1
|
Rudolf M, Zumbusch A. Temporal Evolution of Interparticle Potentials of PMMA Colloids in CHB/Decalin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16085-16092. [PMID: 39054667 PMCID: PMC11308771 DOI: 10.1021/acs.langmuir.4c00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Colloidal dispersions composed of polymethylmetacrylate particles dispersed in a mixture of cyclohexyl bromide and decalin find widespread use as model systems in optical microscopy experiments. While the system allows simultaneous density and refractive index matching, preparing particles with hard potentials remains challenging, and strong variations in the physical parameters of samples prepared in the same manner are commonly observed. Here, we present data on the measurement of forces between individual pairs of particles in highly diluted dispersions over the course of tens of days using the blinking optical tweezers method. Our results show that the variations in the particle properties are indeed caused by a temporal evolution of the particles' charging. Additional measurements of the influence of the addition of tetrabutylammonium bromide (TBAB) to the dispersions show that already small concentrations of added TBAB salt drastically decrease the electrostatic forces between colloidal particles. However, small, non-negligible contact potentials remain even at the highest TBAB concentrations added.
Collapse
Affiliation(s)
- Marcel Rudolf
- Department of Chemistry, Universität Konstanz, D-78457 Konstanz, Germany
| | - Andreas Zumbusch
- Department of Chemistry, Universität Konstanz, D-78457 Konstanz, Germany
| |
Collapse
|
2
|
Zhang B, Glatz A, Aranson IS, Snezhko A. Spontaneous shock waves in pulse-stimulated flocks of Quincke rollers. Nat Commun 2023; 14:7050. [PMID: 37923744 PMCID: PMC10624688 DOI: 10.1038/s41467-023-42633-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
Active matter demonstrates complex spatiotemporal self-organization not accessible at equilibrium and the emergence of collective behavior. Fluids comprised of microscopic Quincke rollers represent a popular realization of synthetic active matter. Temporal activity modulations, realized by modulated external electric fields, represent an effective tool to expand the variety of accessible dynamic states in active ensembles. Here, we report on the emergence of shockwave patterns composed of coherently moving particles energized by a pulsed electric field. The shockwaves emerge spontaneously and move faster than the average particle speed. Combining experiments, theory, and simulations, we demonstrate that the shockwaves originate from intermittent spontaneous vortex cores due to a vortex meandering instability. They occur when the rollers' translational and rotational decoherence times, regulated by the electric pulse durations, become comparable. The phenomenon does not rely on the presence of confinement, and multiple shock waves continuously arise and vanish in the system.
Collapse
Affiliation(s)
- Bo Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing, 210093, China.
| | - Andreas Glatz
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Physics, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Igor S Aranson
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
- Department of Mathematics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Alexey Snezhko
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA.
| |
Collapse
|
3
|
Kim J, Wang Z, Lahlil K, Davidson P, Gacoin T, Kim J. Charge-driven liquid-crystalline behavior of ligand-functionalized nanorods in apolar solvent. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:86. [PMID: 37747573 DOI: 10.1140/epje/s10189-023-00345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
Concentrated colloidal suspensions of nanorods often exhibit liquid-crystalline (LC) behavior. The transition to a nematic LC phase, with long-range orientational order of the particles, is usually well-captured by Onsager's theory for hard rods, at least qualitatively. The theory shows how the volume fraction at the transition decreases with increasing aspect ratio of the rods. It also explains that the long-range electrostatic repulsive interaction occurring between rods stabilized by their surface charge can significantly increase their effective diameter, resulting in a decrease in the volume fraction at the transition, as compared to sterically stabilized rods. Here, we report on a system of ligand-stabilized LaPO4 nanorods, of aspect ratio ≈ 11, dispersed in apolar medium exhibiting the counter-intuitive observation that the onset of nematic self-assembly occurs at an extremely low volume fraction of ≈ 0.25%, which is lower than observed (≈ 3%) with the same particles when charged-stabilized in polar solvent. Furthermore, the nanorod volume fraction at the transition increases with increasing concentration of ligands, in a similar way as in polar media where increasing the ionic strength leads to surface charge screening. This peculiar system was investigated by dynamic light scattering, Fourier-transform infrared spectroscopy, zetametry, electron microscopy, polarized light microscopy, photoluminescence measurements, and X-ray scattering. Based on these experimental data, we formulate several tentative scenarios that might explain this unexpected phase behavior. However, at this stage, its full understanding remains a pending theoretical challenge. Nevertheless, this study shows that dispersing anisotropic nanoparticles in an apolar solvent may sometimes lead to spontaneous ordering events that defy our intuitive ideas about colloidal systems.
Collapse
Affiliation(s)
- Jeongmo Kim
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Zijun Wang
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Khalid Lahlil
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Patrick Davidson
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 91405, Orsay Cedex, France.
| | - Thierry Gacoin
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, CNRS, École Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France.
| |
Collapse
|
4
|
Yang D, Hu Y, Ma D, Ge J, Huang S. Reconfigurable Mechanochromic Patterns into Chameleon-Inspired Photonic Papers. Research (Wash D C) 2022; 2022:9838071. [PMID: 35958107 PMCID: PMC9343078 DOI: 10.34133/2022/9838071] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photonic crystal (PC) patterns have shown wide applications in optical devices, information encryption, anticounterfeiting, etc. Unfortunately, it is still a great challenge to reconfigure the PC patterns once fabricated. Herein, a new strategy is presented to reconfigure self-recordable PC patterns by printing local patterns into the chameleon-inspired PC papers using the phase change material (PCM) as ink and then erasing the patterns in ethanol. Multicolor and high-resolution (25 and 75 μm for dot and lines, respectively) patterns can be efficiently and repeatedly reconfigured. In addition, the photonic patterns based on the PC paper and PCM combinations are gifted with mechanochromic characteristics and can show programmable and reversible color change under pressure. The high melting point of the ink, nonclosely packed structures of the PC paper, and the similar solubility parameter of PC paper, PCM, and ethanol are the keys for all these characteristics. This work offers a simple, flexible, efficient way to reconfigure PC patterns with mechanochromic properties and could open up exciting applications for novel hand-operation-based anticounterfeiting and optical devices.
Collapse
Affiliation(s)
- Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jianping Ge
- School of Chemistry and Molecular Engineering Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Cherian T, Sohrabi F, Rigoni C, Ikkala O, Timonen JVI. Electroferrofluids with nonequilibrium voltage-controlled magnetism, diffuse interfaces, and patterns. SCIENCE ADVANCES 2021; 7:eabi8990. [PMID: 34936459 PMCID: PMC8694619 DOI: 10.1126/sciadv.abi8990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
It has been recognized that driving matter to nonequilibrium states can lead to emergent behaviors and functionalities. Here, we show that uniform colloidal dispersions can be driven into dissipative nonuniform states with emerging behaviors. We experimentally demonstrate this with electrically driven weakly charged superparamagnetic iron oxide nanoparticles in a nonpolar solvent. The driving leads to formation of nonequilibrium concentration gradients that further translate to nonequilibrium magnetism, including voltage-controlled magnetization and susceptibility. The concentration gradients also serve as diffuse interfaces that respond to external magnetic fields, leading to novel dissipative patterns. We identify the closest nondissipative analogs, discuss the differences, and highlight the ability to directly quantify the dissipation and link it to the pattern formation. Beyond voltage-controlled magnetism, we foresee that the concept can be generalized to other functional colloids to create, e.g., optical, electrical, catalytic, and mechanical responses that are not possible in thermodynamic equilibrium.
Collapse
|
6
|
Dwivedi C, Mohanty TR, Manjare SD, Rajan SK, Ramakrishnan S, Amarnath S, Lorenzetti D, Mohamed P. Application of non-ionic surfactant in modifying the surface of carbon black and its role in the formation of colloidal composite materials. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Fortes Martín R, Thünemann AF, Stockmann JM, Radnik J, Koetz J. From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water-Oil Interface of Reverse Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8876-8885. [PMID: 34255529 DOI: 10.1021/acs.langmuir.1c01348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water-oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV-vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation.
Collapse
Affiliation(s)
- Rebeca Fortes Martín
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Jörg M Stockmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Joachim Koetz
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Fernández-Rico C, Chiappini M, Yanagishima T, de Sousa H, Aarts DGAL, Dijkstra M, Dullens RPA. Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic
phases. Science 2020; 369:950-955. [DOI: 10.1126/science.abb4536] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 07/09/2020] [Indexed: 01/25/2023]
Abstract
Understanding the impact of curvature on the self-assembly of elongated
microscopic building blocks, such as molecules and proteins, is key to engineering
functional materials with predesigned structure. We develop model “banana-shaped”
colloidal particles with tunable dimensions and curvature, whose structure and
dynamics are accessible at the particle level. By heating initially straight rods
made of SU-8 photoresist, we induce a controllable shape deformation that causes
the rods to buckle into banana-shaped particles. We elucidate the phase behavior
of differently curved colloidal bananas using confocal microscopy. Although highly
curved bananas only form isotropic phases, less curved bananas exhibit very rich
phase behavior, including biaxial nematic phases, polar and antipolar smectic-like
phases, and even the long-predicted, elusive splay-bend nematic phase.
Collapse
Affiliation(s)
- Carla Fernández-Rico
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Massimiliano Chiappini
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Taiki Yanagishima
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Heidi de Sousa
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Dirk G. A. L. Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Department of Physics, Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands
| | - Roel P. A. Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
9
|
Optimizing the dispersion of nanoparticulate TiO2-based UV filters in a non-polar medium used in sunscreen formulations – The roles of surfactants and particle coatings. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124792] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Ngo VA, Sarkar S, Neale C, Garcia AE. How Anionic Lipids Affect Spatiotemporal Properties of KRAS4B on Model Membranes. J Phys Chem B 2020; 124:5434-5453. [PMID: 32438809 DOI: 10.1021/acs.jpcb.0c02642] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RAS proteins are small membrane-anchored GTPases that regulate key cellular signaling networks. It has been recently shown that different anionic lipid types can affect the spatiotemporal properties of RAS through dimerization/clustering and signaling fidelity. To understand the effects of anionic lipids on key spatiotemporal properties of RAS, we dissected 1 ms of data from all-atom molecular dynamics simulations for KRAS4B on two model anionic lipid membranes that have 30% of POPS mixed with neutral POPC and 8% of PIP2 mixed with POPC. We unveiled the orientation space of KRAS4B, whose kinetics were slower and more distinguishable on the membrane containing PIP2 than the membrane containing POPS. Particularly, the PIP2-mixed membrane can differentiate a third kinetic orientation state from the other two known orientation states. We observed that each orientation state may yield different binding modes with an RAF kinase, which is required for activating the MAPK/ERK signaling pathway. However, an overall occluded probability, for which RAF kinases cannot bind KRAS4B, remains unchanged on the two different membranes. We identified rare fast diffusion modes of KRAS4B that appear coupled with orientations exposed to cytosolic RAF. Particularly, on the membrane having PIP2, we found nonlinear correlations between the orientation states and the conformations of the cationic farnesylated hypervariable region, which acts as an anchor in the membrane. Using diffusion coefficients estimated from the all-atom simulations, we quantified the effect of PIP2 and POPS on the KRAS4B dimerization via Green's function reaction dynamics simulations, in which the averaged dimerization rate is 12.5% slower on PIP2-mixed membranes.
Collapse
Affiliation(s)
- Van A Ngo
- Center for Nonlinear Studies (CNLS), Los Alamos National Lab, Los Alamos, New Mexico 87545, United States
| | - Sumantra Sarkar
- Center for Nonlinear Studies (CNLS), Los Alamos National Lab, Los Alamos, New Mexico 87545, United States
| | - Chris Neale
- Theoretical Biology and Biophysics Group, T-6, Los Alamos National Lab, Los Alamos, New Mexico 87545, United States
| | - Angel E Garcia
- Center for Nonlinear Studies (CNLS), Los Alamos National Lab, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
11
|
Popovetskiy PS. Synthesis and Characterization of Silver Nanoparticles in Reverse Micelles of Nonionic Surfactants and in Their Mixed Micelles with AOT. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x2002009x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Bulavchenko AI, Shaparenko NO, Kompan’kov NB, Popovetskiy PS, Demidova MG, Arymbaeva AT. The formation of free ions and electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane–chloroform mixtures at low concentrations of AOT. Phys Chem Chem Phys 2020; 22:14671-14681. [DOI: 10.1039/d0cp02153a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The electrophoretic mobility of Ag and Au nanoparticles in n-hexadecane–chloroform mixtures was studied as a function of the chloroform content (from 0 to 100 vol%).
Collapse
Affiliation(s)
| | - Nikita O. Shaparenko
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Nikolay B. Kompan’kov
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Pavel S. Popovetskiy
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Marina G. Demidova
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| | - Aida T. Arymbaeva
- Nikolaev Institute of Inorganic Chemistry
- Russian Academy of Sciences
- Novosibirsk
- Russia
| |
Collapse
|
13
|
Optically oriented attachment of nanoscale metal-semiconductor heterostructures in organic solvents via photonic nanosoldering. Nat Commun 2019; 10:4942. [PMID: 31666504 PMCID: PMC6821866 DOI: 10.1038/s41467-019-12827-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 09/06/2019] [Indexed: 11/17/2022] Open
Abstract
As devices approach the single-nanoparticle scale, the rational assembly of nanomaterial heterojunctions remains a persistent challenge. While optical traps can manipulate objects in three dimensions, to date, nanoscale materials have been trapped primarily in aqueous solvents or vacuum. Here, we demonstrate the use of optical traps to manipulate, align, and assemble metal-seeded nanowire building blocks in a range of organic solvents. Anisotropic radiation pressure generates an optical torque that orients each nanowire, and subsequent trapping of aligned nanowires enables deterministic fabrication of arbitrarily long heterostructures of periodically repeating bismuth-nanocrystal/germanium-nanowire junctions. Heat transport calculations, back-focal-plane interferometry, and optical images reveal that the bismuth nanocrystal melts during trapping, facilitating tip-to-tail “nanosoldering” of the germanium nanowires. These bismuth-semiconductor interfaces may be useful for quantum computing or thermoelectric applications. In addition, the ability to trap nanostructures in oxygen- and water-free organic media broadly expands the library of materials available for optical manipulation and single-particle spectroscopy. The use of optical traps has been limited to materials dispersed in aqueous media, which restricts the materials and range of experiments. Here, the authors demonstrate the alignment and assembly of composite structures made of a bismuth nanocrystal and a germanium nanowire in organic solvents.
Collapse
|
14
|
Choi KH, Kang DW, Kim KH, Kim J, Lee Y, Im SH, Park BJ. Direct measurement of electrostatic interactions between poly(methyl methacrylate) microspheres with optical laser tweezers. SOFT MATTER 2019; 15:8051-8058. [PMID: 31549697 DOI: 10.1039/c9sm01374a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we measured the force of electrostatic interactions between poly(methyl methacrylate) (PMMA) particles dispersed in organic solvent mixtures of cyclohexyl bromide (CHB) and n-decane. Optical laser tweezers were employed to directly measure interactive forces between paired PMMA particles in a CHB medium that contained n-decane in various volume ratios. CHB, having a moderate dielectric constant, provided an environment with a high charge storage capacity. The addition of n-decane lowered the effective refractive index of the medium, which increased the optical trapping efficiency. We also fabricated microscope flow cells with a commonly used UV-curable adhesive and quantified the effects of dissolved adhesive compounds through interactive force measurements and nuclear magnetic resonance analysis. In addition, we studied the impact of CHB dissociation into H+ and Br- ions, which could screen electrostatic interactions.
Collapse
Affiliation(s)
- Kyu Hwan Choi
- Department of Chemical Engineering, Kyung Hee University, Yongin 17104, South Korea.
| | - Dong Woo Kang
- Department of Chemical Engineering, Kyung Hee University, Yongin 17104, South Korea.
| | - Kyung Hak Kim
- Department of Chemical Engineering, Kyung Hee University, Yongin 17104, South Korea.
| | - Jiwon Kim
- Department of Bionano Technology, Hanyang University, Ansan 15588, South Korea
| | - Youngbok Lee
- Department of Bionano Technology, Hanyang University, Ansan 15588, South Korea and Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, South Korea.
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea.
| | - Bum Jun Park
- Department of Chemical Engineering, Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
15
|
Pradillo GE, Karani H, Vlahovska PM. Quincke rotor dynamics in confinement: rolling and hovering. SOFT MATTER 2019; 15:6564-6570. [PMID: 31360980 DOI: 10.1039/c9sm01163c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Quincke effect is an electrohydrodynamic instability which gives rise to a torque on a dielectric particle in a uniform DC electric field. Previous studies reported that a sphere initially resting on the electrode rolls with steady velocity. We experimentally find that in strong fields the rolling becomes unsteady, with time-periodic velocity. Furthermore, we find another regime, where the rotating sphere levitates in the space between the electrodes. Our experimental results show that the onset of Quincke rotation strongly depends on particle confinement and the threshold for rolling is higher compared to rotation in the hovering state.
Collapse
Affiliation(s)
- Gerardo E Pradillo
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Hamid Karani
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | - Petia M Vlahovska
- Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA and Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
16
|
Bregnhøj M, Ogilby PR. Two-Photon Excitation of Neat Aerated Solvents with Visible Light Produces Singlet Oxygen. J Phys Chem A 2019; 123:7567-7575. [DOI: 10.1021/acs.jpca.9b05517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Mikkel Bregnhøj
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| | - Peter R. Ogilby
- Chemistry Department, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
17
|
Liu Y, Yanagishima T, Curran A, Edmond KV, Sacanna S, Dullens RPA. Colloidal Organosilica Spheres for Three-Dimensional Confocal Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7962-7969. [PMID: 31095907 DOI: 10.1021/acs.langmuir.9b00963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We describe the synthesis and application of 3-(trimethoxysilyl)propyl methacrylate (TPM) particles as a colloidal model system for three-dimensional (3D) confocal scanning laser microscopy. The effect of the initial TPM concentration on the growth and polydispersity of the particles and a recently developed solvent transfer method to disperse particles in a refractive index and density-matching solvent mixture are reviewed and discussed. To fully characterize the system as a colloidal model, we measure the pair potential between the TPM particles directly using optical tweezers. Finally, we use 3D confocal microscopy to image a sedimentation-diffusion equilibrium of TPM particles to characterize the phase behavior and particle dynamics through successful detection and tracking of all particles in the field of view.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Chemistry, Physical and Theoretical Laboratory , University of Oxford , South Parks Rd. , Oxford OX1 3QZ , U.K
| | - Taiki Yanagishima
- Department of Chemistry, Physical and Theoretical Laboratory , University of Oxford , South Parks Rd. , Oxford OX1 3QZ , U.K
| | - Arran Curran
- Department of Chemistry, Physical and Theoretical Laboratory , University of Oxford , South Parks Rd. , Oxford OX1 3QZ , U.K
| | - Kazem V Edmond
- Department of Chemistry, Physical and Theoretical Laboratory , University of Oxford , South Parks Rd. , Oxford OX1 3QZ , U.K
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry , New York University , New York 10003 , United States
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Laboratory , University of Oxford , South Parks Rd. , Oxford OX1 3QZ , U.K
| |
Collapse
|
18
|
Fernández-Rico C, Yanagishima T, Curran A, Aarts DGAL, Dullens RPA. Synthesis of Colloidal SU-8 Polymer Rods Using Sonication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807514. [PMID: 30869177 DOI: 10.1002/adma.201807514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/11/2019] [Indexed: 06/09/2023]
Abstract
The bulk synthesis of fluorescent colloidal SU-8 polymer rods with tunable dimensions is described. The colloidal SU-8 rods are prepared by shearing an emulsion of SU-8 polymer droplets and then exposing the resulting non-Brownian rods to ultrasonic waves, which breaks them into colloidal rods with typical lengths of 3.5-10 µm and diameters of 0.4-1 µm. The rods are stable in both aqueous and apolar solvents, and by varying the composition of apolar solvent mixtures both the difference in refractive index and mass density between particles and solvent can be independently controlled. Consequently, these colloidal SU-8 rods can be used in both 3D confocal microscopy and optical trapping experiments while carefully tuning the effect of gravity. This is demonstrated by using confocal microscopy to image the liquid crystalline phases and the isotropic-nematic interface formed by the colloidal SU-8 rods and by optically trapping single rods in water. Finally, the simultaneous confocal imaging and optical manipulation of multiple SU-8 rods in the isotropic phase is shown.
Collapse
Affiliation(s)
- Carla Fernández-Rico
- Department of Chemistry Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Taiki Yanagishima
- Department of Chemistry Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Arran Curran
- Department of Chemistry Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Dirk G A L Aarts
- Department of Chemistry Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Roel P A Dullens
- Department of Chemistry Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
19
|
Urano R, Pantelopulos GA, Straub JE. Aerosol-OT Surfactant Forms Stable Reverse Micelles in Apolar Solvent in the Absence of Water. J Phys Chem B 2019; 123:2546-2557. [PMID: 30688469 DOI: 10.1021/acs.jpcb.8b07847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Normal micelle aggregates of amphiphilic surfactant in aqueous solvents are formed by a process of entropically driven self-assembly. The self-assembly of reverse micelles from amphiphilic surfactant in a nonpolar solvent in the presence of water is considered to be an enthalpically driven process. Although the formation of normal and reverse surfactant micelles has been well characterized in theory and experiment, the nature of dry micelle formation, from amphiphilic surfactant in a nonpolar solvent in the absence of water, is poorly understood. In this study, a theory of dry reverse micelle formation is developed. Variation in free energy during micelle assembly is derived for the specific case of aerosol-OT surfactant in isooctane solvent using atomistic molecular dynamics simulation analyzed using the energy representation method. The existence and thermodynamic stability of dry reverse micelles of limited size are confirmed. The abrupt occurrence of monodisperse aggregates is a clear signature of a critical micelle concentration, commonly observed in the formation of normal surfactant micelles. The morphology of large dry micelles provides insight into the nature of the thermodynamic driving forces stabilizing the formation of the surfactant aggregates. Overall, this study provides detailed insight into the structure and stability of dry reverse micelles assembly in a nonpolar solvent.
Collapse
Affiliation(s)
- Ryo Urano
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - George A Pantelopulos
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| | - John E Straub
- Chemistry Department , Boston University , 590 Commonwealth Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
20
|
Farrokhbin M, Stojimirović B, Galli M, Khajeh Aminian M, Hallez Y, Trefalt G. Surfactant mediated particle aggregation in nonpolar solvents. Phys Chem Chem Phys 2019; 21:18866-18876. [DOI: 10.1039/c9cp01985e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregation behavior of particles in nonpolar media is studied with time-resolved light scattering.
Collapse
Affiliation(s)
- Mojtaba Farrokhbin
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Biljana Stojimirović
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | - Marco Galli
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| | | | - Yannick Hallez
- Laboratoire de Génie Chimique
- Université de Toulouse
- CNRS
- INPT
- UPS
| | - Gregor Trefalt
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Sciences II
- 1205 Geneva
- Switzerland
| |
Collapse
|
21
|
Ko KH, Park E, Lee H, Lee W. Low-Power All-Organic Electrophoretic Display Using Self-Assembled Charged Poly( t-butyl methacrylate) Microspheres in Isoparaffinic Fluid. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11776-11784. [PMID: 29569897 DOI: 10.1021/acsami.7b17122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The increasing demands for display devices with low power consumption and outdoor readability have stimulated comprehensive research into full-color reflective displays that employ color-tunable photonic crystal technologies. Although the recently developed crystalline colloidal arrays (CCAs) of the charged microspheres have shown the outstanding color tunability, the practical application is limited because the use of highly polar liquid medium such as water is required to maintain the charges on the surface of microsphere, whereas it is not suitable for long-term use in an electric field. Herein, a self-assembled CCA from charged poly( t-butyl methacrylate) microspheres was successfully fabricated, which was stabilized by the charged inverse micelles of sodium di-2-ethylhexyl-sulfosuccinate in a nonpolar isoparaffinic fluid. A charged all-organic CCA was found to exhibit full-color tunability with a 1000-fold reduction in the power consumption (∼6 μW cm-2) under a direct current voltage bias of 4 V in comparison to that in an aqueous system, which is a promising feature for a low-power-consumption display device.
Collapse
Affiliation(s)
- Kyeong Hyeon Ko
- Department of Chemistry , Sejong University , 98 Gunja-dong , Gwangjin-gu, Seoul 143-747 , Korea
| | - Eunseon Park
- Department of Chemistry , Sejong University , 98 Gunja-dong , Gwangjin-gu, Seoul 143-747 , Korea
| | - Hyunjung Lee
- School of Advanced Materials Engineering , Kookmin University , 861-1 Jeongneung-dong , Seoul 136-702 , Korea
| | - Wonmok Lee
- Department of Chemistry , Sejong University , 98 Gunja-dong , Gwangjin-gu, Seoul 143-747 , Korea
| |
Collapse
|
22
|
Ether DS, Rosa FSS, Tibaduiza DM, Pires LB, Decca RS, Neto PAM. Double-layer force suppression between charged microspheres. Phys Rev E 2018; 97:022611. [PMID: 29548099 DOI: 10.1103/physreve.97.022611] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/07/2022]
Abstract
In this paper we propose a protocol to suppress double-layer forces between two microspheres immersed in a dielectric medium, being one microsphere metallic at a controlled potential ψ_{M} and the other a charged one either metallic or dielectric. The approach is valid for a wide range of distances between them. We show that, for a given distance between the two microspheres, the double-layer force can be totally suppressed by simply tuning ψ_{M} up to values dictated by the linearized Poisson-Boltzmann equation. Our key finding is that such values can be substantially different from the ones predicted by the commonly used proximity force approximation, also known as the Derjaguin approximation, even in situations where the latter is expected to be accurate. The proposed procedure can be used to suppress the double-layer interaction in force spectroscopy experiments, thus paving the way for measurements of other surface interactions, such as Casimir dispersion forces.
Collapse
Affiliation(s)
- D S Ether
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.,Laboratório de Pinças Óticas - LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - F S S Rosa
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
| | - D M Tibaduiza
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil
| | - L B Pires
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.,Laboratório de Pinças Óticas - LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - R S Decca
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - P A Maia Neto
- Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972, Brazil.,Laboratório de Pinças Óticas - LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
23
|
Smith GN, Ahualli S, Delgado ÁV, Gillespie DAJ, Kemp R, Peach J, Pegg JC, Rogers SE, Shebanova O, Smith N, Eastoe J. Charging Poly(methyl Methacrylate) Latexes in Nonpolar Solvents: Effect of Particle Concentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13543-13553. [PMID: 29064706 DOI: 10.1021/acs.langmuir.7b02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electrophoresis of a well-established model system of charged colloids in nonpolar solvents has been studied as a function of particle volume fraction at constant surfactant concentration. Dispersions of poly(12-hydroxystearic acid)-stabilized poly(methyl methacrylate) (PMMA) latexes in dodecane were prepared with added Aerosol OT surfactant as the charging agent. The electrophoretic mobility (μ) of the PMMA latexes is found to decrease with particle concentration. The particles are charged by a small molecule charging agent (AOT) at finite concentration, and this makes the origin of this decrease in μ unclear. There are two suggested explanations. The decrease could either be due to the reservoir of available surfactant being exhausted at high particle concentrations or the interactions between the charged particles at high particle number concentrations. Contrast-variation small-angle neutron scattering measurements of PMMA latexes and deuterated AOT-d34 surfactant in latex core contrast-matched solvent were used to study the former, and electrokinetic modeling was used to study the latter. As the same amount of AOT-d34 is found to be incorporated with the latexes at all volume fractions, the solvodynamic and electrical interactions between particles are determined to be the explanation for the decrease in mobility. These measurements show that, for small latexes, there are interactions between the charged particles at all accessible particle volume fractions and that it is necessary to account for this to accurately determine the electrokinetic ζ potential.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Silvia Ahualli
- Department of Applied Physics, School of Science, University of Granada , 18071 Granada, Spain
| | - Ángel V Delgado
- Department of Applied Physics, School of Science, University of Granada , 18071 Granada, Spain
| | - David A J Gillespie
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Roger Kemp
- Merck Chemicals Ltd, University Parkway , Chilworth, Southampton SO16 7QD, United Kingdom
| | - Jocelyn Peach
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Jonathan C Pegg
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Sarah E Rogers
- ISIS-STFC, Rutherford Appleton Laboratory , Chilton, Oxon OX11 0QX, United Kingdom
| | - Olga Shebanova
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus , Chilton, Didcot OX11 0DE, United Kingdom
| | - Nathan Smith
- Merck Chemicals Ltd, University Parkway , Chilworth, Southampton SO16 7QD, United Kingdom
| | - Julian Eastoe
- School of Chemistry, University of Bristol , Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
24
|
Strubbe F, Neyts K. Charge transport by inverse micelles in non-polar media. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:453003. [PMID: 28895874 DOI: 10.1088/1361-648x/aa8bf6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Charged inverse micelles play an important role in the electrical charging and the electrodynamics of nonpolar colloidal dispersions relevant for applications such as electronic ink displays and liquid toner printing. This review examines the properties and the behavior of charged inverse micelles in microscale devices in the absence of colloidal particles. It is discussed how charge in nonpolar liquids is stabilized in inverse micelles and how conductivity depends on the inverse micelle size, water content and ionic impurities. Frequently used nonpolar surfactant systems are investigated with emphasis on aerosol-OT (AOT) and poly-isobutylene succinimide (PIBS) in dodecane. Charge generation in the bulk by disproportionation is studied from measurements of conductivity as a function of surfactant concentration and from generation currents in quasi steady-state. When a potential difference is applied, the steady-state situation can show electric field screening or complete charge separation. Different regimes of charge transport are identified when a voltage step is applied. It is shown how the transient and steady-state currents depend on the rate of bulk generation, on insulating layers and on the sticking or non-sticking behavior of charged inverse micelles at interfaces. For the cases of AOT and PIBS in dodecane, the magnitude of the generation rate and the type of interaction at the interface are very different.
Collapse
Affiliation(s)
- Filip Strubbe
- Electronics and Information Systems Department and Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, 9052 Zwijnaarde, Belgium
| | | |
Collapse
|
25
|
Black JW, Kamenetska M, Ganim Z. An Optical Tweezers Platform for Single Molecule Force Spectroscopy in Organic Solvents. NANO LETTERS 2017; 17:6598-6605. [PMID: 28972764 DOI: 10.1021/acs.nanolett.7b02413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Observation at the single molecule level has been a revolutionary tool for molecular biophysics and materials science, but single molecule studies of solution-phase chemistry are less widespread. In this work we develop an experimental platform for solution-phase single molecule force spectroscopy in organic solvents. This optical-tweezer-based platform was designed for broad chemical applicability and utilizes optically trapped core-shell microspheres, synthetic polymer tethers, and click chemistry linkages formed in situ. We have observed stable optical trapping of the core-shell microspheres in ten different solvents, and single molecule link formation in four different solvents. These experiments demonstrate how to use optical tweezers for single molecule force application in the study of solution-phase chemistry.
Collapse
Affiliation(s)
- Jacob W Black
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Maria Kamenetska
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| | - Ziad Ganim
- Department of Chemistry, Yale University , 350 Edwards St., New Haven, Connecticut 06520, United States
| |
Collapse
|
26
|
Prasad M, Strubbe F, Beunis F, Neyts K. Electrokinetics and behavior near the interface of colloidal particles in non-polar dispersions. SOFT MATTER 2017; 13:5604-5612. [PMID: 28737178 DOI: 10.1039/c7sm00559h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electrokinetics and charging of nonpolar colloidal dispersions subjected to a voltage are investigated by electric current and optical measurements. From electric current measurements in response to an alternating triangular voltage with a peak value of a few hundred volts, we find that polystyrene toner particles are compacted near the electrodes and their charge increases by more than a factor of 20. The important increase of charge is interpreted by a mechanism in which counter charges, which are originally at the particle surface, are desorbed. Optical measurements performed under a dc voltage of the order of a few hundred volts demonstrate that the charge of the particles can again decrease or even be inverted. These phenomena are attributed to the movement of counter charged species from the interface layers onto the surface of the particles. The findings of this study are relevant for electrophoretic displays and liquid toner printing.
Collapse
Affiliation(s)
- Manoj Prasad
- Electronics and Information Systems, Ghent University, Technologiepark Zwijnaarde 15, 9052 Gent, Belgium.
| | | | | | | |
Collapse
|
27
|
Bleier BJ, Yezer BA, Freireich BJ, Anna SL, Walker LM. Droplet-based characterization of surfactant efficacy in colloidal stabilization of carbon black in nonpolar solvents. J Colloid Interface Sci 2017; 493:265-274. [DOI: 10.1016/j.jcis.2017.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
28
|
Sprakel J, Zaccone A, Spaepen F, Schall P, Weitz DA. Direct Observation of Entropic Stabilization of bcc Crystals Near Melting. PHYSICAL REVIEW LETTERS 2017; 118:088003. [PMID: 28282174 DOI: 10.1103/physrevlett.118.088003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Indexed: 05/12/2023]
Abstract
Crystals with low latent heat are predicted to melt from an entropically stabilized body-centered cubic symmetry. At this weakly first-order transition, strongly correlated fluctuations are expected to emerge, which could change the nature of the transition. Here we show how large fluctuations stabilize bcc crystals formed from charged colloids, giving rise to strongly power-law correlated heterogeneous dynamics. Moreover, we find that significant nonaffine particle displacements lead to a vanishing of the nonaffine shear modulus at the transition. We interpret these observations by reformulating the Born-Huang theory to account for nonaffinity, illustrating a scenario of ordered solids reaching a state where classical lattice dynamics fail.
Collapse
Affiliation(s)
- Joris Sprakel
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Alessio Zaccone
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, CB2 3RA Cambridge, United Kingdom
| | - Frans Spaepen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Peter Schall
- Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
29
|
Kokot G, Bespalova MI, Krishnan M. Measured electrical charge of SiO 2 in polar and nonpolar media. J Chem Phys 2017; 145:194701. [PMID: 27875880 DOI: 10.1063/1.4967401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present measurements of the net electrical surface charge of silicon dioxide (SiO2) in contact with solvents of dielectric constants between 5 and 80. Our experimental approach relies on observing the thermal motion of single silica particles confined in an electrostatic fluidic trap created by SiO2 surfaces. We compare the experimentally measured functional form of the trapping potential with that from free energy calculations and thereby determine the net surface charge in the system. Our findings clearly demonstrate that contrary to popular perception, even in the absence of surfactants, the net electrical charge of ionizable surfaces in contact with apolar solvents can be large enough to lead to significant repulsive forces. A charge regulation model for SiO2 surfaces with a single tunable parameter explains our measurements. This model may find general applicability in estimating the net charge of ionizable surfaces, given system parameters such as the dissociation or association constants of the ionizable groups and the pH, ionic strength, and dielectric constant of the solvent phase.
Collapse
Affiliation(s)
- G Kokot
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M I Bespalova
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| | - M Krishnan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zurich, Switzerland
| |
Collapse
|
30
|
Carroll KM, Wolf H, Knoll A, Curtis JE, Zhang Y, Marder SR, Riedo E, Duerig U. Understanding How Charged Nanoparticles Electrostatically Assemble and Distribute in 1-D. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13600-13610. [PMID: 27977208 DOI: 10.1021/acs.langmuir.6b03471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The effects of increasing the driving forces for a 1-D assembly of nanoparticles onto a surface are investigated with experimental results and models. Modifications, which take into account not only the particle-particle interactions but also particle-surface interactions, to previously established extended random sequential adsorption simulations are tested and verified. Both data and model are compared against the heterogeneous random sequential adsorption simulations, and finally, a connection between the two models is suggested. The experiments and models show that increasing the particle-surface interaction leads to narrower particle distribution; this narrowing is attributed to the surface interactions compensating against the particle-particle interactions. The long-term advantage of this work is that the assembly of nanoparticles in solution is now understood as controlled not only by particle-particle interactions but also by particle-surface interactions. Both particle-particle and particle-surface interactions can be used to tune how nanoparticles distribute themselves on a surface.
Collapse
Affiliation(s)
- Keith M Carroll
- IBM Research - Zurich , Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Heiko Wolf
- IBM Research - Zurich , Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Armin Knoll
- IBM Research - Zurich , Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| | - Jennifer E Curtis
- School of Physics, Georgia Institute of Technology , 837 State Street, Atlanta, Georgia 30332-0430, United States
| | - Yadong Zhang
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Seth R Marder
- School of Chemistry and Biochemistry, Georgia Institute of Technology , 901 Atlantic Drive, Atlanta, Georgia 30332-0400, United States
| | - Elisa Riedo
- CUNY-Advanced Science Research Center , 85 St Nicholas Terrace, New York, New York 10031, United States
- Department of Physics, CUNY-City College of New York , 160 Convent Avenue, New York, New York 10031, United States
- CUNY-The Graduate Center , 365 Fifth Avenue, New York, New York 10016, United States
| | - Urs Duerig
- IBM Research - Zurich , Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
| |
Collapse
|
31
|
Lindén F, Cederquist H, Zettergren H. Interaction and charge transfer between dielectric spheres: Exact and approximate analytical solutions. J Chem Phys 2016; 145:194307. [PMID: 27875888 DOI: 10.1063/1.4967701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.
Collapse
Affiliation(s)
- Fredrik Lindén
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Henrik Cederquist
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| | - Henning Zettergren
- Department of Physics, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
32
|
Liu Y, Edmond KV, Curran A, Bryant C, Peng B, Aarts DGAL, Sacanna S, Dullens RPA. Core-Shell Particles for Simultaneous 3D Imaging and Optical Tweezing in Dense Colloidal Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8001-8006. [PMID: 27380320 DOI: 10.1002/adma.201602137] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/06/2016] [Indexed: 05/23/2023]
Abstract
A new colloidal system that consists of core-shell "probe" particles embedded in an optically transparent "host" particle suspension is developed. This system enables simultaneous fast confocal imaging and optical tweezing in dense 3D colloidal materials.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Kazem V Edmond
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Arran Curran
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Charles Bryant
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Bo Peng
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, NY, 10003, USA.
| | - Roel P A Dullens
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom.
| |
Collapse
|
33
|
Finlayson SD, Bartlett P. Non-additivity of pair interactions in charged colloids. J Chem Phys 2016; 145:034905. [DOI: 10.1063/1.4959122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
34
|
Soluto-inertial phenomena: Designing long-range, long-lasting, surface-specific interactions in suspensions. Proc Natl Acad Sci U S A 2016; 113:8612-7. [PMID: 27410044 DOI: 10.1073/pnas.1604743113] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Equilibrium interactions between particles in aqueous suspensions are limited to distances less than 1 μm. Here, we describe a versatile concept to design and engineer nonequilibrium interactions whose magnitude and direction depends on the surface chemistry of the suspended particles, and whose range may extend over hundreds of microns and last thousands of seconds. The mechanism described here relies on diffusiophoresis, in which suspended particles migrate in response to gradients in solution. Three ingredients are involved: a soluto-inertial "beacon" designed to emit a steady flux of solute over long time scales; suspended particles that migrate in response to the solute flux; and the solute itself, which mediates the interaction. We demonstrate soluto-inertial interactions that extend for nearly half a millimeter and last for tens of minutes, and which are attractive or repulsive, depending on the surface chemistry of the suspended particles. Experiments agree quantitatively with scaling arguments and numerical computations, confirming the basic phenomenon, revealing design strategies, and suggesting a broad set of new possibilities for the manipulation and control of suspended particles.
Collapse
|
35
|
Evans DJ, Hollingsworth AD, Grier DG. Charge renormalization in nominally apolar colloidal dispersions. Phys Rev E 2016; 93:042612. [PMID: 27176357 DOI: 10.1103/physreve.93.042612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 06/05/2023]
Abstract
We present high-resolution measurements of the pair interactions between dielectric spheres dispersed in a fluid medium with a low dielectric constant. Despite the absence of charge control agents or added organic salts, these measurements reveal strong and long-ranged repulsions consistent with substantial charges on the particles whose interactions are screened by trace concentrations of mobile ions in solution. The dependence of the estimated charge on the particles' radii is consistent with charge renormalization theory and, thus, offers insights into the charging mechanism in this interesting class of model systems. The measurement technique, based on optical-tweezer manipulation and artifact-free particle tracking, makes use of optimal statistical methods to reduce measurement errors to the femtonewton frontier while covering an extremely wide range of interaction energies.
Collapse
Affiliation(s)
- Daniel J Evans
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
| | - Andrew D Hollingsworth
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
| | - David G Grier
- Department of Physics and Center for Soft Matter Research, New York University, New York, New York 10003, USA
| |
Collapse
|
36
|
The effects of counterion exchange on charge stabilization for anionic surfactants in nonpolar solvents. J Colloid Interface Sci 2016; 465:316-22. [DOI: 10.1016/j.jcis.2015.11.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 11/21/2022]
|
37
|
Lindgren EB, Chan HK, Stace AJ, Besley E. Progress in the theory of electrostatic interactions between charged particles. Phys Chem Chem Phys 2016; 18:5883-95. [DOI: 10.1039/c5cp07709e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this perspective we examine recent theoretical developments in methods for calculating the electrostatic properties of charged particles of dielectric materials.
Collapse
Affiliation(s)
- Eric B. Lindgren
- Department of Theoretical and Physical Chemistry
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Ho-Kei Chan
- Department of Theoretical and Physical Chemistry
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Anthony J. Stace
- Department of Theoretical and Physical Chemistry
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| | - Elena Besley
- Department of Theoretical and Physical Chemistry
- School of Chemistry
- University of Nottingham
- Nottingham
- UK
| |
Collapse
|
38
|
Hao T. Exploring the charging mechanisms in non-aqueous multiphase surfactant solutions, emulsions and colloidal systems via conductivity behaviors predicted with eyring's rate process theory. Phys Chem Chem Phys 2016; 18:476-91. [DOI: 10.1039/c5cp05026j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The schematic diagram shows charge separation induced and stabilized by an electric field and inverse micelles charged in the end.
Collapse
|
39
|
Smith GN, Kemp R, Pegg JC, Rogers SE, Eastoe J. Sulfosuccinate and Sulfocarballylate Surfactants As Charge Control Additives in Nonpolar Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:13690-13699. [PMID: 26609708 DOI: 10.1021/acs.langmuir.5b03876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A series of eight sodium sulfonic acid surfactants with differently branched tails (four double-chain sulfosuccinates and four triple-chain sulfocarballylates) were studied as charging agents for sterically stabilized poly(methyl methacrylate) (PMMA) latexes in dodecane. Tail branching was found to have no significant effect on the electrophoretic mobility of the latexes, but the number of tails was found to influence the electrophoretic mobility. Triple-chain, sulfocarballylate surfactants were found to be more effective. Several possible origins of this observation were explored by comparing sodium dioctylsulfosuccinate (AOT1) and sodium trioctylsulfocarballylate (TC1) using identical approaches: the inverse micelle size, the propensity for ion dissociation, the electrical conductivity, the electrokinetic or ζ potential, and contrast-variation small-angle neutron scattering. The most likely origin of the increased ability of TC1 to charge PMMA latexes is a larger number of inverse micelles. These experiments demonstrate a small molecular variation that can be made to influence the ability of surfactants to charge particles in nonpolar solvents, and modifying molecular structure is a promising approach to developing more effective charging agents.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol , Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Roger Kemp
- Merck Chemicals Ltd , University Parkway, Chilworth, Southampton, SO16 7QD, United Kingdom
| | - Jonathan C Pegg
- School of Chemistry, University of Bristol , Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | - Sarah E Rogers
- ISIS-STFC, Rutherford Appleton Laboratory , Chilton, Oxon, OX11 0QX, United Kingdom
| | - Julian Eastoe
- School of Chemistry, University of Bristol , Cantock's Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
40
|
Smith GN, Hallett JE, Eastoe J. Celebrating Soft Matter's 10th Anniversary: Influencing the charge of poly(methyl methacrylate) latexes in nonpolar solvents. SOFT MATTER 2015; 11:8029-8041. [PMID: 26369696 DOI: 10.1039/c5sm01190f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Sterically-stabilized poly(methyl methacrylate) (PMMA) latexes dispersed in nonpolar solvents are a classic, well-studied system in colloid science. This is because they can easily be synthesized with a narrow size distribution and because they interact essentially as hard spheres. These PMMA latexes can be charged using several methods (by adding surfactants, incorporating ionizable groups, or dispersing in autoionizable solvents), and due to the low relative permittivity of the solvents (εr ≈ 2 for alkanes to εr ≈ 8 for halogenated solvents), the charges have long-range interactions. The number of studies of these PMMA particles as charged species has increased over the past ten years, after few studies immediately following their discovery. A large number of variations in both the physical and chemical properties of the system (size, concentration, surfactant type, or solvent, as a few examples) have been studied by many groups. By considering the literature on these particles as a whole, it is possible to determine the variables that have an effect on the charge of particles. An understanding of the process of charge formation will add to understanding how to control charge in nonaqueous solvents as well as make it possible to develop improved technologically relevant applications for charged polymer nanoparticles.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | | | | |
Collapse
|
41
|
|
42
|
Malkin AY, Kulichikhin VG. Structure and rheology of highly concentrated emulsions: a modern look. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4499] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Saigal T, Xu J, Matyjaszewski K, Tilton RD. Emulsification synergism in mixtures of polyelectrolyte brush-grafted nanoparticles and surfactants. J Colloid Interface Sci 2015; 449:152-9. [DOI: 10.1016/j.jcis.2014.12.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/06/2014] [Accepted: 12/08/2014] [Indexed: 11/25/2022]
|
44
|
Smith GN, Grillo I, Rogers SE, Eastoe J. Surfactants with colloids: Adsorption or absorption? J Colloid Interface Sci 2015; 449:205-14. [DOI: 10.1016/j.jcis.2014.12.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022]
|
45
|
Physical chemistry of highly concentrated emulsions. Adv Colloid Interface Sci 2015; 220:78-91. [PMID: 25869114 DOI: 10.1016/j.cis.2015.03.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 11/21/2022]
Abstract
This review explores the physics underlying the rheology of highly concentrated emulsions (HCEs) to determine the relationship between elasticity and HCE stability, and to consider whether it is possible to describe all physicochemical properties of HCEs on the basis of a unique physical approach. We define HCEs as emulsions with a volume fraction above the maximum closest packing fraction of monodisperse spheres, φm=0.74, even if droplets are not of polyhedron shape. The solid-like rheological behavior of HCEs is characterized by yield stress and elasticity, properties which depend on droplet polydispersity and which are affected by caging at volume fractions about the jamming concentration, φj. A bimodal size distribution in HCEs diminishes caging and facilitates droplet movement, resulting in HCEs with negligible yield stress and no plateau in storage modulus. Thermodynamic forces automatically move HCEs toward the lowest free energy state, but since interdroplet forces create local minimums - points beyond which free energy temporarily increases before it reaches the global minimum of the system - the free energy of HCEs will settle at a local minimum unless additional energy is added. Several attempts have been undertaken to predict the elasticity of HCEs. In many cases, the elastic modulus of HCEs is higher than the one predicted from classical models, which only take into account spatial repulsion (or simply interfacial energy). Improved models based on free energy calculation should be developed to consider the disjoining pressure and interfacial rheology in addition to spatial repulsion. The disjoining pressure and interfacial viscoelasticity, which result in the deviation of elasticity from the classical model, can be regarded as parameters for quantifying the stability of HCEs.
Collapse
|
46
|
Gacek MM, Berg JC. The role of acid-base effects on particle charging in apolar media. Adv Colloid Interface Sci 2015; 220:108-23. [PMID: 25891860 DOI: 10.1016/j.cis.2015.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/30/2022]
Abstract
The creation and stabilization of electric charge in apolar environments (dielectric constant≈2) have been an area of interest dating back to when an explanation was sought for the occurrence of what are now known as electrokinetic explosions during the pumping of fuels. More recently attention has focused on the charging of suspended particles in such media, underlying such applications as electrophoretic displays (e.g., the Amazon Kindle® reader) and new printing devices (e.g., the HP Indigo® Digital Press). The endeavor has been challenging owing to the complexity of the systems involved and the large number of factors that appear to be important. A number of different, and sometimes conflicting, theories for particle surface charging have been advanced, but most observations obtained in the authors' laboratory, as well as others, appear to be explainable in terms of an acid-base mechanism. Adducts formed between chemical functional groups on the particle surface and monomers of reverse micelle-forming surfactants dissociate, leaving charged groups on the surface, while the counter-charges formed are sequestered in the reverse micelles. For a series of mineral oxides in a given medium with a given surfactant, surface charging (as quantified by the maximum electrophoretic mobility or zeta potential obtained as surfactant concentration is varied) was found to scale linearly with the aqueous PZC (or IEP) values of the oxides. Different surfactants, with the same oxide series, yielded similar behavior, but with different PZC crossover points between negative and positive particle charging, and different slopes of charge vs. PZC. Thus the oxide series could be used as a yardstick to characterize the acid-base properties of the surfactants. This has led directly to the study of other materials, including surface-modified oxides, carbon blacks, pigments (charge transfer complexes), and polymer latices. This review focuses on the acid-base mechanism of particle charging in the context of the many other factors that are important to the phenomenon, including the presence of water, of other components (e.g., synergists and contaminants), and of electric field effects. The goal is the construction of a road map describing the anticipated particle charging behavior in a wide variety of systems, assisting in the choice or development of materials for specific applications.
Collapse
Affiliation(s)
| | - John C Berg
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
47
|
van der Linden MN, Stiefelhagen JCP, Heessels-Gürboğa G, van der Hoeven JES, Elbers NA, Dijkstra M, van Blaaderen A. Charging of poly(methyl methacrylate) (PMMA) colloids in cyclohexyl bromide: locking, size dependence, and particle mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:65-75. [PMID: 25535669 DOI: 10.1021/la503665e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We studied suspensions of sterically stabilized poly(methyl methacrylate) (PMMA) particles in the solvent cyclohexyl bromide (CHB; εr = 7.92). We performed microelectrophoresis measurements on suspensions containing a single particle species and on binary mixtures, using confocal microscopy to measure the velocity profiles of the particles. We measured the charge of so-called locked PMMA particles, for which the steric stabilizer, a comb-graft stabilizer of poly(12-hydroxystearic acid) (PHSA) grafted on a backbone of PMMA, was covalently bonded to the particle, and for unlocked particles, for which the stabilizer was adsorbed to the surface of the particle. We observed that locked particles had a significantly higher charge than unlocked particles. We found that the charge increase upon locking was due to chemical coupling of 2-(dimethylamino)ethanol to the PMMA particles, which was used as a catalyst for the locking reaction. For particles of different size we obtained the surface potential and charge from the electrophoretic mobility of the particles. For locked particles we found that the relatively high surface potential (∼ +5.1 kBT/e or +130 mV) was roughly constant for all particle diameters we investigated (1.2 μm < σ < 4.4 μm), and that the particle charge was proportional to the square of the diameter.
Collapse
Affiliation(s)
- Marjolein N van der Linden
- Soft Condensed Matter, Debye Institute for Nanomaterials Science , Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
48
|
Bulavchenko AI, Popovetskiy PS. Structure of adsorption layer of silver nanoparticles in sodium bis(2-ethylhexyl) sulfosuccinate solutions in n-decane as observed by photon-correlation spectroscopy and nonaqueous electrophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12729-12735. [PMID: 25290335 DOI: 10.1021/la5004935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photon correlation spectroscopy, nonaqueous electrophoresis, and transmission electron microscopy were used to study the structure of silver nanoparticles (NPs) in n-decane, as a dependence of the concentration of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and temperature. If the concentration of AOT is lower than the critical micelle concentration (CMC), a silver NP is covered with a monolayer of AOT and reveals no electrophoretic mobility. At average concentrations (from CMC to 0.1 M) the hydrodynamic diameter of a NP does not change, but the ζ-potential increases from 0 to 110 mV. When the concentration of AOT increases from 0.1 to 1 M, ζ potential drops to 13 mV, and the hydrodynamic diameter increases to 90 nm. An increase in temperature to 70 °C leads to a reversible decrease in diameter to 40 nm. The hypothesis of clustering (polylayer adsorption) of "empty" micelles on silver NPs is proposed for the qualitative interpretation of the experimental data.
Collapse
Affiliation(s)
- Alexander I Bulavchenko
- Nikolayev Institute of Inorganic Chemistry, Russian Academy of Sciences , Siberian Branch, prosp. Akademika Lavrent'eva 3, Novosibirsk 630090, Russia
| | | |
Collapse
|
49
|
Biswas S, De S, Kathiravan A. Ultraslow recombination in AOT-capped TiO2nanoparticles sensitized by protoporphyrin IX. Dalton Trans 2014; 43:15065-74. [DOI: 10.1039/c4dt01926a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Smith GN, Alexander S, Brown P, Gillespie DAJ, Grillo I, Heenan RK, James C, Kemp R, Rogers SE, Eastoe J. Interaction between surfactants and colloidal latexes in nonpolar solvents studied using contrast-variation small-angle neutron scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3422-3431. [PMID: 24593803 DOI: 10.1021/la500331u] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The interaction between deuterium-labeled Aerosol OT surfactant (AOT-d34) and sterically stabilized poly(methyl methacrylate) (PMMA) latex particles dispersed in nonpolar solvents has been studied using contrast-variation small-angle neutron scattering (CV-SANS). The electrophoretic mobilities (μ) of the latexes have been measured by phase-analysis light scattering, indicating that μ is negative. Two analogues of the stabilizers for the particles have been studied as free polymers in the absence of PMMA latexes: poly(12-hydroxystearic acid) (PHSA) polyester and poly(methyl methacrylate)-graft-poly(12-hydroxystearic acid) (PMMA-graft-PHSA) stabilizer copolymer. The scattering from both PHSA in dodecane and PMMA-graft-PHSA in toluene is consistent with extended polymer chains in good solvents. In dodecane, PMMA-graft-PHSA forms polymer micelles, and SANS is consistent with ellipsoidal aggregates formed of around 50 polymer chains. CV-SANS measurements were performed by measuring SANS from systems of PHSA, PMMA-graft-PHSA, and PMMA latexes with 10 and 100 mM surfactant solutions of AOT-d34 in both polymer/particle and AOT contrast-matched solvent. No excess scattering above the polymer or surfactant was found for PHSA in dodecane or PMMA-graft-PHSA in dodecane and toluene. This indicates that AOT does not significantly interact with the free polymers. Excess scattering was observed for systems with AOT-d34 and PMMA latexes dispersed in particle contrast-matched dodecane, consistent with the penetration of AOT into the PMMA latexes. This indicates that AOT does not interact preferentially with the stabilizing layers but, rather, is present throughout the colloids. Previous research ( Langmuir 2010, 26, 6967-6976 ) suggests that AOT surfactant is located in the latex PHSA-stabilizer layer, but all the results in this study are consistent with AOT poorly interacting with alkyl-stabilizer polymers.
Collapse
Affiliation(s)
- Gregory N Smith
- School of Chemistry, University of Bristol , Cantock's Close, Bristol, BS8 1TS, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|