1
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
2
|
Mohd Isa NS, El Kadri H, Vigolo D, Gkatzionis K. Optimisation of bacterial release from a stable microfluidic-generated water-in-oil-in-water emulsion. RSC Adv 2021; 11:7738-7749. [PMID: 35423274 PMCID: PMC8695039 DOI: 10.1039/d0ra10954a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Application of droplet microfluidics for the encapsulation of bacteria in water-in-oil-in-water (W/O/W) emulsion allows for production of monodisperse droplets with controllable size. In this study the release of bacteria from W/O/W emulsion, the effect of the double emulsion structure on bacterial growth and metabolic activity, and the stability and mechanism of bacterial release were investigated. W/O/W emulsions were formed using a double flow-focusing junction microfluidic device under controlled pressure to produce droplets of approximately 100 μm in diameter containing an inner aqueous phase (W1) of about 40–50 μm in diameter. GFP-labelled Escherichia coli (E. coli-GFP) bacteria were encapsulated within the W1 droplets and the stability of emulsions was studied by monitoring droplet size and creaming behaviour. The double emulsions were stabilised using a hydrophilic (Tween 80) and a lipophilic surfactant (polyglycerol polyricinoleate) and were destabilised by altering the osmotic balance, adding NaCl either in the inner W1 phase (hypo-osmotic) or outer W2 phase (hyper-osmotic). The release of E. coli-GFP was monitored by plating on agar whereby the colony form unit (CFU) of the released bacteria was determined while fluorescent microscopy was employed to observe the mechanism of release from the droplets. The release of E. coli-GFP was significantly increased with higher concentrations of NaCl and lower amounts of Tween 80. Microscopic observation revealed a two-step mechanism for the release of bacteria: double W/O/W emulsion droplet splitting to release W1 droplets forming a secondary double emulsion followed by the collapse of W1 droplets to release E. coli-GFP into the continuous aqueous phase. Encapsulation enhanced viability and metabolic activity. Nutrients can cross the oil layer. Bacterial release increased while emulsion stability decreased at high osmotic pressure and low surfactant concentration. Two-step release mechanism observed.![]()
Collapse
Affiliation(s)
- Nur Suaidah Mohd Isa
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu 21030 Kuala Terengganu Terengganu Malaysia.,School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK
| | - Daniele Vigolo
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,School of Biomedical Engineering, University of Sydney NSW 2006 Australia
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham Birmingham B15 2TT UK.,Department of Food Science and Nutrition, School of the Environment, University of the Aegean Metropolite Ioakeim 2 81400 Myrina Lemnos Greece
| |
Collapse
|
3
|
Zhang M, Sun R, Xia Q. An ascorbic acid delivery system based on (W1/O/W2) double emulsions encapsulated by Ca-alginate hydrogel beads. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Kasprzak M, Wilde P, Hill SE, Harding SE, Ford R, Wolf B. Non-chemically modified waxy rice starch stabilised wow emulsions for salt reduction. Food Funct 2019; 10:4242-4255. [DOI: 10.1039/c8fo01938j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water-in-oil-in-water emulsions containing an internalised salt solution were stabilised with non-chemically modified waxy rice starch (WRS), and octinyl succinic anhydride (OSA) as reference, to release salt during oral processing due to amylase-induced destabilisation.
Collapse
Affiliation(s)
| | - Peter Wilde
- Quadram Institute Bioscience
- Norwich Research Park
- Norfolk
- UK
| | - Sandra E. Hill
- School of Biosciences
- The University of Nottingham
- Loughborough
- UK
| | | | - Rebecca Ford
- School of Biosciences
- The University of Nottingham
- Loughborough
- UK
| | - Bettina Wolf
- School of Biosciences
- The University of Nottingham
- Loughborough
- UK
| |
Collapse
|
5
|
Soft multiple emulsions demonstrating reversible freeze-thawing capacity and enhanced skin permeability of diclofenac sodium. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4265-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Li M, Jiang W, Chen Z, Suryaprakash S, Lv S, Tang Z, Chen X, Leong KW. A versatile platform for surface modification of microfluidic droplets. LAB ON A CHIP 2017; 17:635-639. [PMID: 28154857 PMCID: PMC5328679 DOI: 10.1039/c7lc00079k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To advance emulsion droplet technology, we synthesize functional derivatives of Pluronic F127 that can simultaneously act as surfactants and as reactive sites for droplet surface decoration. The amine-, carboxyl-, N-hydroxysuccinimide ester-, maleimide- and biotin-terminated Pluronic F127 allows ligand immobilization on single-emulsion or double-emulsion droplets via electrostatic adsorption, covalent conjugation or site-specific avidin-biotin interaction.
Collapse
Affiliation(s)
- Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Weiqian Jiang
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Zaozao Chen
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | - Shixian Lv
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
7
|
Kadri HEL, Gun R, Overton TW, Bakalis S, Gkatzionis K. Modulating the release of Escherichia coli in double W1/O/W2 emulsion globules under hypo-osmotic pressure. RSC Adv 2016. [DOI: 10.1039/c6ra17091a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial release from double W1/O/W2 emulsion globules under hypo-osmotic pressure is described for the first time.
Collapse
Affiliation(s)
| | | | - Tim W. Overton
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| | | | - Konstantinos Gkatzionis
- School of Chemical Engineering
- UK
- Institute of Microbiology & Infection
- University of Birmingham
- UK
| |
Collapse
|
8
|
Stability and rheology of W/Si/W multiple emulsions with polydimethylsiloxane. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Chiu N, Hewson L, Fisk I, Wolf B. Programmed emulsions for sodium reduction in emulsion based foods. Food Funct 2015; 6:1428-34. [DOI: 10.1039/c5fo00079c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this research a microstructure approach to reduce sodium levels in emulsion based foods is presented.
Collapse
Affiliation(s)
- Natalie Chiu
- Division of Food Sciences
- School of Biosciences
- The University of Nottingham
- Loughborough
- UK
| | - Louise Hewson
- Division of Food Sciences
- School of Biosciences
- The University of Nottingham
- Loughborough
- UK
| | - Ian Fisk
- Division of Food Sciences
- School of Biosciences
- The University of Nottingham
- Loughborough
- UK
| | - Bettina Wolf
- Division of Food Sciences
- School of Biosciences
- The University of Nottingham
- Loughborough
- UK
| |
Collapse
|
10
|
Jaimes-Lizcano YA, Wang Q, Rojas EC, Papadopoulos KD. Evaporative destabilization of double emulsions for effective triggering of release. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.01.054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Wang Q, Rojas EC, Papadopoulos KD. Cationic liposomes in double emulsions for controlled release. J Colloid Interface Sci 2012; 383:89-95. [DOI: 10.1016/j.jcis.2012.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|
12
|
Abstract
Abstract
Background
The concept of enhancing saltiness perception in emulsions and a liquid food formulated with the emulsions (ambient vegetable soup) through increasing salt concentration in the continuous phase while retaining the fat content of the (aqueous continuous) product was evaluated. This was accomplished by increasing the droplet phase volume using duplex emulsion technology. Viscosity and droplet size distribution was measured. Saltiness evaluation was based on simple paired comparison testing (2-Alternate Forced Choice tests, BS ISO 5495:2007).
Results
Single and duplex emulsions and emulsion-based products had comparable mean oil droplet diameters (25 to 30 μm); however, viscosity of the duplex emulsion systems was considerably higher. Sensory assessment of saltiness of emulsion pairs (2AFC) indicated duplex technology enhanced saltiness perception compared to a single emulsion product at the same salt content (6.3 g/100 g) in both simple emulsions and the formulated food product (P = 0.0596 and 0.0004 respectively) although assessors noted the increased viscosity of the duplex systems. The formulated food product also contained pea starch particles which may have aided product mixing with saliva and thus accelerated tastant transport to the taste buds. Lowering salt content in the duplex systems (to levels of aqueous phase salt concentration similar to the level in the single systems) resulted in duplex systems being perceived as less salty than the single system. It appears that the higher viscosity of the duplex systems could not be “overruled” by enhanced mixing through increased droplet phase volume at lowered salt content.
Conclusions
The results showed that salt reduction may be possible despite the added technology of duplex systems increasing the overall measured viscosity of the product. The changes in viscosity behavior impact mouthfeel, which may be exploitable in addition to the contribution towards salt reduction. With a view to applying this technology to real processed foods, it needs to be tested for the product in question but it should be considered as part of a salt reduction tool box.
Collapse
|
13
|
Deng NN, Meng ZJ, Xie R, Ju XJ, Mou CL, Wang W, Chu LY. Simple and cheap microfluidic devices for the preparation of monodisperse emulsions. LAB ON A CHIP 2011; 11:3963-3969. [PMID: 22025190 DOI: 10.1039/c1lc20629j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Droplet microfluidics, which can generate monodisperse droplets or bubbles in unlimited numbers, at high speed and with complex structures, have been extensively investigated in chemical and biological fields. However, most current methods for fabricating microfluidic devices, such as glass etching, soft lithography in polydimethylsiloxane (PDMS) or assembly of glass capillaries, are usually either expensive or complicated. Here we report the fabrication of simple and cheap microfluidic devices based on patterned coverslips and microscope glass slides. The advantages of our approach for fabricating microfluidic devices lie in a simple process, inexpensive processing equipment and economical laboratory supplies. The fabricated microfluidic devices feature a flexible design of microchannels, easy spatial patterning of surface wettability, and good chemical compatibility and optical properties. We demonstrate their utilities for generation of monodisperse single and double emulsions with highly controllable flexibility.
Collapse
Affiliation(s)
- Nan-Nan Deng
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang Q, Jaimes‐Lizcano YA, Lawson LB, John VT, Papadopoulos KD. Improved dermal delivery of FITC–BSA using a combination of passive and active methods. J Pharm Sci 2011; 100:4804-14. [DOI: 10.1002/jps.22687] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 03/24/2011] [Accepted: 06/09/2011] [Indexed: 11/11/2022]
|
15
|
Jaimes-Lizcano YA, Lawson LB, Papadopoulos KD. Oil-Frozen W1/O/W2 Double Emulsions for Dermal Biomacromolecular Delivery Containing Ethanol as Chemical Penetration Enhancer. J Pharm Sci 2011; 100:1398-406. [DOI: 10.1002/jps.22362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/27/2010] [Accepted: 09/06/2010] [Indexed: 01/15/2023]
|
16
|
Abate AR, Thiele J, Weitz DA. One-step formation of multiple emulsions in microfluidics. LAB ON A CHIP 2011; 11:253-8. [PMID: 20967395 DOI: 10.1039/c0lc00236d] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a robust way to create multiple emulsions with controllable shell thicknesses that can vary over a wide range. We use a microfluidic device to create a coaxial jet of immiscible fluids; using a dripping instability, we break the jet into multiple emulsions. By controlling the thickness of each layer of the jet, we adjust the thicknesses of the shells of the multiple emulsions. The same method is also effective in creating monodisperse emulsions from fluids that cannot otherwise be controllably emulsified, such as, for example, viscoelastic fluids.
Collapse
Affiliation(s)
- Adam R Abate
- School of Engineering and Applied Sciences/Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
17
|
Zhao Y, Zhang J, Wang Q, Li J, Han B. Water-in-oil-in-water double nanoemulsion induced by CO2. Phys Chem Chem Phys 2011; 13:684-9. [DOI: 10.1039/c0cp00869a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Sun BJ, Shum HC, Holtze C, Weitz DA. Microfluidic melt emulsification for encapsulation and release of actives. ACS APPLIED MATERIALS & INTERFACES 2010; 2:3411-3416. [PMID: 21082834 DOI: 10.1021/am100860b] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A microfluidic melt emulsification method for encapsulation and release of actives is presented. Using a water-in-oil-in-water (W-O-W) double emulsion template, solid capsules can be formed by freezing the middle shell phase. Actives encapsulated inside the solid shell can be controllably and rapidly released by applying a temperature trigger to melt the shell. The choice of the shell materials can be chosen to accommodate the storage and release temperatures specific to the applications. In addition, we have also demonstrated the same concept to encapsulate multiple actives in multicompartment capsules, which are promising as multifunctional capsules and microreactors.
Collapse
|
19
|
|
20
|
Piacentini E, Drioli E, Giorno L. Preparation of stimulus responsive multiple emulsions by membrane emulsification using con a as biochemical sensor. Biotechnol Bioeng 2010; 108:913-23. [DOI: 10.1002/bit.22992] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/07/2010] [Accepted: 10/12/2010] [Indexed: 11/07/2022]
|
21
|
Wang Q, Tan G, Lawson LB, John VT, Papadopoulos KD. Liposomes in double-emulsion globules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:3225-31. [PMID: 19958007 PMCID: PMC2841964 DOI: 10.1021/la9032157] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tubular liposomes containing a hydrophilic model compound (fluorescein sodium salt, FSS) were entrapped inside the internal aqueous phase (W(1)) of water-in-oil-in-water (W(1)/O/W(2)) double-emulsion globules. Our hypothesis was that the oil membrane of double emulsions can function as a layer of protection to liposomes and their contents and thus better control their release. Liposomes were prepared in bulk, and their release was observed microscopically from individual double-emulsion globules. The liposomes containing FSS were released through external coalescence, and the behavior of this system was monitored visually by capillary video microscopy. Double-emulsion globules were stabilized with Tween 80 as the water-soluble surfactant, with Span 80 as the oil-soluble surfactant, while the oil phase (O) was n-hexadecane. The lipids in the tubular liposomes consist of L-alpha-phosphatidylcholine and Ceramide-VI. Variations of Tween 80 concentration in the external aqueous phase (W(2)) and Span 80 concentration in the O phase controlled the release of liposomes from the W(1) phase to the W(2) phase. The major finding of this work is that the sheer presence of liposomes in the W(1) phase is by itself a stabilizing factor for double-emulsion globules.
Collapse
Affiliation(s)
- Qing Wang
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Grace Tan
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Louise B. Lawson
- Department of Microbiology & Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Vijay T. John
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| | - Kyriakos D. Papadopoulos
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118
| |
Collapse
|