1
|
Wijakmatee T, Shimoyama Y, Orita Y. Systematically Designed Surface and Morphology of Magnetite Nanoparticles Using Monocarboxylic Acid with Various Chain Lengths under Hydrothermal Condition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37338200 DOI: 10.1021/acs.langmuir.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hydrothermal synthesis of surface-modified magnetite nanoparticles (NPs) was performed in a batch reactor at 200 °C for 20 min while using monocarboxylic acid with various alkyl chain lengths (C6 to C18) as surface modifiers. The short-chain cases (C6 to C12) successfully gave the surface-modified NPs with uniform shape and magnetite structure, while the long-chain cases (C14 to C18) gave the NPs with nonuniform shape and two structures (magnetite and hematite). Additionally, the synthesized NPs were revealed to have single crystallinity, high stability, and ferromagnetic property, which were useful for hyperthermia therapy via various characterization techniques. These investigations would guide the selection guidelines for a surface modifier to control the structure, surface, and magnetic properties of surface-modified magnetite NPs with high crystallinity and stability, particularly for hyperthermia therapy applications.
Collapse
Affiliation(s)
- Thossaporn Wijakmatee
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yusuke Shimoyama
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yasuhiko Orita
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, S1-33, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Wang Q, Atluri K, Tiwari AK, Babu RJ. Exploring the Application of Micellar Drug Delivery Systems in Cancer Nanomedicine. Pharmaceuticals (Basel) 2023; 16:ph16030433. [PMID: 36986532 PMCID: PMC10052155 DOI: 10.3390/ph16030433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Various formulations of polymeric micelles, tiny spherical structures made of polymeric materials, are currently being investigated in preclinical and clinical settings for their potential as nanomedicines. They target specific tissues and prolong circulation in the body, making them promising cancer treatment options. This review focuses on the different types of polymeric materials available to synthesize micelles, as well as the different ways that micelles can be tailored to be responsive to different stimuli. The selection of stimuli-sensitive polymers used in micelle preparation is based on the specific conditions found in the tumor microenvironment. Additionally, clinical trends in using micelles to treat cancer are presented, including what happens to micelles after they are administered. Finally, various cancer drug delivery applications involving micelles are discussed along with their regulatory aspects and future outlooks. As part of this discussion, we will examine current research and development in this field. The challenges and barriers they may have to overcome before they can be widely adopted in clinics will also be discussed.
Collapse
Affiliation(s)
- Qi Wang
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
| | - Keerthi Atluri
- Product Development Department, Alcami Corporation, Morrisville, NC 27560, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH 43614, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36849, USA
- Correspondence:
| |
Collapse
|
3
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
4
|
Kim SJ, Byun H, Lee S, Kim E, Lee GM, Huh SJ, Joo J, Shin H. Spatially arranged encapsulation of stem cell spheroids within hydrogels for the regulation of spheroid fusion and cell migration. Acta Biomater 2022; 142:60-72. [PMID: 35085797 DOI: 10.1016/j.actbio.2022.01.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cell spheroids have been encapsulated in hydrogels for various applications because spheroids demonstrate higher cell activity than individual cells in suspension. However, there is limited information on the effect of distance between spheroids (inter-spheroid distance) on fusion or migration in a hydrogel. In this study, we developed temperature-responsive hydrogels with surface microwell patterns to culture adipose-derived stem cell (ASC) spheroids and deliver them into a Matrigel for the investigation of the effect of inter-spheroid distance on spheroid behavior. The ASC spheroids were encapsulated successfully in a Matrigel, denoted as sandwich culture, with a specific inter-spheroid distance ranging from 100 to 400 µm. Interestingly, ASCs migrated from the host spheroid and formed a bridge-like structure between spheroids, denoted as a cellular bridge, only when the inter-spheroid distance was 200 µm. Thus, we performed a sandwich culture of human umbilical vein endothelial cells (HUVECs) and ASCs in co-cultured spheroids in the Matrigel to create a homogeneous endothelial cell network in the hydrogel. The HUVECs sprouted through the ASC cellular bridge and directly interacted with the adjacent spheroid when the inter-spheroid distance was 200 µm. Similar results were obtained from an in vivo study. Thus, our study suggests the appropriate inter-spheroid distance for effective spheroid encapsulation in a hydrogel. STATEMENT OF SIGNIFICANCE: Recently, spheroid-based 3D tissue culture techniques such as spheroid encapsulation or 3D printing are being intensively investigated for various purposes. However, there is limited research regarding the effect of the inter-spheroid distance on spheroid communication. Here, we demonstrate a spatially arranged spheroid encapsulation method within a Matrigel by using a temperature-responsive hydrogel. Human adipose-derived stem cell spheroids are encapsulated with a precisely controlled inter-spheroid distance from 100 to 400 µm and show different tendencies in cell migration and spheroid fusion. Our results suggest that the inter-spheroid distance affects spheroid communication, and thus, the inter-spheroid distance needs to be considered carefully according to the purpose.
Collapse
Affiliation(s)
- Se-Jeong Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eunhyung Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Gyeong Min Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Seung Jae Huh
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
An Overview of the Production of Magnetic Core-Shell Nanoparticles and Their Biomedical Applications. METALS 2022. [DOI: 10.3390/met12040605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several developments have recently emerged for core-shell magnetic nanomaterials, indicating that they are suitable materials for biomedical applications. Their usage in hyperthermia and drug delivery applications has escalated since the use of shell materials and has several beneficial effects for the treatment in question. The shell can protect the magnetic core from oxidation and provide biocompatibility for many materials. Yet, the synthesis of the core-shell materials is a multifaceted challenge as it involves several steps and parallel processes. Although reviews on magnetic core-shell nanoparticles exist, there is a lack of literature that compares the size and shape of magnetic core-shell nanomaterials synthesized via various methods. Therefore, this review outlines the primary synthetic routes for magnetic core-shell nanoparticles, along with the recent advances in magnetic core-shell nanomaterials. As core-shell nanoparticles have been proposed among others as therapeutic nanocarriers, their potential applications in hyperthermia drug delivery are discussed.
Collapse
|
6
|
Singla P, Garg S, McClements J, Jamieson O, Peeters M, Mahajan RK. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv Colloid Interface Sci 2022; 299:102563. [PMID: 34826745 DOI: 10.1016/j.cis.2021.102563] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/15/2021] [Accepted: 11/13/2021] [Indexed: 12/22/2022]
Abstract
Pluronic (PEO-PPO-PEO) block copolymers can form nano-sized micelles with a structure composed of a hydrophobic PPO core and hydrophilic PEO shell layer. Pluronics are U.S. Food and Drug Administration approved polymers, which are widely used for solubilization of drugs and their delivery, gene/therapeutic delivery, diagnostics, and tissue engineering applications due to their non-ionic properties, non-toxicity, micelle forming ability, excellent biocompatibility and biodegradability. Although Pluronics have been employed as drug carrier systems for several decades, numerous issues such as rapid dissolution, shorter residence time in biological media, fast clearance and weak mechanical strength have hindered their efficacy. Pluronics have been functionalized with pH-sensitive, biological-responsive moieties, antibodies, aptamers, folic acid, drugs, different nanoparticles, and photo/thermo-responsive hydrogels. These functionalization strategies enable Pluronics to act as stimuli responsive and targeted drug delivery vehicles. Moreover, Pluronics have emerged in nano-emulsion formulations and have been utilized to improve the properties of cubosomes, dendrimers and nano-sheets, including their biocompatibility and aqueous solubility. Functionalization of Pluronics results in the significant improvement of target specificity, loading capacity, biocompatibility of nanoparticles and stimuli responsive hydrogels for the promising delivery of a range of drugs. Therefore, this review presents an overview of all advancements (from the last 15 years) in functionalized Pluronics, providing a valuable tool for industry and academia in order to optimize their use in drug or therapeutic delivery, in addition to several other biomedical applications.
Collapse
Affiliation(s)
- Pankaj Singla
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Saweta Garg
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Jake McClements
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Oliver Jamieson
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Marloes Peeters
- School of Engineering, Merz Court, Claremont Road, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom.
| | - Rakesh Kumar Mahajan
- Department of Chemistry, UGC-Centre for Advanced Studies-I, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
7
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
8
|
Chu W, Nie M, Ke X, Luo J, Li J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol Biosci 2021; 21:e2100109. [PMID: 33908175 DOI: 10.1002/mabi.202100109] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Injectable dual crosslinking hydrogels hold great promise to improve therapeutic efficacy in minimally invasive surgery. Compared with prefabricated hydrogels, injectable hydrogels can be implanted more accurately into deeply enclosed sites and repair irregularly shaped lesions, showing great applicable potential. Here, the current fabrication considerations of injectable dual crosslinking hydrogels are reviewed. Besides, the progress of the hydrogels used in corresponding applications and emerging challenges are discussed, with detailed emphasis in the fields of bone and cartilage regeneration, wound dressings, sensors and other less mentioned applications for their more hopeful employments in clinic. It is envisioned that the further development of the injectable dual crosslinking hydrogels will catalyze their innovation and transformation in the biomedical field.
Collapse
Affiliation(s)
- Wenlin Chu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingxi Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Zhao C, Xing Z, Zhang C, Fan Y, Liu H. Nanopharmaceutical-based regenerative medicine: a promising therapeutic strategy for spinal cord injury. J Mater Chem B 2021; 9:2367-2383. [PMID: 33662083 DOI: 10.1039/d0tb02740e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder that can lead to loss of perceptive and athletic function due to the severe nerve damage. To date, pieces of evidence detailing the precise pathological mechanisms in SCI are still unclear. Therefore, drug therapy cannot effectively alleviate the SCI symptoms and faces the limitations of systemic administration with large side effects. Thus, the development of SCI treatment strategies is urgent and valuable. Due to the application of nanotechnology in pharmaceutical research, nanopharmaceutical-based regenerative medicine will bring colossal development space for clinical medicine. These nanopharmaceuticals (i.e. nanocrystalline drugs and nanocarrier drugs) are designed using different types of materials or bioactive molecules, so as to improve the therapeutic effects, reduce side effects, and subtly deliver drugs, etc. Currently, an increasing number of nanopharmaceutical products have been approved by drug regulatory agencies, which has also prompted more researchers to focus on the potential treatment strategies of SCI. Therefore, the purpose of this review is to summarize and elaborate the research progress as well as the challenges and future of nanopharmaceuticals in the treatment of SCI, aiming to promote further research of nanopharmaceuticals in SCI.
Collapse
Affiliation(s)
- Chen Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China. and School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Zheng Xing
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Chunchen Zhang
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou, 310027, P. R. China and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, P. R. China.
| |
Collapse
|
10
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
11
|
Solis-Gonzalez OA, Avendaño-Gómez JR, Rojas-Aguilar A. A thermodynamic study of F108 and F127 block copolymer interactions with liposomes at physiological temperature. J Liposome Res 2021; 32:32-44. [PMID: 33322974 DOI: 10.1080/08982104.2020.1865401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The interactions of egg yolk phosphatidylcholine liposomes with F108 and F127 triblock copolymers, in the monomer state, were analyzed by isothermal titration calorimetry (ITC) at 37 °C. According to the results, the critical micelle concentration was determined to be 0.4 and 0.04 wt.% for F108 and F127, respectively, by surface tension at 37 °C. According to the results, liposomes/poloxamers were not favoured energetically, since endothermic interactions were observed. However, positive changes in entropy promoted a spontaneous process. F127 had a greater partition coefficient (51.97 ± 1.77 × 104), stronger affinity, than F108 (8.19 ± 0.37 × 104) towards the vesicle lipid bilayer due to its larger hydrophobic block. After the ITC experiments, an increased vesicle size (within about 1-3 nm average) by dynamic light scattering and the formation of bilayer discs by electron microscopy (EM) was observed at low copolymer concentrations (0.57 mol% of F108 and 1.01 mol% of F127). The EM and ITC results confirmed the intimate association of the copolymers with the membrane instead of being simply absorbed onto the bilayer surface. Our results indicate that the temperature of the system (37 °C), the copolymer concentration and hydrophobic chain length are important factors for the interaction of poloxamers with lipid bilayers and the stability of liposomes.
Collapse
Affiliation(s)
- Obed Andres Solis-Gonzalez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Juan Ramon Avendaño-Gómez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aarón Rojas-Aguilar
- Departamento de Química, Centro de Investigación y Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
12
|
Chiozzi V, Rossi F. Inorganic-organic core/shell nanoparticles: progress and applications. NANOSCALE ADVANCES 2020; 2:5090-5105. [PMID: 36132014 PMCID: PMC9419210 DOI: 10.1039/d0na00411a] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/01/2020] [Indexed: 05/23/2023]
Abstract
In recent decades a great deal of research has been dedicated to the development of core-shell nanoparticles (NPs). We decided to focus our attention on NPs with inorganic cores and organic shells and divide them by area of application such as electrical applications, drug delivery, biomedical applications, imaging, chemistry and catalysis. Organic shells, consisting in most cases of polymers (natural or synthetic), proteins or complex sugars, can improve the performance of inorganic NPs by enhancing their biocompatibility, acting as anchor sites for molecular linkages or protecting them from oxidation. Moreover, suitable design of the shell thickness can improve the chemical and thermal stability of NPs together with the possibility of tuning and controlling the release of molecules from the core. In the future new discoveries will guarantee improvement in the properties of NPs, synthesis, and applications of this class of nanomaterials that are constantly evolving.
Collapse
Affiliation(s)
- Viola Chiozzi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-223993180 +39-223993145
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano via Mancinelli 7 20131 Milan Italy +39-223993180 +39-223993145
| |
Collapse
|
13
|
Linley S, Thomson NR, McVey K, Sra K, Gu FX. Factors affecting pluronic-coated iron oxide nanoparticle binding to petroleum hydrocarbon-impacted sediments. CHEMOSPHERE 2020; 254:126732. [PMID: 32320831 DOI: 10.1016/j.chemosphere.2020.126732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
Effective targeted delivery of nanoparticle agents may enhance the remediation of soils and site characterization efforts. Nanoparticles coated with Pluronic, an amphiphilic block co-polymer, demonstrated targeted binding behaviour toward light non-aqueous phase liquids such as heavy crude oil. Various factors including coating concentration, oil concentration, oil type, temperature, and pH were assessed to determine their effect on nanoparticle binding to heavy crude oil-impacted sandy aquifer material. Nanoparticle binding was increased by decreasing the coating concentration, increasing oil concentration, using heavier oil types, and increasing temperature, while pH over the range of 5-9 was found to have no effect. Nanoparticle transport and binding in columns packed with clean and oily porous media demonstrated the ability for efficient nanoparticle targeted binding. For the conditions explored, the attachment rate coefficient in columns packed with clean sand was 2.10 ± 0.66 × 10-4 s-1; however, for columns packed with oil-impacted sand a minimum attachment rate coefficient of 8.86 ± 0.43 × 10-4 s-1 was estimated. The higher attachment rate for the oil-impacted sand system indicates that nanoparticles may preferentially accumulate to oil-impacted zones present at heterogeneous impacted sites. Simulations were used to demonstrate this hypothesis using the set of parameters generated in this effort. This work contributes to our understanding of the application conditions that are required for efficient targeted binding of nanoparticles to crude-oil impacted porous media.
Collapse
Affiliation(s)
- Stuart Linley
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada.
| | - Neil R Thomson
- Department of Civil & Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Kevin McVey
- Chevron Energy Technology Company, Houston, TX, USA
| | | | - Frank X Gu
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Abstract
Stimulus-responsive polymers have been used in improving the efficacy of medical diagnostics through different approaches including enhancing the contrast in imaging techniques and promoting the molecular recognition in diagnostic assays. This review overviews the mechanisms of stimulus-responsive polymers in response to external stimuli including temperature, pH, ion, light, etc. The applications of responsive polymers in magnetic resonance imaging, capture and purification of biomolecules through protein-ligand recognition and lab-on-a-chip technology are discussed.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, University of Central Florida, FL 32826, USA.
| | | | | |
Collapse
|
15
|
Hosseini SH, Zohreh N, Karimi N, Gaeini N, Alipour S, Seidi F, Gholipour N. Magnetic nanoparticles double wrapped into cross-linked salep/PEGylated carboxymethyl cellulose; a biocompatible nanocarrier for pH-triggered release of doxorubicin. Int J Biol Macromol 2020; 158:994-1006. [PMID: 32434748 DOI: 10.1016/j.ijbiomac.2020.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
A magnetic nanocarrier was synthesized in which Fe3O4 nanoparticles were encapsulated into double layers of polysaccharide shells. The first shell, which was composed of cross-linked salep polysaccharide, contained multiple nitrogen atoms in its structure and provided numerous sites for multiple functionalization. A fluorescence dye and doxorubicin, as widely used chemotherapy agent, were easily attached to the first shell and then a second shell of PEGylated carboxymethyl cellulose enveloped the drug loaded carrier to enhance its biocompatibility and regulates the drug release behavior. The results of drug loading and release behavior showed that the resulting nanocarrier can carry large amounts of drug molecules and a remarkable pH-sensitive release was observed in vitro. The hemolysis and coagulation assays proved the biocompatibility of nanocarrier toward red blood cells and the MTT experiments confirmed that the drug loaded nanocarrier is highly toxic for MCF-7 cancer cells while the unloaded nanocarrier was almost nontoxic. Further flow cytometry experiments and confocal microscopy demonstrated that the double layered magnetic nanocarrier can penetrate into the cells and efficiently release the drug molecules into the cell nucleus. Moreover, the results of MRI experiments performed on the nanocarrier showed that it can be serve as a negative MRI contrast agent.
Collapse
Affiliation(s)
- Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran.
| | - Nasrin Zohreh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Nafiseh Karimi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Nahid Gaeini
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Sakineh Alipour
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | - Farzad Seidi
- Provincial Key Lab of Pulp and Paper Science and Technology and Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Nazila Gholipour
- Chemical Injuries Research Center, Faculty of Pharmacy, System Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Fei MY, Song MM, Wang P, Pang GZ, Chen J, Lu DP, Liu R, Zhang GY, Zhao TT, Shen YX, Yu YQ. Folic acid modified Fe 3O 4 nanoclusters by a one-step ultrasonic technique for drug delivery and MR imaging. RSC Adv 2020; 10:5294-5303. [PMID: 35498332 PMCID: PMC9049288 DOI: 10.1039/c9ra09670a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 11/24/2022] Open
Abstract
Multifunctional nanoclusters based on Fe3O4 nanoparticles for magnetic resonance imaging (MRI) and drug delivery are reported here. At first, oleic acid (OA)-coated Fe3O4 nanoparticles were prepared. Then block copolymer Pluronic F127 or folic acid (FA) conjugated-Pluronic F127 was used to modify the hydrophobic nanoparticles to become hydrophilic Fe3O4@F127 nanoclusters via facile ultrasonic treatment. During this process, drug molecules can also be introduced into the nanoclusters and therefore the targeted drug delivery system was formed. Next, we verified the feasibility of the nanoclusters as drug delivery vehicles and magnetic contrast agents. The nanoclusters have an average size of 200 nm and remained stable in water for long periods. Folic acid-modified nanoclusters showed an enhanced intracellular uptake into HepG2 cells by using both cellular iron amount analysis and flow cytometry analysis. Besides, Fe3O4@F127@FA nanoclusters showed good compatibility in the tested concentration range and good sensitivity in T2-weighted MRI. The magnetic nanoclusters combined with drug delivery properties have greatly increased the significance in the diagnosis and therapy of diseases, which are suitable for systematical administration of hydrophobic drugs and simultaneously MRI diagnosis. Water-soluble Fe3O4@F127@FA nanoclusters were prepared by a facile ultrasonic-treated method for MR imaging and targeted drug delivery.![]()
Collapse
Affiliation(s)
- Meng-Yu Fei
- The First Affiliated Hospital, Anhui Medical University 218 Jixi Road Hefei Anhui PR China +86-551-62922381
| | - Meng-Meng Song
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776.,Biopharmaceutical Institute, Anhui Medical University 81 Meishan Road 230032 Hefei China
| | - Pei Wang
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776.,Biopharmaceutical Institute, Anhui Medical University 81 Meishan Road 230032 Hefei China
| | - Gao-Zong Pang
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776.,Biopharmaceutical Institute, Anhui Medical University 81 Meishan Road 230032 Hefei China
| | - Jing Chen
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776
| | - Da-Peng Lu
- School of Pharmacy, Anhui Medical University 81 Meishan Road Hefei Anhui PR China
| | - Rui Liu
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776
| | - Gui-Yang Zhang
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776
| | - Ting-Ting Zhao
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University 81 Meishan Road Hefei Anhui PR China +86-551-65113776.,Biopharmaceutical Institute, Anhui Medical University 81 Meishan Road 230032 Hefei China
| | - Yong-Qiang Yu
- The First Affiliated Hospital, Anhui Medical University 218 Jixi Road Hefei Anhui PR China +86-551-62922381
| |
Collapse
|
17
|
Na Y, Lee JS, Woo J, Ahn S, Lee E, Il Choi W, Sung D. Reactive oxygen species (ROS)-responsive ferrocene-polymer-based nanoparticles for controlled release of drugs. J Mater Chem B 2020; 8:1906-1913. [DOI: 10.1039/c9tb02533b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ferrocene-containing nanoparticles show reversible redox activity that could trigger drug release mediated by reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Yoonhee Na
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Jin Sil Lee
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Jiseob Woo
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Sukyung Ahn
- Utah-Inha DDS and Advanced Therapeutics Research Center
- Incheon
- Republic of Korea
| | - Eunhye Lee
- Utah-Inha DDS and Advanced Therapeutics Research Center
- Incheon
- Republic of Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| | - Daekyung Sung
- Center for Convergence Bioceramic Materials
- Convergence R&D Division
- Korea Institute of Ceramic Engineering and Technology
- Cheongju
- Republic of Korea
| |
Collapse
|
18
|
Lin SY. Thermoresponsive gating membranes embedded with liquid crystal(s) for pulsatile transdermal drug delivery: An overview and perspectives. J Control Release 2019; 319:450-474. [PMID: 31901369 DOI: 10.1016/j.jconrel.2019.12.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/08/2023]
Abstract
Due to the circadian rhythm regulation of almost every biological process in the human body, physiological and biochemical conditions vary considerably over the course of a 24-h period. Thus, optimal drug delivery and therapy should be effectively controlled to achieve the desired therapeutic plasma concentrations and therapeutic drug responses at the required time according to chronopharmacological concepts, rather than continuous maintenance of constant drug concentrations for an extended time period. For many drugs, it is not always necessary to constantly deliver a drug into the human body under disease conditions due to rhythmic variations. Pulsatile drug delivery systems (PDDSs) have been receiving more attention in pharmaceutical development by providing a predetermined lag period, followed by a fast or rate-controlled drug release after application. PDDSs are characterized by a programmed drug release, which may release a drug at repeatable pulses to match the biological and clinical needs of a given disease therapy. This review article focuses on thermoresponsive gating membranes embedded with liquid crystals (LCs) for transdermal drug delivery using PDDS technology. In addition, the principal rationale and the advanced approaches for the use of PDDSs, the marketed products of chronotherapeutic DDSs with pulsatile function designed by various PDDS technologies, pulsatile drug delivery designed with thermoresponsive polymers, challenges and opportunities of transdermal drug delivery, and novel approaches of LC systems for drug delivery are reviewed and discussed. A brief overview of all academic research articles concerning single LC- or binary LC-embedded thermoresponsive membranes with a switchable on-off permeation function through topical application by an external temperature control, which may modulate the dosing interval and administration time according to the therapeutic needs of the human body, is also compiled and presented. In the near future, since thermal-based approaches have become a well-accepted method to enhance transdermal delivery of different water-soluble drugs and macromolecules, a combination of the thermal-assisted approach with thermoresponsive LCs membranes will have the potential to improve PDDS applications but still poses a great challenge.
Collapse
Affiliation(s)
- Shan-Yang Lin
- Laboratory of Pharmaceutics and Biopharmaceutics, Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, No.306, Yuanpei Street, Hsin Chu 30015, Taiwan.
| |
Collapse
|
19
|
Khodaei A, Bagheri R, Madaah Hosseini HR, Bagherzadeh E. RSM based engineering of the critical gelation temperature in magneto-thermally responsive nanocarriers. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Xin-Ru Dai, Geng Y, Shao G, Luo Z, Jiang X, Zhang ZX. Synthesis of Polystyrene-block-trans-1,4-polyisoprene-block-polystyrene Triblock Copolymer. POLYMER SCIENCE SERIES B 2019. [DOI: 10.1134/s1560090419050026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
22
|
Feng H, Zheng T, Li M, Wu J, Ji H, Zhang J, Zhao W, Guo J. Droplet-based microfluidics systems in biomedical applications. Electrophoresis 2019; 40:1580-1590. [PMID: 30892714 DOI: 10.1002/elps.201900047] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 12/31/2022]
Abstract
Microfluidics has made a very impressive progress in the past decades due to its unique and instinctive advantages. Droplet-based microfluidic systems show excellent compatibility with many chemical and biological reagents and are capable of performing variety of operations that can implement microreactor, complex multiple core-shell structure, and many applications in biomedical research such as drug encapsulation, targeted drug delivery systems, and multifunctionalization on carriers. Droplet-based systems have been directly used to synthesize particles and encapsulate many biological entities for biomedicine applications due to their powerful encapsulation capability and facile versatility. In this paper, we review its origin, deviation, and evolution to draw a clear future, especially for droplet-based biomedical applications. This paper will focus on droplet generation, variations and complication as starter, and logistically lead to the numerous typical applications in biomedical research. Finally, we will summarize both its challenge and future prospects relevant to its droplet-based biomedical applications.
Collapse
Affiliation(s)
- Huanhuan Feng
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Tingting Zheng
- Peking University Shenzhen Hospital & Biomedical Research Institute, Shenzhen-PKU-HKUST Medical Center, Shenzhen, P. R. China
| | - Mingyu Li
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Junwei Wu
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Hongjun Ji
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jiaheng Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Weiwei Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China.,State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen, P. R. China
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China
| |
Collapse
|
23
|
Nanotechnology in Spine Surgery: A Current Update and Critical Review of the Literature. World Neurosurg 2019; 123:142-155. [DOI: 10.1016/j.wneu.2018.11.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 01/25/2023]
|
24
|
Mdlovu NV, Mavuso FA, Lin KS, Chang TW, Chen Y, Wang SSS, Wu CM, Mdlovu NB, Lin YS. Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Loginova TP, Istratov VV, Shtykova EV, Vasnev VA, Matyushin AA, Shchetinin IV, Oleinichenko EA, Talanova VN. Magnetite Nanoparticles in Hybrid Micelles of Polylactide-block-polyethylene Oxide and Sodium Dodecyl Sulfate in Water. CRYSTALLOGR REP+ 2019. [DOI: 10.1134/s1063774518060226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Kwon HJ, Shin K, Soh M, Chang H, Kim J, Lee J, Ko G, Kim BH, Kim D, Hyeon T. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704290. [PMID: 29573296 DOI: 10.1002/adma.201704290] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/19/2017] [Indexed: 05/27/2023]
Abstract
Thanks to recent advances in the synthesis of high-quality inorganic nanoparticles, more and more types of nanoparticles are becoming available for medical applications. Especially, metal oxide nanoparticles have drawn much attention due to their unique physicochemical properties and relatively inexpensive production costs. To further promote the development and clinical translation of these nanoparticle-based agents, however, it is highly desirable to reduce unwanted interbatch variations of the nanoparticles because characterizing and refining each batch are costly, take a lot of effort, and, thus, are not productive. Large-scale synthesis is a straightforward and economic pathway to minimize this issue. Here, the recent achievements in the large-scale synthesis of uniform-sized metal oxide nanoparticles and their biomedical applications are summarized, with a focus on nanoparticles of transition metal oxides and lanthanide oxides, and clarifying the underlying mechanism for the synthesis of uniform-sized nanoparticles. Surface modification steps to endow hydrophobic nanoparticles with water dispersibility and biocompatibility are also briefly described. Finally, various medical applications of metal oxide nanoparticles, such as bioimaging, drug delivery, and therapy, are presented.
Collapse
Affiliation(s)
- Hyek Jin Kwon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kwangsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hogeun Chang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jonghoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jisoo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Giho Ko
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Hyo Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
27
|
Heggannavar G, Hiremath CG, Achari DD, Pangarkar VG, Kariduraganavar MY. Development of Doxorubicin-Loaded Magnetic Silica-Pluronic F-127 Nanocarriers Conjugated with Transferrin for Treating Glioblastoma across the Blood-Brain Barrier Using an in Vitro Model. ACS OMEGA 2018; 3:8017-8026. [PMID: 30087932 PMCID: PMC6072239 DOI: 10.1021/acsomega.8b00152] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/05/2018] [Indexed: 05/14/2023]
Abstract
Brain glioma is the most lethal type of cancer, with extremely poor prognosis and high relapse. Unfortunately, the treatment of brain glioma is often limited because of the low permeability of anticancer drugs across the blood-brain barrier (BBB). To circumvent this, magnetic mesoporous nanoparticles were synthesized and loaded with doxorubicin as an anticancer agent. These nanoparticles were fabricated with Pluronic F-127 and subsequently conjugated with transferrin (Tf) to achieve the sustained release of the drug at the targeted site. The physicochemical properties of the conjugated nanoparticles were analyzed using different techniques. The magnetic saturation of the nanoparticles determined by a vibration sample magnetometer was found to be 26.10 emu/g. The cytotoxicity study was performed using the MTT assay at 48 and 96 h against the U87 cell line. The Tf-conjugated nanoparticles (DOX-MNP-MSN-PF-127-Tf) exhibited a significant IC50 value (0.570 μg/mL) as compared to the blank nanoparticles (121.98 μg/mL). To understand the transport mechanism of drugs across the BBB, an in vitro BBB model using human brain microvascular endothelial cells was developed. Among the nanoparticles, the Tf-conjugated nanoparticles demonstrated an excellent permeability across the BBB. This effect was predominant in the presence of an external magnetic field, suggesting that magnetic particles present in the matrix facilitated the uptake of drugs in U87 cells. Finally, it is concluded that nanoparticles conjugated with Tf effectively crossed the BBB. Thus, the developed nanocarriers can be considered as potential candidates to treat brain tumor.
Collapse
Affiliation(s)
| | - Chinmay G. Hiremath
- Department
of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | - Divya D. Achari
- Department
of Studies in Chemistry, Karnatak University, Dharwad 580 003, India
| | | | | |
Collapse
|
28
|
Zhou Q, Zhang L, Yang T, Wu H. Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 2018; 13:2921-2942. [PMID: 29849457 PMCID: PMC5965378 DOI: 10.2147/ijn.s158696] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polymeric micelles (PMs) have been widely investigated as nanocarriers for drug delivery and cancer treatments due to their excellent physicochemical properties, drug loading and release capacities, facile preparation methods, biocompatibility, and tumor targetability. They can be easily engineered with various functional moieties to further improve their performance in terms of bioavailability, circulation time, tumor specificity, and anticancer activity. The stimuli-sensitive PMs capable of responding to various extra- and intracellular biological stimuli (eg, acidic pH, altered redox potential, and upregulated enzyme), as well as external artificial stimuli (eg, magnetic field, light, temperature, and ultrasound), are considered as “smart” nanocarriers for delivery of anticancer drugs and/or imaging agents for various therapeutic and diagnostic applications. In this article, the recent advances in the development of stimuli-responsive PMs for drug delivery, imaging, and cancer therapy are reviewed. The article covers the generalities of stimuli-responsive PMs with a focus on their major delivery strategies and newly emerging technologies/nanomaterials, discusses their drawbacks and limitations, and provides their future perspectives.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Military Stomatology, Air Force Military Medical University, Xi'an, People's Republic of China
| | - TieHong Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Military Medical University, Xi'an, People's Republic of China
| |
Collapse
|
29
|
Sahle FF, Gulfam M, Lowe TL. Design strategies for physical-stimuli-responsive programmable nanotherapeutics. Drug Discov Today 2018; 23:992-1006. [PMID: 29653291 PMCID: PMC6195679 DOI: 10.1016/j.drudis.2018.04.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 12/22/2022]
Abstract
Nanomaterials that respond to externally applied physical stimuli such as temperature, light, ultrasound, magnetic field and electric field have shown great potential for controlled and targeted delivery of therapeutic agents. However, the body of literature on programming these stimuli-responsive nanomaterials to attain the desired level of pharmacologic responses is still fragmented and has not been systematically reviewed. The purpose of this review is to summarize and synthesize the literature on various design strategies for simple and sophisticated programmable physical-stimuli-responsive nanotherapeutics.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Muhammad Gulfam
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
30
|
Watt J, Collins AM, Vreeland EC, Montano GA, Huber DL. Magnetic Nanocomposites and Their Incorporation into Higher Order Biosynthetic Functional Architectures. ACS OMEGA 2018; 3:503-508. [PMID: 31457908 PMCID: PMC6641278 DOI: 10.1021/acsomega.7b02031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/05/2018] [Indexed: 06/10/2023]
Abstract
A magnetically active Fe3O4/poly(ethylene oxide)-block-poly(butadiene) (PEO-b-PBD) nanocomposite is formed by the encapsulation of magnetite nanoparticles with a short-chain amphiphilic block copolymer. This material is then incorporated into the self-assembly of higher order polymer architectures, along with an organic pigment, to yield biosynthetic, bifunctional optical and magnetically active Fe3O4/bacteriochlorophyll c/PEO-b-PBD polymeric chlorosomes.
Collapse
Affiliation(s)
- John Watt
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| | - Aaron M. Collins
- Department
of Chemistry, Southern New Hampshire University, 2500 North River Road, Hooksett, New Hampshire 03106, United States
| | - Erika C. Vreeland
- Imagion
Biosystems, 800 Bradbury
Drive SE, Albuquerque, New
Mexico 87106, United
States
| | - Gabriel A. Montano
- Department
of Chemistry & Biochemistry, Northern
Arizona University, South
San Francisco Street, Flagstaff, Arizona 86011, United
States
| | - Dale L. Huber
- Center
for Integrated Nanotechnologies, Sandia
National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
31
|
Li C, Guan Z, Ma C, Fang N, Liu H, Li M. Bi-phase dispersible Fe3O4/Ag core–shell nanoparticles: Synthesis, characterization and properties. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Bodratti AM, Sarkar B, Alexandridis P. Adsorption of poly(ethylene oxide)-containing amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. Adv Colloid Interface Sci 2017; 244:132-163. [PMID: 28069108 DOI: 10.1016/j.cis.2016.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 09/23/2016] [Accepted: 09/23/2016] [Indexed: 12/30/2022]
Abstract
The adsorption of amphiphilic molecules of varying size on solid-liquid interfaces modulates the properties of colloidal systems. Nonionic, poly(ethylene oxide) (PEO)-based amphiphilic molecules are particularly useful because of their graded hydrophobic-hydrophilic nature, which allows for adsorption on a wide array of solid surfaces. Their adsorption also results in other useful properties, such as responsiveness to external stimuli and solubilization of hydrophobic compounds. This review focuses on the adsorption properties of PEO-based amphiphiles, beginning with a discussion of fundamental concepts pertaining to the adsorption of macromolecules on solid-liquid interfaces, and more specifically the adsorption of PEO homopolymers. The main portion of the review highlights studies on factors affecting the adsorption and surface self-assembly of PEO-PPO-PEO block copolymers, where PPO is poly(propylene oxide). Block copolymers of this type are commercially available and of interest in several fields, due to their low toxicity and compatibility in aqueous systems. Examples of applications relevant to the interfacial behavior of PEO-PPO-PEO block copolymers are paints and coatings, detergents, filtration, and drug delivery. The methods discussed herein for manipulating the adsorption properties of PEO-PPO-PEO are emphasized for their ability to shed light on molecular interactions at interfaces. Knowledge of these interactions guides the formulation of novel materials with useful mesoscale organization and micro- and macrophase properties.
Collapse
|
33
|
Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI) Role. CRYSTALS 2017. [DOI: 10.3390/cryst7010022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
|
35
|
Thermosensitive folic acid-targeted poly (ethylene-co-vinyl alcohol) hemisuccinate polymeric nanoparticles for delivery of epirubicin to breast cancer cells. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0483-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
36
|
Zuidema JM, Gilbert RJ, Osterhout DJ. Nanoparticle Technologies in the Spinal Cord. Cells Tissues Organs 2016; 202:102-115. [PMID: 27701150 DOI: 10.1159/000446647] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Nanoparticles are increasingly being studied within experimental models of spinal cord injury (SCI). They are used to image cells and tissue, move cells to specific regions of the spinal cord, and deliver therapeutic agents locally. The focus of this article is to provide a brief overview of the different types of nanoparticles being studied for spinal cord applications and present data showing the capability of nanoparticles to deliver the chondroitinase ABC (chABC) enzyme locally following acute SCI in rats. Nanoparticles releasing chABC helped promote axonal regeneration following injury, and the nanoparticles also protected the enzyme from rapid degradation. In summary, nanoparticles are viable materials for diagnostic or therapeutic applications within experimental models of SCI and have potential for future clinical use.
Collapse
|
37
|
Tan J, Bai Y, Zhang X, Huang C, Liu D, Zhang L. Low-Temperature Synthesis of Thermoresponsive Diblock Copolymer Nano-Objects via Aqueous Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA) using Thermoresponsive Macro-RAFT Agents. Macromol Rapid Commun 2016; 37:1434-40. [DOI: 10.1002/marc.201600299] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Jianbo Tan
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| | - Yuhao Bai
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Xuechao Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Chundong Huang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Dongdong Liu
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
| | - Li Zhang
- Department of Polymeric Materials and Engineering; School of Materials and Energy; Guangdong University of Technology; Guangzhou 510006 China
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter; Guangzhou 510006 China
| |
Collapse
|
38
|
Mirabello G, Lenders JJM, Sommerdijk NAJM. Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 2016; 45:5085-106. [PMID: 27385627 DOI: 10.1039/c6cs00432f] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows for either the promotion or inhibition of magnetite nucleation and growth processes. At last we discuss how the formation of magnetite-based organic-inorganic hybrids leads to new functional nanomaterials.
Collapse
Affiliation(s)
- Giulia Mirabello
- Laboratory of Materials and Interface Chemistry & Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
39
|
Talar AJ, Ghasemi H, Rashidi A, Khodabakhshi S. One-step Hydrothermal Synthesis and Assembly of Copper and Silver Nanoparticles to Aggregates in Glyoxal Reduction System. J CHIN CHEM SOC-TAIP 2016. [DOI: 10.1002/jccs.201500455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Cang Y, Zhang R, Fang D, Guo X, Zhu X. Fabrication and characterization of bifunctional spherical polyelectrolyte brushes. Des Monomers Polym 2016. [DOI: 10.1080/15685551.2015.1124322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Yu Cang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Rui Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Dingye Fang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Xuedong Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, PR China
| |
Collapse
|
41
|
Polymer grafted magnetic nanoparticles for delivery of anticancer drug at lower pH and elevated temperature. J Colloid Interface Sci 2016; 467:70-80. [PMID: 26773613 DOI: 10.1016/j.jcis.2016.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/05/2016] [Accepted: 01/05/2016] [Indexed: 11/23/2022]
Abstract
Efficient and controlled delivery of therapeutics to tumor cells is one of the important issues in cancer therapy. In the present work, a series of pH- and temperature-responsive polymer grafted iron oxide nanoparticles were prepared by simple coupling of aminated iron oxide nanoparticle with poly(N-isopropylacrylamide-ran-poly(ethylene glycol) methyl ether acrylate)-block-poly(acrylic acid) (P(NIPA-r-PEGMEA)-b-PAA). For this, three water soluble block polymers were prepared via reversible addition fragmentation transfer (RAFT) polymerization technique. At first, three different block copolymers were prepared by polymerizing mixture of NIPA and PEGMEA (with varying mole ratio) in presence of poly(tert-butyl acrylate) (PtBA) macro chain transfer agent. Subsequently, P(NIPA-r-PEGMEA)-b-PAA copolymers were synthesized by hydrolyzing tert-butyl acrylate groups of the P(NIPA-r-PEGMEA)-b-PtBA copolymers. The resulting polymers were then grafted to iron oxide nanoparticles, and these functionalized nanoparticles were thoroughly characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), zeta potential measurements, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). Doxorubicin (DOX), an anti-cancer drug, was loaded into the polymer coated nanoparticles and its release behavior was subsequently studied at different pH and temperatures. The drug release pattern revealed a sustained release of DOX preferentially at the desired lysosomal pH of cancer cells (pH 5.0) and slightly above the physiological temperature depending upon the composition of the copolymers. The potential anticancer activity of the polymer grafted DOX loaded nanoparticles were established by MTT assay and apoptosis study of cervical cancer ME 180cells in presence of the nanoparticles. Thus, these particles can be utilized for controlled delivery of anticancer drugs at the desired lysosomal pH and/or by slightly heating the cells using magnetic hyperthermia.
Collapse
|
42
|
Che Rose L, Bear JC, Southern P, McNaughter PD, Piggott RB, Parkin IP, Qi S, Hills BP, Mayes AG. On-demand, magnetic hyperthermia-triggered drug delivery: optimisation for the GI tract. J Mater Chem B 2016; 4:1704-1711. [DOI: 10.1039/c5tb02068a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An orally-administered vehicle for targeted on-demand delivery to the gastrointestinal tract is presented. Hyperthermia is induced from an external AC magnetic field to melt a super paramagnetic iron oxide nanoparticle wax composite coating and hence release the capsule content.
Collapse
Affiliation(s)
- Laili Che Rose
- School of Chemistry
- University of East Anglia
- Norwich
- UK
- School Of Fundamental Science
| | - Joseph C. Bear
- Department of Chemistry
- University College London
- London
- UK
| | - Paul Southern
- UCL Healthcare Biomagnetics Laboratories
- Royal Institution of Great Britain
- London
- UK
| | | | - R. Ben Piggott
- Institute of Food Research
- Norwich Research Park
- Norwich
- UK
| | - Ivan P. Parkin
- Department of Chemistry
- University College London
- London
- UK
| | - Sheng Qi
- School of Pharmacy
- University of East Anglia
- Norwich
- UK
| | - Brian P. Hills
- Institute of Food Research
- Norwich Research Park
- Norwich
- UK
| | | |
Collapse
|
43
|
Bhattacharya D, Behera B, Sahu SK, Ananthakrishnan R, Maiti TK, Pramanik P. Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging. NEW J CHEM 2016. [DOI: 10.1039/c5nj02504d] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Stimuli triggered release of DOX from dual responsive theranostic nanocarriers mimicking lysosomal conditions i.e. physiological temperature (37 °C) and acidic pH (5.5).
Collapse
Affiliation(s)
- Dipsikha Bhattacharya
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- India
- Nanotherapeutics Laboratory
- CSIR-Indian Institute of Toxicology Research
| | - Birendra Behera
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | | | | | - Tapas Kumar Maiti
- Department of Biotechnology
- Indian Institute of Technology Kharagpur
- India
| | - Panchanan Pramanik
- Department of Nano-science and Nanotechnology
- GLA University
- Mathura
- India
- MCKV Institute of Engineering
| |
Collapse
|
44
|
Xiang W, Zhu Z, Song X, Zhong C, Wang C, Ma Y. Concentration-induced structural transition of block polymer self-assemblies on a nanoparticle surface: computer simulation. RSC Adv 2016. [DOI: 10.1039/c6ra18739k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Film structure of asymmetric triblock copolymers assembled on different degrees of hydrophobic NP surfaces was controlled by concentration.
Collapse
Affiliation(s)
- Wenjun Xiang
- School of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- China
| | - Zhaoju Zhu
- School of Chemistry and Chemical Engineering
- Sichuan University of Arts and Science
- Dazhou
- China
| | - Xianyu Song
- Department of Mechanical and Electrical Engineering
- Dazhou Vocational and Technial College
- Dazhou
- China
| | - Cheng Zhong
- Department of Mechanical and Electrical Engineering
- Dazhou Vocational and Technial College
- Dazhou
- China
| | - Chengjie Wang
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- China
| | - Yongzhang Ma
- Sichuan Province Academy of Industrial Environmental Monitoring
- Chengdu 610500
- China
| |
Collapse
|
45
|
Gao Y, Chang MW, Ahmad Z, Li JS. Magnetic-responsive microparticles with customized porosity for drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra17162a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One step engineering of drug-loaded magnetic porous particles for controlled release and targeting.
Collapse
Affiliation(s)
- Yuan Gao
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Ming-Wei Chang
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal
| | - Zeeshan Ahmad
- Leicester School of Pharmacy
- De Montfort University
- Leicester
- UK
| | - Jing-Song Li
- College of Biomedical Engineering & Instrument Science
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|
46
|
Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles. Sci Rep 2015; 5:16384. [PMID: 26548369 PMCID: PMC4637858 DOI: 10.1038/srep16384] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/14/2015] [Indexed: 02/04/2023] Open
Abstract
Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.
Collapse
|
47
|
Li L, Yang G, Zhou G, Wang Y, Zheng X, Zhou S. Thermally Switched Release from a Nanogel-in-Microfiber Device. Adv Healthc Mater 2015; 4:1658-63. [PMID: 25998801 DOI: 10.1002/adhm.201500267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/03/2015] [Indexed: 11/09/2022]
Abstract
A nanogel-in-microfiber device, whose release can be switched on and off in response to a temperature change, is successfully developed. The release behaviors are realized through the deswelling and swelling of the nanogels in shell layer of fiber by alternatively elevating and lowering the environmental temperature.
Collapse
Affiliation(s)
- Long Li
- School of Materials Science and Engineering; Key Laboratory of Advanced Technologies of Material; Minister of Education; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Guang Yang
- School of Materials Science and Engineering; Key Laboratory of Advanced Technologies of Material; Minister of Education; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Guangliang Zhou
- School of Mechanical Engineering; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Yi Wang
- School of Materials Science and Engineering; Key Laboratory of Advanced Technologies of Material; Minister of Education; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Xiaotong Zheng
- School of Materials Science and Engineering; Key Laboratory of Advanced Technologies of Material; Minister of Education; Southwest Jiaotong University; Chengdu 610031 P. R. China
| | - Shaobing Zhou
- School of Materials Science and Engineering; Key Laboratory of Advanced Technologies of Material; Minister of Education; Southwest Jiaotong University; Chengdu 610031 P. R. China
| |
Collapse
|
48
|
Jun I, Lee YB, Choi YS, Engler AJ, Park H, Shin H. Transfer stamping of human mesenchymal stem cell patches using thermally expandable hydrogels with tunable cell-adhesive properties. Biomaterials 2015; 54:44-54. [DOI: 10.1016/j.biomaterials.2015.03.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
49
|
Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives. J Control Release 2015; 209:120-38. [PMID: 25921088 DOI: 10.1016/j.jconrel.2015.04.032] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Most of the administered anti-cancer drugs are hydrophobic in nature and are known to have poor water solubility, short residence time, rapid clearance from the body and systemic side effects. Polymeric-based targeted particulate carrier system has shown to directly deliver the encapsulated anti-cancer drug to the desired site of action and prevent the interaction of encapsulated drug with the normal cells. Pluronic F127 (PF127) has been widely investigated for its broad-range of therodiagnostic applications in biomedical and pharmaceutical sciences, but rapid dissolution in the physiological fluids, short residence time, rapid clearance, and weak mechanical strength are the main shortcomings that are associated with PF127 and have recently been overcome by making various modifications in the structure of PF127 notably through preparation of PF127-based mixed polymeric micelles, PF127-conjugated nanoparticles and PF127-based hydrophobically modified thermogels. In this article, we have briefly discussed the recent studies that have been conducted on various anti-cancer drugs using PF127 as nano-carrier modified with other copolymers and/or conjugated with magnetic nanoparticles. The key findings of these studies demonstrated that the modified form of PF127 can significantly increase the stability of incorporated hydrophobic drugs with enhanced in vitro cytotoxicity and cellular uptake of anti-cancer drugs. Moreover, the modified form of PF127 has also shown its therapeutic potentials as therodiagnostics in various types of tumors and cancers. Hence, it can be concluded that the modified form of PF127 exhibits significant therodiagnostic effects with increased tumor-specific delivery of anti-cancer drugs having minimal toxic effects as compared to PF127 alone and/or other copolymers.
Collapse
|
50
|
Liu X, Liu H, Zhang W, Li X, Fang N, Wang X, Wu J. Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles. NANOSCALE RESEARCH LETTERS 2015; 10:195. [PMID: 25977666 PMCID: PMC4416097 DOI: 10.1186/s11671-015-0895-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu(1+) and Cu(2+) in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.
Collapse
Affiliation(s)
- Xiao Liu
- />Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001 China
| | - HongLing Liu
- />Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001 China
| | - WenXing Zhang
- />Shangqiu Normal University, Shangqiu, HeNan Province 476000 China
| | - XueMei Li
- />Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001 China
| | - Ning Fang
- />Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001 China
| | - XianHong Wang
- />Key Lab of Polyoxometalate Chemistry of Henan Province, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001 China
| | - JunHua Wu
- />Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen, 518055 China
- />Pioneer Research Center for Biomedical Nanocrystals, Korea University, Seoul, 136-713 South Korea
| |
Collapse
|