1
|
Jia G, Zhang H. Control of emulsion crystal growth in low-temperature environments. Adv Colloid Interface Sci 2024; 334:103313. [PMID: 39437491 DOI: 10.1016/j.cis.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Currently, various types of emulsions can be applied to a wide range of systems. Emulsions are thermodynamically unstable systems, and their crystallization can be affected by a variety of factors. The nucleation and growth processes of emulsion crystal networks are determined on the basis of reported theoretical and experimental methods. The issues addressed include changes in the apparent crystal morphology of samples, changes in thermal properties with respect to temperature, changes in boundary conditions, and changes in the various applications of emulsions as feedstocks or in processing and storage methods. Changes in a variety of common emulsions during constant-temperature storage and unavoidable temperature fluctuations (e.g., multiple freeze-thaw cycles) are considered. Different methods for controlling the crystalline stability of these colloidal systems are also discussed. This review outlines the crystallization mechanism of emulsions during their food processing and storage.
Collapse
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China.
| | - Huawen Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Komatsu H, Inasawa S. Propagation of Freezing in Supercooled Water-In-Antifreeze-Oil Emulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012055 DOI: 10.1021/acs.langmuir.4c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Water-in-oil (W/O) emulsions, in which water droplets are separated by a continuous oil phase, are frequently used in food and cosmetic products. However, the freezing kinetics of W/O emulsions are not yet well understood. In this study, we find that freezing propagates to individual water droplets that are in direct contact with other frozen droplets. When droplets are not in contact, freezing does not propagate even when the emulsions are cooled to -18 °C. Two measures of the perimeter and the area of the frozen droplets in emulsions are defined to evaluate the propagation velocity of freezing using a simple mathematical model. The velocity is highest (4 × 102 μm s-1) at -18 °C, which is lower than the freezing velocity of individual droplets at the same temperature (1.2 × 103 μm s-1). Water-oil interfaces, or a thin layer of oil between droplets, act as a barrier to propagation of freezing. The dependence of the freezing velocity on the degree of supercooling is consistent with results from a previous study; however, the absolute value of the freezing velocity is smaller by a factor of 102. The propagation velocity also depends on the degree of supercooling but its dependence is different from that of the freezing velocity. Features of freezing of water droplets immersed in antifreeze oil are discussed.
Collapse
Affiliation(s)
- Hiiro Komatsu
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
| | - Susumu Inasawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Shono M, Aburatani K, Yanagisawa M, Yoshikawa K, Shioi A. Periodic Alignment of Binary Droplets via a Microphase Separation of a Tripolymer Solution under Tubular Confinement. ACS Macro Lett 2024:207-211. [PMID: 38265017 PMCID: PMC10883045 DOI: 10.1021/acsmacrolett.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
We report the spontaneous formation of a characteristic periodic pattern through the phase separation of a tripolymer solution comprising polyethylene-glycol (PEG)/dextran (DEX)/gelatin. When this tripolymer solution is introduced into a glass capillary with a PEG-coated inner surface, we observe the time-dependent growth of microphase separation. Remarkably, a self-organized, periodic alignment of DEX- and gelatin-rich microdroplets ensues, surrounded by a PEG-rich phase. This pattern demonstrates considerable stability, enduring for at least 8 h. The fundamental characteristics of the experimentally observed periodic alignment are successfully replicated via numerical simulations using a Cahn-Hilliard model underpinned by a set of simple, theoretically derived equations. We propose that this type of kinetically stabilized periodic patterning can be produced across a broad range of phase-separation systems by selecting appropriate boundary conditions such as at the surface within a narrow channel.
Collapse
Affiliation(s)
- Mayu Shono
- Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto 610-0321, Japan
| | - Koki Aburatani
- Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto 610-0321, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Doshisha University, Kyoto 610-0321, Japan
| |
Collapse
|
4
|
Qu Z, An C, Yue R, Bi H, Zhao S. Assessment of the infiltration of water-in-oil emulsion into soil after spill incidents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165325. [PMID: 37414189 DOI: 10.1016/j.scitotenv.2023.165325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
The issue of inland oil spills exerts an adverse impact on environmental and ecological health. Many cases are concerned with water-in-oil emulsions, especially in the oil production and transport system. To understand the contamination and take an efficient response work after spill, this study investigated the infiltration behavior of water-in-oil emulsions and the influencing factors by measuring the characteristics of different emulsions. The results showed that an increase of water and fine particle content and decrease in temperature would improve the viscosity of emulsions and reduce the infiltration rate, whereas salinity levels had a negligible impact on infiltration if the pour point of emulsion systems was far higher than the freezing point of water droplets. It is worth mentioning that excessive water content at a high temperature may cause demulsification during the infiltration process. The oil concentration in different soil layers was related to the viscosity of emulsion and infiltration depth, and the adopted Green-Ampt model simulated well under low temperature. This study reveals the new features of emulsion infiltration behavior and distribution patterns under different conditions and is helpful for the response work after spill accidents.
Collapse
Affiliation(s)
- Zhaonian Qu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
| | - Rengyu Yue
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Shan Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
6
|
Li S, Yuan S, Zhang Y, Guo H, Liu S, Wang D, Wang Y. Molecular Dynamics Study on the Demulsification Mechanism of Water-In-Oil Emulsion with SDS Surfactant under a DC Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12717-12730. [PMID: 36197725 DOI: 10.1021/acs.langmuir.2c02364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Application of an electric field is an effective demulsification method for water-in-oil (W/O) emulsions. For the W/O emulsions stabilized by anionic surfactants, the microscopic demulsification mechanism is still not very clear. In this work, the coalescence behavior of two droplets stabilized by the anionic surfactant sodium dodecyl sulfate (SDS) in the oil phase under a DC electric field is investigated by molecular dynamics simulation. The effects of electric field strength and oil type on the electrocoalescence of two water droplets are mainly considered. The trajectory snapshots and center of mass of the two water droplets suggest that there is almost no migratory coalescence. The movement of sodium ions and SDS, which is a combined effect of the electric field force and the resistance from the oil phase, is crucial for the deformation and connection of two water droplets. The results of mean square displacement, radial distribution function, hydration number, and interaction energies of Na+-H2O and SDS-H2O indicate that the sodium ion has a stronger ability to carry water molecules for movement than SDS. The stronger electric field strength will result in more severe deformation and shorter coalescence time. Under the higher electric field strength, the two droplets will be elongated into a slender water ribbon. By applying a pulsed DC electric field with suitable amplitude, frequency, and duty ratio, it is possible to achieve full coalescence for the ionic surfactant-stabilized W/O emulsions. The oil phase also plays an important role for the deformation of droplets and the migration of emulsion components. For the different oil phases, a longer time or stronger electric field strength would be needed for the electrocoalescence of droplets in the oil phase with higher density and viscosity. Our results are expected to be helpful for practical application in the petroleum industry and chemical engineering.
Collapse
Affiliation(s)
- Shiyan Li
- College of Science, China University of Petroleum, Qingdao266580, China
| | - Shundong Yuan
- College of Science, China University of Petroleum, Qingdao266580, China
| | - Yuanwu Zhang
- College of Science, China University of Petroleum, Qingdao266580, China
| | - Huiying Guo
- Research Institute of Experiment and Detection, Xinjiang Oilfield Company, PetroChina, Karamay834000, China
| | - Sai Liu
- Research Institute of Experiment and Detection, Xinjiang Oilfield Company, PetroChina, Karamay834000, China
| | - Diansheng Wang
- College of Science, China University of Petroleum, Qingdao266580, China
| | - Yudou Wang
- College of Science, China University of Petroleum, Qingdao266580, China
| |
Collapse
|
7
|
Chafale A, Kapley A. Biosurfactants as microbial bioactive compounds in microbial enhanced oil recovery. J Biotechnol 2022; 352:1-15. [DOI: 10.1016/j.jbiotec.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022]
|
8
|
Hu X, Binks BP, Cui Z. Water-in-oil Pickering emulsions stabilized by edible surfactant crystals formed in situ. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Zaulkiflee ND, Ahmad AL, Che Lah NF, Shah Buddin MMH. Removal of emerging contaminants by emulsion liquid membrane: perspective and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12997-13023. [PMID: 35048340 DOI: 10.1007/s11356-021-16658-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 05/11/2023]
Abstract
Emerging contaminants (ECs) originated from different agricultural, biological, chemical, and pharmaceutical sectors have been detected in our water sources for many years. Several technologies are employed to minimise EC content in the aqueous phase, including solvent extraction processes, but there is not a solution commonly accepted yet. One of the studied alternatives is based on separation processes of emulsion liquid membrane (ELM) that benefit low solvent inventory and energy needs. However, a better understanding of the process and factors influencing the operating conditions and the emulsion stability of the extraction/stripping process is crucial to enhancing ELM's performance. This article aims to describe the applications of this technique for the EC removal and to comprehensively review the ELM properties and characteristics, phase compositions, and process parameters.
Collapse
Affiliation(s)
- Nur Dina Zaulkiflee
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Malaysia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Malaysia.
| | - Nuur Fahanis Che Lah
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Malaysia
| | - Meor Muhammad Hafiz Shah Buddin
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Malaysia
- Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
10
|
Effect of Water Content and Pectin on the Viscoelastic Improvement of Water-in-Canola Oil Emulsions. FLUIDS 2021. [DOI: 10.3390/fluids6060228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aimed to investigate gelation in glycerol monooleate (GMO)-stabilized water-in-canola oil (W/CO) emulsions by increasing water content (20–50 wt.%) and the addition of low methoxyl pectin (LMP) in the aqueous phase. A constant ratio of GMO to water was used to keep a similar droplet size in all emulsions. Hydrogenated soybean oil (7 wt.%) was used to provide network stabilization in the continuous phase. All fresh emulsions with LMP in the aqueous phase formed a stable and self-supported matrix with higher viscosity and gel strength than emulsions without LMP. Emulsion viscosity and gel strength increased with an increase in water content. All emulsions showed gel-like properties (storage moduli (G’) > loss moduli (G’’)) related to the presence of LMP in the aqueous phase and increased water content. Freeze/thaw analysis using a differential scanning calorimeter showed improved stability of the water droplets in the presence of LMP in the aqueous phase. This study demonstrated the presence of LMP in the aqueous phase, its interaction with GMO at the interface, and fat crystals in the continuous phase that could support the water droplets’ aggregation to obtain stable elastic W/CO emulsions that could be used as low-fat table spreads.
Collapse
|
11
|
Shah Buddin MMH, Ahmad AL, Abd Khalil AT, Puasa SW. A review of demulsification technique and mechanism for emulsion liquid membrane applications. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2020.1845962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia
| | | | - Siti Wahidah Puasa
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
12
|
Swathi KV, Muneeswari R, Ramani K, Sekaran G. Biodegradation of petroleum refining industry oil sludge by microbial-assisted biocarrier matrix: process optimization using response surface methodology. Biodegradation 2020; 31:385-405. [PMID: 33052472 DOI: 10.1007/s10532-020-09916-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023]
Abstract
Safe disposal of petroleum oil sludge generated from crude oil storage tank bottom is a major challenge for petroleum refineries across the globe. The presence of long chain hydrocarbons in petroleum oil sludge are known to have effects on the environment through bioaccumulation or biosorption. The present study was focused to develop a modified bioremediation process using hydrocarbonoclastic microbial-assisted biocarrier matrix (MABC) mediated through biosurfactants and biocatalysts for the efficient treatment of petroleum industrial oily sludge. The development of hydrocarbonoclastic microbial-assisted biocarrier matrix was confirmed by scanning electron microscopy analysis. The biocatalysts such as lipase, laccase, esterase and biosurfactant produced by MABC system were found to be 40 U/mg, 18 U/mg, 36 U/mg and 220 mg/g of oil sludge respectively using one variable at a time approach. Further, the response surface methodology was used to determine the optimum treatment conditions (Time, pH, Mass of biocarrier matrix and Amount of oil sludge) for the enhanced removal of total petroleum hydrocarbons (TPH) present in the oil sludge and TPH was degraded by 88.78% at Hydraulic Retention Time of 7 days. The biodegradation of oil sludge was confirmed using Gas Chromatography-Mass Spectrometry analysis.
Collapse
Affiliation(s)
- K V Swathi
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kancheepuram District, Kattankulathur, Tamil Nadu, 603 203, India
| | - R Muneeswari
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kancheepuram District, Kattankulathur, Tamil Nadu, 603 203, India
| | - K Ramani
- Biomolecules and Biocatalysis Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kancheepuram District, Kattankulathur, Tamil Nadu, 603 203, India.
| | - G Sekaran
- SRM Institute of Science and Technology, Ramapuram, Tamil Nadu, 600089, India
| |
Collapse
|
13
|
Hui K, Tang J, Lu H, Xi B, Qu C, Li J. Status and prospect of oil recovery from oily sludge:A review. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Lin Q, Ji N, Li M, Dai L, Xu X, Xiong L, Sun Q. Fabrication of debranched starch nanoparticles via reverse emulsification for improvement of functional properties of corn starch films. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Effect of diacylglycerol interfacial crystallization on the physical stability of water-in-oil emulsions. Food Chem 2020; 327:127014. [PMID: 32434126 DOI: 10.1016/j.foodchem.2020.127014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.
Collapse
|
16
|
Patil U, Benjakul S. Use of Protease from Seabass Pyloric Caeca in Combination with Repeated Freeze–Thawing Cycles Increases the Production Efficiency of Virgin Coconut Oil. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Umesh Patil
- Department of Food TechnologyFaculty of Agro‐IndustryPrince of Songkla UniversityHat YaiSongkhla90112Thailand
| | - Soottawat Benjakul
- Department of Food TechnologyFaculty of Agro‐IndustryPrince of Songkla UniversityHat YaiSongkhla90112Thailand
| |
Collapse
|
17
|
Preparation of camellia oil-based W/O emulsions stabilized by tea polyphenol palmitate: Structuring camellia oil as a potential solid fat replacer. Food Chem 2019; 276:209-217. [DOI: 10.1016/j.foodchem.2018.09.161] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/29/2018] [Accepted: 09/26/2018] [Indexed: 02/03/2023]
|
18
|
Dedovets D, Monteux C, Deville S. A temperature-controlled stage for laser scanning confocal microscopy and case studies in materials science. Ultramicroscopy 2018; 195:1-11. [DOI: 10.1016/j.ultramic.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 01/14/2023]
|
19
|
Teh SS, Mah SH. Stability Evaluations of Different Types of Vegetable Oil-based Emulsions. J Oleo Sci 2018; 67:1381-1387. [PMID: 30404958 DOI: 10.5650/jos.ess18067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study was aimed at evaluating the effects of vegetable oils on emulsion stability. Palm olein (POo), olive oil (OO), safflower oil (SAF), grape seed oil (GSO), soybean oil (SBO) and sunflower oil (SFO) with different degree of saturation levels were chosen as major ingredient of oil phases. All the emulsions were stored at 4℃, 27℃ and 40℃ for 35 days and subjected to all the stability tests, including temperature variation, centrifuge test, cycle test, pH and slip melting point. The results indicated that POo exhibited the highest stability, followed by SAF, OO, GSO, SFO and SBO. In addition, the results implied that the degree of saturation levels of vegetable oils does give significant effect on emulsion stability based on the centrifuge testing for an approximate 30% usage level of oil. The POo-based emulsion exhibited good emulsion stability throughout the experimental period indicated that POo could be a good carrier oil for various applications in cosmetic industry.
Collapse
Affiliation(s)
- Soek Sin Teh
- Energy and Environment Unit, Engineering and Processing Division, Malaysian Palm Oil Board
| | - Siau Hui Mah
- School of Biosciences, Taylor's University, Lakeside Campus
| |
Collapse
|
20
|
Sornkamnerd S, Okajima MK, Kaneko T. Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS OMEGA 2017; 2:5304-5314. [PMID: 31457799 PMCID: PMC6641907 DOI: 10.1021/acsomega.7b00602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/21/2017] [Indexed: 05/30/2023]
Abstract
Porous hydrogels possessing mechanical toughness were prepared from sacran, a supergiant liquid crystalline (LC) polysaccharide produced from Aphanothece sacrum. First, layered hydrogels were prepared by thermal cross-linking of film cast over a sacran LC solution. Then, anisotropic pores were constructed using a freeze-drying technique on the water-swollen layered hydrogels. Scanning electron microscopic observation revealed that pores were observable only on the side faces of sponge materials parallel to the layered structure but never on the top or bottom faces. The pore size, porosity, and swelling behavior were controlled by the thermal-cross-linking temperature. To clarify the freezing effect, a freeze-thawing method was used for comparison. The freeze-thawed hydrogels also formed layers but no pores. The mechanical properties and network structures of hydrogels were also studied, clarifying that porous hydrogels, even those with a high quantity of pores, were tough owing to the pores orienting along the layer direction like tunnels.
Collapse
Affiliation(s)
- Saranyoo Sornkamnerd
- Energy and Environment Area,
School of Materials Science, Graduate School of Advanced Science and
Technology, Japan Advanced Institute of
Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Maiko K. Okajima
- Energy and Environment Area,
School of Materials Science, Graduate School of Advanced Science and
Technology, Japan Advanced Institute of
Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tatsuo Kaneko
- Energy and Environment Area,
School of Materials Science, Graduate School of Advanced Science and
Technology, Japan Advanced Institute of
Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
21
|
|
22
|
Smit WJ, Smolentsev N, Versluis J, Roke S, Bakker HJ. Freezing effects of oil-in-water emulsions studied by sum-frequency scattering spectroscopy. J Chem Phys 2016; 145:044706. [DOI: 10.1063/1.4959128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- W. J. Smit
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - N. Smolentsev
- Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - J. Versluis
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - S. Roke
- Laboratory for Fundamental Biophotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - H. J. Bakker
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
23
|
Kwon TS, Lee JY. Options for reducing oil content of sludge from a petroleum wastewater treatment plant. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2015; 33:937-940. [PMID: 26261236 DOI: 10.1177/0734242x15597776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge.
Collapse
Affiliation(s)
- Tae-Soon Kwon
- Transportation Environmental Research Team, Korea Railroad Research Institute, Gyeonggi-Do, Republic of Korea
| | - Jae-Young Lee
- Transportation Environmental Research Team, Korea Railroad Research Institute, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
24
|
Hu G, Li J, Hou H. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:832-840. [PMID: 25464326 DOI: 10.1016/j.jhazmat.2014.10.028] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment.
Collapse
Affiliation(s)
- Guangji Hu
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, Zhejiang Province, PR China; Environmental Engineering Program, University of Northern British Columbia (UNBC), Prince George, British Columbia, Canada V2N 4Z9
| | - Jianbing Li
- WZU-UNBC Joint Research Institute of Ecology and Environment, Wenzhou University (WZU), Wenzhou, Zhejiang Province, PR China; Environmental Engineering Program, University of Northern British Columbia (UNBC), Prince George, British Columbia, Canada V2N 4Z9.
| | - Haobo Hou
- School of Resource and Environmental Science, Wuhan University, Wuhan, Hubei Province, PR China
| |
Collapse
|
25
|
Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P. Photoinduced demulsification of emulsions using a photoresponsive gemini surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:41-47. [PMID: 24354334 DOI: 10.1021/la4034782] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This Article reports on the influence of light irradiation on the stability of emulsions prepared using a photoresponsive gemini surfactant (C7-azo-C7) having an azobenzene skeleton as a spacer. When mixtures of trans C7-azo-C7 aqueous solution and n-octane are homogenized, stable emulsions are obtained in a specific region of weight fraction and surfactant concentration. Fluorescence microscopy observations using a small amount of fluorescent probes show that the stable emulsions are oil-in-water (O/W)-type. UV irradiation of stable O/W emulsions promotes the cis isomerization of trans C7-azo-C7 and leads to the coalescence of the oil (octane) droplets in the emulsions, that is, demulsification. While the equilibrated interfacial tension (IFT) between aqueous trans C7-azo-C7 solution and octane is almost the same as that between aqueous cis C7-azo-C7 and octane, the occupied area per molecule for C7-azo-C7 at octane/water interface decreases with the cis photoisomerization of trans isomer. Dynamic IFT measurement shows that UV irradiation to the interface between aqueous trans C7-azo-C7 solution and octane brings about an increase in the interfacial tension, indicating that the Gibbs free energy at the interface increases. From these results, the cis isomerization of trans C7-azo-C7 molecules at the O/W interface due to UV irradiation leads to direct contact between the water and octane phases, because of the reduction of molecular area at the interface, and subsequently makes the emulsions demulsified.
Collapse
Affiliation(s)
- Yutaka Takahashi
- Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science , 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | | | | | | | | |
Collapse
|
26
|
Hu G, Li J, Zeng G. Recent development in the treatment of oily sludge from petroleum industry: a review. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:470-490. [PMID: 23978722 DOI: 10.1016/j.jhazmat.2013.07.069] [Citation(s) in RCA: 341] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Oily sludge is one of the most significant solid wastes generated in the petroleum industry. It is a complex emulsion of various petroleum hydrocarbons (PHCs), water, heavy metals, and solid particles. Due to its hazardous nature and increased generation quantities around the world, the effective treatment of oily sludge has attracted widespread attention. In this review, the origin, characteristics, and environmental impacts of oily sludge were introduced. Many methods have been investigated for dealing with PHCs in oily sludge either through oil recovery or sludge disposal, but little attention has been paid to handle its various heavy metals. These methods were discussed by dividing them into oil recovery and sludge disposal approaches. It was recognized that no single specific process can be considered as a panacea since each method is associated with different advantages and limitations. Future efforts should focus on the improvement of current technologies and the combination of oil recovery with sludge disposal in order to comply with both resource reuse recommendations and environmental regulations. The comprehensive examination of oily sludge treatment methods will help researchers and practitioners to have a good understanding of both recent developments and future research directions.
Collapse
Affiliation(s)
- Guangji Hu
- Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | | | | |
Collapse
|
27
|
Gumiero VC, da Rocha Filho PA. Babassu Nanoemulsions Have Physical and Chemical Stability. J DISPER SCI TECHNOL 2012. [DOI: 10.1080/01932691.2011.625219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Kim WH, Lee KS, Lee KK. An Experimental Study on the Property and Stability of W/O Emulsion by Various Structures of Emulsifier. ACTA ACUST UNITED AC 2012. [DOI: 10.15230/scsk.2012.38.2.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
|
30
|
Liu J, Huang XF, Lu LJ, Xu JC, Wen Y, Yang DH, Zhou Q. Optimization of biodemulsifier production from Alcaligenes sp. S-XJ-1 and its application in breaking crude oil emulsion. JOURNAL OF HAZARDOUS MATERIALS 2010; 183:466-473. [PMID: 20702035 DOI: 10.1016/j.jhazmat.2010.07.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 06/04/2010] [Accepted: 07/14/2010] [Indexed: 05/29/2023]
Abstract
A biodemulsifier-producing strain of Alcaligenes sp. S-XJ-1, isolated from petroleum-contaminated soil of the Karamay Oilfield, exhibited excellent demulsifying ability. The application of this biodemulsifier significantly improved the quality of separated water compared with the chemical demulsifier, polyether, which clearly indicates that it has potential applications in the crude oil extraction industry. To optimize its biosynthesis, the impacts of carbon sources, nitrogen sources and pH were studied in detail. Paraffin, a hydrophobic carbon source, favored the synthesis of this cell wall associated biodemulsifier. The nitrogen source ammonium citrate stimulated the production and demulsifying performance of the biodemulsifier. An alkaline environment (pH 9.5) of the initial culture medium favored the strain's growth and improved its demulsifying ability. The results showed paraffin, ammonium citrate and pH had significant effects on the production of the biodemulsifier. These three variables were further investigated using a response surface methodology based on a central composite design to optimize the biodemulsifier yield. The optimal yield conditions were found at a paraffin concentration of 4.01%, an ammonium citrate concentration of 8.08 g/L and a pH of 9.35. Under optimal conditions, the biodemulsifier yield from Alcaligenes sp. S-XJ-1 was increased to 3.42 g/L.
Collapse
Affiliation(s)
- Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu J, Huang XF, Lu LJ, Xu JC, Wen Y, Yang DH, Zhou Q. Comparison between waste frying oil and paraffin as carbon source in the production of biodemulsifier by Dietzia sp. S-JS-1. BIORESOURCE TECHNOLOGY 2009; 100:6481-6487. [PMID: 19643603 DOI: 10.1016/j.biortech.2009.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/05/2009] [Accepted: 07/06/2009] [Indexed: 05/28/2023]
Abstract
In order to lower the production cost, waste frying oils were used in the biosynthesis of demulsifier by Dietzia sp. S-JS-1, which was isolated from petroleum contaminated soil. After 7 days of cultivation, the biomass concentration of the most suitable waste frying oil (WFO II) culture reached 3.78 g/L, which was 2.4 times the concentration of paraffin culture. The biodemulsifier produced with WFO II culture broke the emulsions more efficiently than that produced with paraffin culture, given the same volume ratio of carbon source in the culture medium and the same cultivation conditions. It achieved 88.3% of oil separation ratio in W/O emulsion and 76.4% of water separation ratio in O/W emulsion within 5 h. With the aid of thin layer chromatography (TLC) and Fourier transform infrared (FTIR) spectrometry, biodemulsifiers produced from both paraffin and WFO II were identified as a mixture of lipopeptide homologues. The subtle variation in the distribution of these homologues and high biomass concentration of WFO II cultures may account for the afore-mentioned good demulsification performance.
Collapse
Affiliation(s)
- Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Ghosh S, Rousseau D. Freeze–thaw stability of water-in-oil emulsions. J Colloid Interface Sci 2009; 339:91-102. [DOI: 10.1016/j.jcis.2009.07.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 07/14/2009] [Accepted: 07/21/2009] [Indexed: 10/20/2022]
|
33
|
Li Y, Ma R, Zhao L, Tao Q, Xiong D, An Y, Shi L. A valid way of quasi-quantificationally controlling the self-assembly of block copolymers in confined space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:2757-2764. [PMID: 19239189 DOI: 10.1021/la803996b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To mimic nanostructures assembled by biomolecules in organic cells and achieve precise self-assembly of block copolymers, a simple but valid way is introduced to quasi-quantificationally control the aggregation numbers (N(agg)) of polymeric micelles. A three-dimensional and closed microconfinement similar to a cell is constructed by W/O inverse emulsion as the spot for self-assembly of the pH-responsive block copolymer poly(ethylene glycol)-block-poly(4-vinylpyridine) (PEG-b-P4VP). The N(agg) values of the resulting polymeric micelles are effectively controlled by tuning the number of polymer chains encapsulated in isolated water pools. Micelles with different N(agg) values are successfully prepared and characterized by atomic force microscopy, transmission electron microscopy, and dynamic light scattering. When the number of polymer chains enclosed in a water pool (N(chain)) is less than the average N(agg) of normal micelles generated in bulk aqueous solution, the resultant aggregates formed in the confined spaces always have lower N(agg) as well as smaller sizes than the normal micelles do, while normal micelles predominantly form when N(chain) > N(agg) (normal micelle).
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, and Institute of Polymer Chemistry, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|