herein, a critical survey of all reported chemisorbed CO2 species, which may form in aminosilica surfaces, is performed by revisiting and providing new experimental proofs of assignment of the distinct CO2 species reported thus far in the literature, highlighting controversial assignments regarding the existence of chemisorbed CO2 species still under debate. Models of carbamic acid, alkylammonium carbamate with different conformations and hydrogen bonding arrangements were ascertained using density functional theory (DFT) methods, mainly through the comparison of the experimental 13C and 15N NMR chemical shifts with those obtained computationally. CO2 models with variable number of amines and silanol groups were also evaluated to explain the effect of amine aggregation in CO2 speciation under confinement. In addition, other less commonly studied chemisorbed CO2 species (e.g., alkylammonium bicarbonate, ditethered carbamic acid and silylpropylcarbamate), largely due to the difficulty in obtaining spectroscopic identification for those, have also been investigated in great detail. The existence of either neutral or charged (alkylammonium siloxides) amine groups, prior to CO2 adsorption, is also addressed. This work extends the molecular-level understanding of chemisorbed CO2 species in amine-oxide hybrid surfaces showing the benefit of integrating spectroscopy and theoretical approaches.
Collapse
Affiliation(s)
- Rui Afonso
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - Mariana Sardo
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - Luís Mafra
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| | - José R B Gomes
- CICECO - Aveiro Institute of Materials, Department of Chemistry , University of Aveiro, Campus Universitário de Santiago , 3810-193 Aveiro , Portugal
| |
Collapse
|
13
|
Xie J, Ellebracht NC, Jones CW. Inter- and Intramolecular Cooperativity Effects in Alkanolamine-Based Acid-Base Heterogeneous Organocatalysts. ACS OMEGA 2019; 4:1110-1117. [PMID: 31459387 PMCID: PMC6648141 DOI: 10.1021/acsomega.8b02690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/20/2018] [Indexed: 06/10/2023]
Abstract
Intramolecular cooperativity in heterogeneous organocatalysts is investigated using alkanolamine-functionalized silica acid-base catalysts for the aldol condensation reaction of 4-nitrobenzaldehyde and acetone. Two series of catalysts, one with and one without silanol-capping, are synthesized with varied alkyl linker lengths (two to five) connecting secondary amine and terminal hydroxyl functionalities. The reactivity of these catalysts is assessed to determine the relative potential for intermolecular (silane amine-surface silanol) vs intramolecular (amine-hydroxyl within a single silane) cooperativity, the impact of inhibitory surface-silane interactions, and the role of alkyl linker length and flexibility. For the array of catalysts tested, those with longer linker lengths generally give increased catalytic activity, although the turnover frequency trends differ between catalysts with and without surface silanol capping. Catalysts with alkyl-substituted amines lacking a terminal hydroxyl demonstrate an adverse effect of chain length, where the larger alkyl substituent on the amine provides steric hindrance depressing catalytic activity, while giving additional evidence for improved rates afforded by intramolecular cooperativity in the alkanolamine materials. The silanol-capped alkanolamine catalyst with the longest alkyl linker is found to be the most active alkanolamine catalyst due to its hydrophobized surface, which removes hypothesized silanol-alkanolamine inhibitory interactions, with the sufficient length and flexibility of its amine-hydroxyl linker allowing for favorable conformations for cooperativity. This study demonstrates the feasibility of and important factors affecting intramolecular cooperative activity in acid-base heterogeneous organocatalysis.
Collapse
|
14
|
Lee JJ, Yoo CJ, Chen CH, Hayes SE, Sievers C, Jones CW. Silica-Supported Sterically Hindered Amines for CO 2 Capture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12279-12292. [PMID: 30244578 DOI: 10.1021/acs.langmuir.8b02472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Most studies exploring the capture of CO2 on solid-supported amines have focused on unhindered amines or alkylimine polymers. It has been observed in extensive solution studies that another class of amines, namely sterically hindered amines, can exhibit enhanced CO2 capacity when compared to their unhindered counterparts. In contrast to solution studies, there has been limited research conducted on sterically hindered amines on solid supports. In this work, one hindered primary amine and two hindered secondary amines are grafted onto mesoporous silica at similar amine coverages, and their adsorption performances are investigated through fixed bed breakthrough experiments and thermogravimetric analysis. Furthermore, chemisorbed CO2 species formed on the sorbents under dry and humid conditions are elucidated using in situ Fourier-transform infrared spectroscopy. Ammonium bicarbonate formation and enhancement of CO2 adsorption capacity is observed for all supported hindered amines under humid conditions. Our experiments in this study also suggest that chemisorbed CO2 species formed on supported hindered amines are weakly bound, which may lead to reduced energy costs associated with regeneration if such materials were deployed in a practical separation process. However, overall CO2 uptake capacities of the solid supported hindered amines are modest compared to their solution counterparts. The oxidative and thermal stabilities of the supported hindered amine sorbents are also assessed to give insight into their operational lifetimes.
Collapse
Affiliation(s)
- Jason J Lee
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Chun-Jae Yoo
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Chia-Hsin Chen
- Department of Chemistry , Washington University , One Brookings Drive , Saint Louis , Missouri 63130 , United States
| | - Sophia E Hayes
- Department of Chemistry , Washington University , One Brookings Drive , Saint Louis , Missouri 63130 , United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
15
|
Pang SH, Lively RP, Jones CW. Oxidatively-Stable Linear Poly(propylenimine)-Containing Adsorbents for CO 2 Capture from Ultradilute Streams. CHEMSUSCHEM 2018; 11:2628-2637. [PMID: 29809307 DOI: 10.1002/cssc.201800438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/29/2018] [Indexed: 06/08/2023]
Abstract
Aminopolymer-based solid sorbents have been widely investigated for the capture of CO2 from dilute streams such as flue gas or ambient air. However, the oxidative stability of the widely studied aminopolymer, poly(ethylenimine) (PEI), is limited, causing it to lose its CO2 capture capacity after exposure to oxygen at elevated temperatures. Here, we demonstrate the use of linear poly(propylenimine) (PPI), synthesized through a simple cationic ring-opening polymerization, as a more oxidatively stable alternative to PEI with high CO2 capacity and amine efficiency. The performance of linear PPI/SBA-15 composites was investigated over a range of CO2 capture conditions (CO2 partial pressure, adsorption temperature) to examine the tradeoff between adsorption capacity and sorption-site accessibility, which was expected to be more limited in linear polymers relative to the prototypical hyperbranched PEI. Linear PPI/SBA-15 composites were more efficient at CO2 capture and retained 65-83 % of their CO2 capacity after exposure to a harsh oxidative treatment, compared to 20-40 % retention for linear PEI. Additionally, we demonstrated long-term stability of linear PPI sorbents over 50 adsorption/desorption cycles with no loss in performance. Combined with other strategies for improving the oxidative stability and adsorption kinetics, linear PPI may play a role as a component of stable solid adsorbents in commercial applications for CO2 capture.
Collapse
Affiliation(s)
- Simon H Pang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Ryan P Lively
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
16
|
Shimon D, Chen CH, Lee JJ, Didas SA, Sievers C, Jones CW, Hayes SE. 15N Solid State NMR Spectroscopic Study of Surface Amine Groups for Carbon Capture: 3-Aminopropylsilyl Grafted to SBA-15 Mesoporous Silica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1488-1495. [PMID: 29257887 DOI: 10.1021/acs.est.7b04555] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Materials composed of high-porosity solid supports, such as SBA-15, containing amine-bearing moieties inside the pores, such as 3-aminopropylsilane (APS), are envisioned for carbon dioxide capture; solid-state 15N NMR can be highly informative for studying chemisorption reactions. Two 15N-enriched samples with different APS loadings were studied to probe the identity of the pendant molecules and structure of the chemisorbed CO2 species. 15N cross-polarization magic-angle spinning NMR provides unique information about the amines, whether they are rigid or dynamic, by measuring contact time curves and rotating frame, T1ρ(15N), relaxation. Both carbamate and carbamic acid are formed; carbamic acid is shown to be less stable than carbamate. After desorption, a steady state for the chemisorbed reaction product is reached, leaving behind carbamate. 15N NMR monitors the evolution of the species over time. During desorption, APS is regenerated, but the ammonium propylsilane intensity does not change, leading us to conclude that carbamic acid desorbs, while carbamate (to which ammonium propylsilane is ion paired) persists. A secondary ditehtered amine present does not react with CO2, and we posit this may be due to its rigidity. These findings demonstrate the versatility of solid-state NMR to provide information about these complex CO2 reactions with solid amine sorbents.
Collapse
Affiliation(s)
- Daphna Shimon
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Chia-Hsin Chen
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jason J Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Stephanie A Didas
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
17
|
Pu Y, Xuan K, Wang F, Li A, Zhao N, Xiao F. Synthesis of dimethyl carbonate from CO2 and methanol over a hydrophobic Ce/SBA-15 catalyst. RSC Adv 2018; 8:27216-27226. [PMID: 35539997 PMCID: PMC9083335 DOI: 10.1039/c8ra04028a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/16/2018] [Indexed: 11/24/2022] Open
Abstract
A series of Ce/SBA-15 catalysts with different degrees of hydrophobicities were prepared via a post-grafting method and used for the direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol. The Ce/SBA-15-6 catalyst exhibited the highest DMC yield of 0.2%, which was close to the equilibrium value under the reaction conditions of 130 °C, 12 h and 12 MPa. The catalysts were characterized via XRD, BET, FT-IR, solid-state 29Si MAS NMR, CA, TEM, XPS and NH3/CO2-TPD; the results indicated that the hydrophobicity of the catalysts facilitated the creation of oxygen vacancies, which could act as Lewis acids to activate methanol. Higher amounts of moderate acid sites led to higher yields of DMC. In addition, the hydrophobicity of the catalysts could also reduce the adsorbed water on their surface and increase the DMC yield while shortening the reaction time. A series of Ce/SBA-15 catalysts with different degrees of hydrophobicities were prepared via a post-grafting method and used for the direct synthesis of dimethyl carbonate (DMC) from CO2 and methanol.![]()
Collapse
Affiliation(s)
- Yanfeng Pu
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Keng Xuan
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Feng Wang
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Aixue Li
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Ning Zhao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| | - Fukui Xiao
- State Key Laboratory of Coal Conversion
- Institute of Coal Chemistry
- Chinese Academy of Sciences
- Taiyuan 030001
- PR China
| |
Collapse
|
18
|
Sinha S, Tong WY, Williamson NH, McInnes SJP, Puttick S, Cifuentes-Rius A, Bhardwaj R, Plush SE, Voelcker NH. Novel Gd-Loaded Silicon Nanohybrid: A Potential Epidermal Growth Factor Receptor Expressing Cancer Cell Targeting Magnetic Resonance Imaging Contrast Agent. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42601-42611. [PMID: 29154535 DOI: 10.1021/acsami.7b14538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Continuing our research efforts in developing mesoporous silicon nanoparticle-based biomaterials for cancer therapy, we employed here porous silicon nanoparticles as a nanocarrier to deliver contrast agents to diseased cells. Nanoconfinement of small molecule Gd-chelates (L1-Gd) enhanced the T1 contrast dramatically compared to distinct Gd-chelate (L1-Gd) by virtue of its slow tumbling rate, increased number of bound water molecules, and their occupancy time. The newly synthesized Gd-chelate (L1-Gd) was covalently grafted on silicon nanostructures and conjugated to an antibody specific for epidermal growth factor receptor (EGFR) via a hydrazone linkage. The salient feature of this nanosized contrast agent is the capability of EGFR targeted delivery to cancer cells. Mesoporous silicon nanoparticles were chosen as the nanocarrier because of their high porosity, high surface area, and excellent biodegradability. This type of nanosized contrast agent also performs well in high magnetic fields.
Collapse
Affiliation(s)
- Sougata Sinha
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Wing Yin Tong
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nathan H Williamson
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Steven J P McInnes
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Simon Puttick
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland , St. Lucia, Brisbane, Queensland 4072, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton, Victoria Australia
| | - Anna Cifuentes-Rius
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Richa Bhardwaj
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
| | - Sally E Plush
- Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, South Australia 5000, Australia
| | - Nicolas H Voelcker
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia , Mawson Lakes, South Australia 5095, Australia
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clayton, Victoria Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility , Clayton, Victoria 3168, Australia
- Monash Institute of Medical Engineering, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
19
|
Chen CH, Shimon D, Lee JJ, Didas SA, Mehta AK, Sievers C, Jones CW, Hayes SE. Spectroscopic Characterization of Adsorbed 13CO 2 on 3-Aminopropylsilyl-Modified SBA15 Mesoporous Silica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6553-6559. [PMID: 28460168 DOI: 10.1021/acs.est.6b06605] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Multiple chemisorption products are found from the interaction of CO2 with the solid-amine sorbent, 3-aminopropyl silane (APS), bound to mesoporous silica (SBA15) using solid-state NMR and FTIR spectroscopy. We employed a combination of both 15N{13C} rotational-echo double-resonance (REDOR) NMR and 13C{15N} REDOR to determine the chemical identity of these products. 15N{13C} REDOR measurements are consistent with a single 13C-15N pair and distance of 1.45 Å. In contrast, both 13C{15N} REDOR and 13C CPMAS are consistent with multiple 13C products. 13C CPMAS shows two neighboring resonances, whose chemical shifts are consistent with carbamate (at 165 ppm) and carbamic acid. The 13C{15N} REDOR experiments resonant at 165 ppm show an incomplete buildup of the REDOR data to ∼90% of the expected maximum. We conclude this 10% missing intensity corresponds to a 13C NMR species that resonates at the identical chemical shift but that is not in dipolar contact with 15N. These data are consistent with the presence of bicarbonate, HCO3-, since it is commonly observed at ∼165 ppm and lacks 15N for dipolar coupling.
Collapse
Affiliation(s)
- Chia-Hsin Chen
- Department of Chemistry, Washington University in Saint Louis , One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Daphna Shimon
- Department of Chemistry, Washington University in Saint Louis , One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Jason J Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Stephanie A Didas
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Anil K Mehta
- Solid-State NMR Center, Department of Chemistry, Emory University , Atlanta, Georgia 30322, United States
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Sophia E Hayes
- Department of Chemistry, Washington University in Saint Louis , One Brookings Drive, Saint Louis, Missouri 63130, United States
| |
Collapse
|
20
|
Sanz-Pérez ES, Murdock CR, Didas SA, Jones CW. Direct Capture of CO2 from Ambient Air. Chem Rev 2016; 116:11840-11876. [DOI: 10.1021/acs.chemrev.6b00173] [Citation(s) in RCA: 1044] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eloy S. Sanz-Pérez
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
- Department
of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Christopher R. Murdock
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Stephanie A. Didas
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| | - Christopher W. Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
21
|
Kim KC, Moschetta EG, Jones CW, Jang SS. Molecular Dynamics Simulations of Aldol Condensation Catalyzed by Alkylamine-Functionalized Crystalline Silica Surfaces. J Am Chem Soc 2016; 138:7664-72. [DOI: 10.1021/jacs.6b03309] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ki Chul Kim
- Computational NanoBio
Technology Laboratory, School of Materials
Science and Engineering, ‡School of Chemical & Biomolecular Engineering, §Institute for Electronics
and Nanotechnology, and ∥Parker H. Petit Institute for Bioengineering and
Bioscience, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Eric G. Moschetta
- Computational NanoBio
Technology Laboratory, School of Materials
Science and Engineering, ‡School of Chemical & Biomolecular Engineering, §Institute for Electronics
and Nanotechnology, and ∥Parker H. Petit Institute for Bioengineering and
Bioscience, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Christopher W. Jones
- Computational NanoBio
Technology Laboratory, School of Materials
Science and Engineering, ‡School of Chemical & Biomolecular Engineering, §Institute for Electronics
and Nanotechnology, and ∥Parker H. Petit Institute for Bioengineering and
Bioscience, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| | - Seung Soon Jang
- Computational NanoBio
Technology Laboratory, School of Materials
Science and Engineering, ‡School of Chemical & Biomolecular Engineering, §Institute for Electronics
and Nanotechnology, and ∥Parker H. Petit Institute for Bioengineering and
Bioscience, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
22
|
Yoo CJ, Lee LC, Jones CW. Probing Intramolecular versus Intermolecular CO2 Adsorption on Amine-Grafted SBA-15. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13350-13360. [PMID: 26602305 DOI: 10.1021/acs.langmuir.5b03657] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A mesoporous silica SBA-15 is modified with an array of amine-containing organosilanes including (i) propylamine, SiCH2CH2CH2NH2 (MONO), (ii) propylethylenediamine, SiCH2CH2CH2NHCH2CH2NH2 (DI), (iii) propyldiethylenetriamine, SiCH2CH2CH2NHCH2CH2NHCH2CH2NH2 (TRI), and (iv) propyltriethylenetetramine, SiCH2CH2CH2NHCH2CH2N(CH2CH2NH2)2 (TREN) and the low loading silane adsorbents (∼0.45 mmol silane/g) are evaluated for their CO2 adsorption properties, with a focus on gaining insight into the propensity for intramolecular vs intermolecular CO2 adsorption. Adsorption isotherms at low CO2 coverages are measured while simultaneously recording the heat evolved via a Tian-Calvet calorimeter. The results are compared on a silane molecule efficiency basis (mol CO2 adsorbed/mol silane) to assess the potential for intramolecular CO2 adsorption, employing two amine groups in a single silane molecule. As the number of amines in the silane molecule increases (MONO < DI < TREN ∼ TRI), the silane molecule efficiency is enhanced owing to the ability to intramolecularly capture CO2. Analysis of the CO2 uptake for samples with the surface silanols removed by capping demonstrates that cooperative uptake due to amine-CO2-silanol interactions is also possible over these adsorbents and is the primary mode of sorption for the MONO material at the studied low silane loading. As the propensity for intramolecular CO2 capture increases due to the presence of multiple amines in a single silane molecule (MONO < DI < TREN ∼ TRI), the measured heat of adsorption also increases. This study of various amine-containing silanes at low coverage is the first to provide significant, direct evidence for intramolecular CO2 capture in a single silane molecule. Furthermore, it provides evidence for the relative heats of adsorption for physisorption on a silanol laden surface (ca. 37 kJ/mol), a silanol-capped surface (ca. 25 kJ/mol), via amine-CO2-silanol interactions (ca. 46 kJ/mol), and via amine-CO2-amine interactions at low surface coverages (ca. 65 kJ/mol).
Collapse
Affiliation(s)
- Chun-Jae Yoo
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, NW, Atlanta, Georgia 30332, United States
| | - Li-Chen Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, NW, Atlanta, Georgia 30332, United States
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology , 311 Ferst Drive, NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Sanz-Pérez ES, Arencibia A, Sanz R, Calleja G. An investigation of the textural properties of mesostructured silica-based adsorbents for predicting CO2 adsorption capacity. RSC Adv 2015. [DOI: 10.1039/c5ra19105j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The CO2 uptake of more than 30 physisorbents was found to correlate with their textural parameters, namely the product of the available surface area (SBET) and the affinity of the surface toward adsorptives (C parameter).
Collapse
Affiliation(s)
- E. S. Sanz-Pérez
- Department of Chemical and Energy Technology, ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - A. Arencibia
- Department of Chemical and Energy Technology, ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - R. Sanz
- Department of Chemical and Energy Technology, ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| | - G. Calleja
- Department of Chemical and Energy Technology, ESCET
- Universidad Rey Juan Carlos
- 28933 Móstoles
- Spain
| |
Collapse
|