1
|
Visible light photochemical synthesis of ultrasmall palladium/copper bimetallic particles at room temperature and its catalytic application in degradation of p-NP. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Zhu S, Li Z, Ren R, Zhao W, Li T, Liu M, Wu Y. Pd/Cu
2
O/CuO as Active Sites on the Cyclometalated Pd(II)/Cu(II) Nanosheet: Active Centre Formation, Synergistic and Catalytic Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuiqing Zhu
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Zihan Li
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Ruirui Ren
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Wuduo Zhao
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Tiesheng Li
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| | - Minghua Liu
- Henan Institute of Advanced Technology Zhengzhou University, Kexuedadao 100 Zhengzhou 450001, Henan Province P.R. China
- Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences, Zhongguancun North First Street 2 Beijing 100190 P. R China
| | - Yangjie Wu
- College of Chemistry Zhengzhou University, Kexuedadao 100 Zhengzhou 450001 P. R. China
| |
Collapse
|
3
|
Liao CH, Chen JY, Liu GY, Xu ZR, Lee S, Chiang CK, Hsieh YT. Supercritical Fluid-Assisted Fabrication of Pd Nanoparticles/Graphene Using a Choline Chloride-Oxalic Acid Deep Eutectic Solvent for Enhancing the Electrochemical Oxidation of Glycerol. ACS OMEGA 2022; 7:19930-19938. [PMID: 35721897 PMCID: PMC9202068 DOI: 10.1021/acsomega.2c01721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
A green method for synthesizing Pd nanoparticles/graphene composites from a choline chloride-oxalic acid deep eutectic solvent (DES) without a reducing agent or a surfactant is reported. Deep eutectic solvents are usually composed of halide salts and hydrogen-bond donors, and many are biocompatible and biodegradable. The merits of deep eutectic solvents include that they serve as reducing agents and dispersants, and Pd nanoparticles are tightly anchored to graphene. The size and dispersion of Pd particles are improved when supercritical carbon dioxide (scCO2) is used because it has gaslike diffusivity and near-zero surface tension, which results in excellent wettability between the scCO2 and the carbon surface. The prepared sc-Pd NPs/GR/SPCE shows excellent activity toward glycerol oxidation compared to composites not fabricated by scCO2 processes. This study demonstrates the potential of using this scCO2-assisted protocol combined with deep eutectic solvents to further construct nanoparticles/graphene composites.
Collapse
Affiliation(s)
- Cheng-Hao Liao
- Department
of Chemistry, Soochow University, Taipei City 11102, Taiwan
| | - Jing-Ying Chen
- Department
of Chemistry, Soochow University, Taipei City 11102, Taiwan
| | - Guang-Yang Liu
- Department
of Chemistry, National Dong Hwa University, Hualien City 97401, Taiwan
| | - Zhe-Rui Xu
- Department
of Chemistry, Soochow University, Taipei City 11102, Taiwan
| | - Sheng Lee
- Department
of Chemistry, Soochow University, Taipei City 11102, Taiwan
| | - Cheng-Kang Chiang
- Department
of Chemistry, National Dong Hwa University, Hualien City 97401, Taiwan
| | - Yi-Ting Hsieh
- Department
of Chemistry, Soochow University, Taipei City 11102, Taiwan
| |
Collapse
|
4
|
Zheng Y, Zhai Y, Tu M, Huang X, Shu M, Guo X, Ying Y, Wu Y, Wen Y, Yang H. Bimetallic alloy and semiconductor support synergistic interaction effects for superior electrochemical catalysis. NANOSCALE 2020; 12:4719-4728. [PMID: 32049072 DOI: 10.1039/c9nr09608f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design and fabrication of economically viable anode catalysts for the methanol oxidation reaction (MOR) have been challenging issues in direct methanol fuel cells (DMFCs) over the decades. In this work, a composite electrochemical catalyst of Pd-coupled Ag and ZnO for the possible replacement of expensive Pt catalysts in DMFCs is successfully prepared. The as-made Pd@Ag/ZnO exhibits specific activity, which is 1.8-fold, 2.8-fold, and 4.6-fold higher than that of a Pd/ZnO catalyst, 20% Pd/C catalyst and Pd black, respectively. The improvement of the catalytic mechanism is likely due to the synergistic interaction between Pd@Ag and ZnO. The density functional theory (DFT) calculation results confirm that Ag doped into Pd weakens the adsorption of CO, dramatically improving the capability to resist CO poisoning.
Collapse
Affiliation(s)
- Yunshan Zheng
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Yan Zhai
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Maomao Tu
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Xinhua Huang
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Mingcong Shu
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Xiaoyu Guo
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Ye Ying
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Yiping Wu
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Ying Wen
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Department of Chemistry, Shanghai Normal University, Shanghai, 200234, P. R. China.
| |
Collapse
|
5
|
Sun Z, Fan Q, Zhang M, Liu S, Tao H, Texter J. Supercritical Fluid-Facilitated Exfoliation and Processing of 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901084. [PMID: 31572648 PMCID: PMC6760473 DOI: 10.1002/advs.201901084] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Since the first intercalation of layered silicates by using supercritical CO2 as a processing medium, considerable efforts have been dedicated to intercalating and exfoliating layered two-dimensional (2D) materials in various supercritical fluids (SCFs) to yield single- and few-layer nanosheets. Here, recent work in this area is highlighted. Motivating factors for enhancing exfoliation efficiency and product quality in SCFs, mechanisms for exfoliation and dispersion in SCFs, as well as general metrics applied to assess quality and processability of exfoliated 2D materials are critically discussed. Further, advances in formation and application of 2D material-based composites with assistance from SCFs are presented. These discussions address chemical transformations accompanying SCF processing such as doping, covalent surface modification, and heterostructure formation. Promising features, challenges, and routes to expanding SCF processing techniques are described.
Collapse
Affiliation(s)
- Zhenyu Sun
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Qun Fan
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Mingli Zhang
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Shizhen Liu
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hengcong Tao
- State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - John Texter
- School of Engineering TechnologyEastern Michigan UniversityYpsilantiMI48197USA
| |
Collapse
|
6
|
Lou M, Wang R, Zhang J, Tang X, Wang L, Guo Y, Jia D, Shi H, Yang L, Wang X, Sun Z, Wang T, Huang Y. Optimized Synthesis of Nitrogen and Phosphorus Dual-Doped Coal-Based Carbon Fiber Supported Pd Catalyst with Enhanced Activities for Formic Acid Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6431-6441. [PMID: 30640425 DOI: 10.1021/acsami.8b20736] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Development of a Pd-based catalyst with highly active and durable properties for formic acid oxidation reaction at the anode remains an important matter of interest in the research community. Herein, we have designed novel coal-based carbon fibers (Coal-CFs) with dicyandiamide (DCD) as nitrogen (N) source, triphenylphosphine (TPP) as phosphorus (P) source dual-doped to support Pd catalysts (Pd/NP-Coal-CFs(DCD/TPP)), which exhibit superior catalytic performance toward formic acid oxidation reaction. Mass activity of formic acid oxidation of Pd/NP-Coal-CFs(DCD/TPP) catalyst is 536.6 mA·mg-1Pd, which is 2.5 times higher than that of Pd/Coal-CFs catalyst. The higher specific surface areas, exclusive electron transport path, and the high synergistic interaction of N and P are the favorable phenomena for catalytic performance. The addition of coal not only increases the abundant defects sites but also makes the utilization of coal with high added value. This N and P dual-doped catalyst inspires an idea for promoting applications in practical fuel cells.
Collapse
Affiliation(s)
- Mengran Lou
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Ruiying Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Jie Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Xincun Tang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Luxiang Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Yong Guo
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Hongli Shi
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Lili Yang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Xingchao Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Zhipeng Sun
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Tao Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Yudai Huang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| |
Collapse
|
7
|
Fuping Li, Li W, Liu H, Liu C, Dong G, Liu J, Peng K. Palladium Nanoparticles Loaded on TiO2–Graphene Hybrids (Pd/TiO2–Gr) with Enhanced Electrocatalytic Activity in Formic Acid Oxidation. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418080137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Bhat SA, Rashid N, Rather MA, Pandit SA, Rather GM, Ingole PP, Bhat MA. PdAg Bimetallic Nanoalloy-Decorated Graphene: A Nanohybrid with Unprecedented Electrocatalytic, Catalytic, and Sensing Activities. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16376-16389. [PMID: 29658695 DOI: 10.1021/acsami.8b00510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Recent reports about the promising and tunable electrocatalytic activity and stability of nanoalloys have stimulated an intense research activity toward the design and synthesis of homogeneously alloyed novel bimetallic nanoelectrocatalysts. We herein present a simple one-pot facile wet-chemical approach for the deposition of high-quality bimetallic palladium-silver (PdAg) homogeneous nanoalloy crystals on reduced graphene (Gr) oxide sheets. Morphological, structural, and chemical characterizations of the so-crafted nanohybrids establish a homogeneous distribution of 1:1 PdAg nanoalloy crystals supported over reduced graphene oxide (PdAg-Gr). The PdAg-Gr nanohybrids exhibit outstanding electrocatalytic, catalytic, and electroanalytical performances. The PdAg-Gr samples were found to exhibit exceptional durability when subjected to repeated potential cycles or long-term electrolysis. In the CVs recorded for fuel cell reactions, viz. methanol oxidation reaction and oxygen reduction reaction, and for detoxification of environmental pollutants, viz. electroreduction of methyl iodide and chloroacetonitrile over PdAg-Gr with potential sweep rate of 25 mVs-1, the peak potentials were observed to be just -0.221, -0.297, (vs Ag/AgCl, 3 M KCl) -1.508, and -1.189 V (vs Fc+/Fc), respectively. The potential of PdAg-Gr nanohybrid for simultaneous and sensitive electrochemical sensing and estimation of hydroxybenzene isomers with very low detection limits (0.05 μM for hydroquinone, 0.06 μM for catechol, 6.7 nM for 4-aminophenol, and 13.7 nM for 2-aminophenol) is demonstrated. Additionally, PdAg-Gr was observed to offer excellent solution-phase catalytic performance in bringing about the reduction of notorious environmental pollutant 4-nitrophenol to pharmaceutically important 4-aminophenol with an apparent rate constant ( kapp) of 3.106 × 10-2 s-1 and a normalized rate constant ( knor) of 6.21 × 102 s-1 g-1. The presented synthetic scheme besides being high yielding, low cost, and easy to carry out results in the production of PdAg-Gr nanohybrids with stability and activity significantly better than most of the nanomaterials purposefully designed and testified so far by various groups.
Collapse
Affiliation(s)
- Sajad Ahmad Bhat
- Department of Chemistry , University of Kashmir , Srinagar 190006 , J&K , India
| | - Nusrat Rashid
- Department of Chemistry , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | | | - Sarwar Ahmad Pandit
- Department of Chemistry , University of Kashmir , Srinagar 190006 , J&K , India
| | | | - Pravin P Ingole
- Department of Chemistry , Indian Institute of Technology Delhi , New Delhi 110016 , India
| | - Mohsin Ahmad Bhat
- Department of Chemistry , University of Kashmir , Srinagar 190006 , J&K , India
| |
Collapse
|
9
|
Clarke CJ, Tu WC, Levers O, Bröhl A, Hallett JP. Green and Sustainable Solvents in Chemical Processes. Chem Rev 2018; 118:747-800. [DOI: 10.1021/acs.chemrev.7b00571] [Citation(s) in RCA: 897] [Impact Index Per Article: 128.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Coby J. Clarke
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Wei-Chien Tu
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Oliver Levers
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Andreas Bröhl
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| | - Jason P. Hallett
- Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Ultrahigh methanol electro-oxidation activity from gas phase synthesized palladium nanoparticles optimized with three-dimensional carbon nanostructured supports. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Han H, Noh Y, Kim Y, Yadav VSK, Park S, Yoon W, Lee S, Kim WB. Electrocatalytic Oxidations of Formic Acid and Ethanol over Pd Catalysts Supported on a Doped Polypyrrole-Carbon Composite. ChemistrySelect 2017. [DOI: 10.1002/slct.201701112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hyunsu Han
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang, Gyeongbuk 37673 Republic of Korea
| | - Yuseong Noh
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang, Gyeongbuk 37673 Republic of Korea
| | - Yoongon Kim
- School of Materials Science & Engineering; Gwangju Institute of Science and Technology (GIST); 261 Cheomdan-gwagiro, Buk-gu Gwangju 500-712 Republic of Korea
| | - V. S. K. Yadav
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seongmin Park
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang, Gyeongbuk 37673 Republic of Korea
| | - Wongeun Yoon
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seungjun Lee
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang, Gyeongbuk 37673 Republic of Korea
| | - Won Bae Kim
- Department of Chemical Engineering; Pohang University of Science and Technology (POSTECH); 77 Cheongam-ro, Nam-gu Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
12
|
Ayán-Varela M, Ruiz-Rosas R, Villar-Rodil S, Paredes J, Cazorla-Amorós D, Morallón E, Martínez-Alonso A, Tascón J. Efficient Pt electrocatalysts supported onto flavin mononucleotide–exfoliated pristine graphene for the methanol oxidation reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.177] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Zhang Y, Li M, Chen Q, Cai D, Zhan H. Dendritic unzipped carbon nanofibers enable uniform loading of surfactant-free Pd nanoparticles for the electroanalysis of small biomolecules. J Mater Chem B 2017; 5:2254-2262. [DOI: 10.1039/c7tb00228a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Illustration of the mechanisms of SCNF and preparation of Pd/GNF composites and Pd/GNF sensors for the simultaneous determination of small biomolecules.
Collapse
Affiliation(s)
- Yan Zhang
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Mengpei Li
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Qidi Chen
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Daoping Cai
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Hongbing Zhan
- College of Materials Science and Engineering
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
14
|
Tian H, He J. Cellulose as a Scaffold for Self-Assembly: From Basic Research to Real Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12269-12282. [PMID: 27403881 DOI: 10.1021/acs.langmuir.6b02033] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cellulose has received a tremendous amount of attention both in academia and industry owing to its unique structural features, impressive physical-chemical properties, and wide applications. This natural polymer is originally used for packaging, paper, lightweight composites, and so forth and is now being developed for various new areas, such as antibacterial treatment, catalysis, water purification and separation, and biological and environmental analysis. In the current article, we summarize the recent developments in the self-assembly of cellulose with various species including metal ions and metal and metal oxide nanoparticles. Then we highlight several key application areas of cellulose-based composites by reviewing the recent representative literature in each area. A significant part of this review demonstrates some exciting innovations for a wide range of practical applications of cellulose-based composites. Some challenges are also discussed with a view toward future developments.
Collapse
Affiliation(s)
- Hua Tian
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology, and Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
15
|
Bin D, Yang B, Zhang K, Wang C, Wang J, Zhong J, Feng Y, Guo J, Du Y. Design of PdAg Hollow Nanoflowers through Galvanic Replacement and Their Application for Ethanol Electrooxidation. Chemistry 2016; 22:16642-16647. [DOI: 10.1002/chem.201601544] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Duan Bin
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| | - Beibei Yang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| | - Ke Zhang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| | - Caiqin Wang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| | - Jin Wang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| | - Jiatai Zhong
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| | - Yue Feng
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| | - Jun Guo
- Testing and Analysis Center; Soochow University; Suzhou 215123 P.R. China
| | - Yukou Du
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University Suzhou; 215123 P.R. China
| |
Collapse
|
16
|
Yi F, Gao Y, Li H, Yi L, Chen D, Lu S. Nitrogen- and oxygen-codoped porous carbonaceous foam templated from high internal emulsion as PtRu catalyst support for direct methanol fuel cell. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Electrocatalytic oxidation of ethylene glycol on palladium coated on 3D reduced graphene oxide aerogel paper in alkali media: Effects of carbon supports and hydrodynamic diffusion. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.162] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Miao J, Liu H, Li W, Zhang X. Mussel-Inspired Polydopamine-Functionalized Graphene as a Conductive Adhesion Promoter and Protective Layer for Silver Nanowire Transparent Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5365-72. [PMID: 27142815 DOI: 10.1021/acs.langmuir.6b00796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
For the scalable fabrication of transparent electrodes and optoelectronic devices, excellent adhesion between the conductive films and the substrates is essential. In this work, a novel mussel-inspired polydopamine-functionalized graphene/silver nanowire hybrid nanomaterial for transparent electrodes was fabricated in a facile manner. Graphene oxide (GO) was functionalized and reduced by polydopamine while remaining stable in water without precipitation. It is shown that the polydopamine-functionalized GO (PFGO) film adhered to the substrate much more easily and more uniformly than the GO film. The PFGO film had a sheet resistance of ∼3.46 × 10(8) Ω/sq and a transparency of 78.2%, with excellent thermal and chemical stability; these characteristics are appropriate for antistatic coatings. Further reduced PFGO (RPFGO) as a conductive adhesion promoter and protective layer for the Ag nanowire (AgNW) significantly enhanced the adhesion force between AgNW networks and the substrate. The RPFGO-AgNW electrode was found to have a sheet resistance of 63 Ω/sq and a transparency of 70.5%. Moreover, the long-term stability of the RPFGO-AgNW electrode was greatly enhanced via the effective protection of the AgNW by RPFGO. These solution-processed antistatic coatings and electrodes have tremendous potential in the applications of optoelectronic devices as a result of their low production cost and facile processing.
Collapse
Affiliation(s)
- Jinlei Miao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University , Tianjin 300387, China
| | - Haihui Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University , Tianjin 300387, China
| | - Wei Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University , Tianjin 300387, China
| | - Xingxiang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage, School of Material Science and Engineering, Tianjin Polytechnic University , Tianjin 300387, China
| |
Collapse
|
19
|
Zhou Y, Li C, Fu J, Yu C, Hu XC. Nitrogen-doped graphene/tungsten oxide microspheres as an electro-catalyst support for formic acid electro-oxidation. RSC Adv 2016. [DOI: 10.1039/c6ra17344f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tungsten trioxide (WO3) spheres decorated with nitrogen-doped graphene (NRGO–WO3) were synthesized by applying the spray-drying procedure and characterized for their ability to serve as an electro-catalyst support for formic acid electro-oxidation.
Collapse
Affiliation(s)
- Yang Zhou
- Engineering Research Institute Jiangxi University of Science and Technology
- Ganzhou 341000
- PR China
- Key laboratory of power batteries & relative materials
- Ganzhou 341000
| | - Chen Li
- Research Center of Analysis and Measurement
- Zhejiang University of Technology
- Hangzhou 310032
- PR China
| | - Junxiang Fu
- Engineering Research Institute Jiangxi University of Science and Technology
- Ganzhou 341000
- PR China
| | - Changlin Yu
- Engineering Research Institute Jiangxi University of Science and Technology
- Ganzhou 341000
- PR China
| | - Xian-Chao Hu
- Research Center of Analysis and Measurement
- Zhejiang University of Technology
- Hangzhou 310032
- PR China
| |
Collapse
|