1
|
Cawley JL, Santa DE, Singh AN, Odudimu AT, Berger BA, Wittenberg NJ. Chaotropic Agent-Assisted Supported Lipid Bilayer Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20629-20639. [PMID: 39285818 PMCID: PMC11447895 DOI: 10.1021/acs.langmuir.4c02543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Supported lipid bilayers (SLBs) are useful structures for mimicking cellular membranes, and they can be integrated with a variety of sensors. Although there are a variety of methods for forming SLBs, many of these methods come with limitations in terms of the lipid compositions that can be employed and the substrates upon which the SLBs can be deposited. Here we demonstrate the use of an all-aqueous chaotropic agent exchange process that can be used to form SLBs on two different substrate materials: SiO2, which is compatible with traditional SLB formation by vesicle fusion, and Al2O3, which is not compatible with vesicle fusion. When examined with a quartz crystal microbalance with dissipation monitoring, the SLBs generated by chaotropic agent exchange (CASLBs) have similar frequency and dissipation shifts to SLBs formed by the vesicle fusion technique. The CASLBs block nonspecific protein adsorption on the substrate and can be used to sense protein-lipid interactions. Fluorescence microscopy was used to examine the CASLBs, and we observed long-range lateral diffusion of fluorescent probes, which confirmed that the CASLBs were composed of a continuous, planar lipid bilayer. Our CASLB method provides another option for forming planar lipid bilayers on a variety of surfaces, including those that are not amenable to the widely used vesicle fusion method.
Collapse
Affiliation(s)
- Jennie L Cawley
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Dane E Santa
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Aarshi N Singh
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Adeyemi T Odudimu
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Brett A Berger
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Nathan J Wittenberg
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Karabaliev M, Paarvanova B, Savova G, Tacheva B, Jahn S, Georgieva R. Electrochemical Investigation of the Stability of Poly-Phosphocholinated Liposomes. Molecules 2024; 29:3511. [PMID: 39124916 PMCID: PMC11313893 DOI: 10.3390/molecules29153511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Poly[2-(methacryloyloxy)ethyl phosphorylcholine] liposomes (pMPC liposomes) gained attention during the last few years because of their potential use in treating osteoarthritis. pMPC liposomes that serve as boundary lubricants are intended to restore the natural lubrication properties of articular cartilage. For this purpose, it is important that the liposomes remain intact and do not fuse and spread as a lipid film on the cartilage surface. Here, we investigate the stability of the liposomes and their interaction with two types of solid surfaces, gold and carbon, by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). With the aid of a hydrophilic species used as an electroactive probe in the solution, the charge transfer characteristics of the electrode surfaces are obtained. Additionally, from EIS, the capacitance characteristics of the surfaces are derived. No decrease of the peak currents and no displacement of the peak potentials to greater overpotentials are observed in the CV experiments. No decrease in the apparent capacitance and increase in the charge transfer resistance is observed in the EIS experiments. On the contrary, all parameters in both CV and EIS do change in the opposite direction. The obtained results confirm that there is only physical adsorption without fusion and spreading of the pMPC liposomes and without the formation of lipid films on the surfaces of both gold and carbon electrodes.
Collapse
Affiliation(s)
- Miroslav Karabaliev
- Department of Physics, Biophysics, Roentgenology and Radiology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Strara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Boyana Paarvanova
- Department of Physics, Biophysics, Roentgenology and Radiology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Strara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Gergana Savova
- Department of Physics, Biophysics, Roentgenology and Radiology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Strara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Bilyana Tacheva
- Department of Physics, Biophysics, Roentgenology and Radiology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Strara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
| | - Sabrina Jahn
- Liposphere Ltd., Aarava 1, Givaat Shemuel 5400804, Israel;
| | - Radostina Georgieva
- Department of Physics, Biophysics, Roentgenology and Radiology, Faculty of Medicine, Trakia University, 11 Armeiska Str., 6000 Strara Zagora, Bulgaria; (B.P.); (G.S.); (B.T.)
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
3
|
Martin A, Jemmett PN, Howitt T, Wood MH, Burley AW, Cox LR, Dafforn TR, Welbourn RJL, Campana M, Skoda MW, Thompson JJ, Hussain H, Rawle JL, Carlà F, Nicklin CL, Arnold T, Horswell SL. Effect of Anionic Lipids on Mammalian Plasma Cell Membrane Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2676-2691. [PMID: 36757323 PMCID: PMC9948536 DOI: 10.1021/acs.langmuir.2c03161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The effect of lipid composition on models of the inner leaflet of mammalian cell membranes has been investigated. Grazing incidence X-ray diffraction and X-ray and neutron reflectivity have been used to characterize lipid packing and solvation, while electrochemical and infrared spectroscopic methods have been employed to probe phase behavior in an applied electric field. Introducing a small quantity of the anionic lipid dimyristoylphosphatidylserine (DMPS) into bilayers of zwitterionic dimyristoylphosphatidylethanolamine (DMPE) results in a significant change in the bilayer response to an applied field: the tilt of the hydrocarbon chains increases before returning to the original tilt angle on detachment of the bilayer. Equimolar mixtures, with slightly closer chain packing, exhibit a similar but weaker response. The latter also tend to incorporate more solvent during this electrochemical phase transition, at levels similar to those of pure DMPS. Reflectivity measurements reveal greater solvation of lipid layers for DMPS > 30 mol %, matching the greater propensity for DMPS-rich bilayers to incorporate water. Taken together, the data indicate that the range of 10-35 mol % DMPS provides optimum bilayer properties (in flexibility and function as a barrier), which may explain why the DMPS content of cell membranes tends to be found within this range.
Collapse
Affiliation(s)
- Alexandra
L. Martin
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Philip N. Jemmett
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Thomas Howitt
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Mary H. Wood
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Andrew W. Burley
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Liam R. Cox
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Timothy R. Dafforn
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| | - Rebecca J. L. Welbourn
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Mario Campana
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Maximilian W.
A. Skoda
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
| | - Joseph J. Thompson
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Hadeel Hussain
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Jonathan L. Rawle
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Francesco Carlà
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Christopher L. Nicklin
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
| | - Thomas Arnold
- ISIS
Pulsed Neutron and Muon Source, Science
and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, U.K.
- Diamond
Light Source, Harwell Science and Innovation
Campus, Chilton, Didcot, OxfordshireOX11 0DE, U.K.
- European
Spallation Source ERIC PO Box 176, SE-221 00Lund, Sweden
- Department
of Chemistry, University of Bath, Claverton Down, BathBA2 7AY, U.K.
| | - Sarah L. Horswell
- School of
Chemistry and School of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, U.K.
| |
Collapse
|
4
|
Jemmett P, Milan DC, Nichols RJ, Howitt T, Martin AL, Arnold T, Rawle JL, Nicklin CL, Dafforn TR, Cox LR, Horswell SL. Influence of the Lipid Backbone on Electrochemical Phase Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14290-14301. [PMID: 36354380 PMCID: PMC9686133 DOI: 10.1021/acs.langmuir.2c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Sphingolipids are an important class of lipids found in mammalian cell membranes with important structural and signaling roles. They differ from another major group of lipids, the glycerophospholipids, in the connection of their hydrocarbon chains to their headgroups. In this study, a combination of electrochemical and structural methods has been used to elucidate the effect of this difference on sphingolipid behavior in an applied electric field. N-Palmitoyl sphingomyelin forms bilayers of similar coverage and thickness to its close analogue di-palmitoyl phosphatidylcholine. Grazing incidence diffraction data show slightly closer packing and a smaller chain tilt angle from the surface normal. Electrochemical IR results at low charge density show that the difference in tilt angle is retained on deposition to form bilayers. The bilayers respond differently to increasing electric field strength: chain tilt angles increase for both molecules, but sphingomyelin chains remain tilted as field strength is further increased. This behavior is correlated with disruption of the hydrogen-bonding network of small groups of sphingomyelin molecules, which may have significance for the behavior of molecules in lipid rafts in the presence of strong fields induced by ion gradients or asymmetric distribution of charged lipids.
Collapse
Affiliation(s)
- Philip
N. Jemmett
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - David C. Milan
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, UK
| | - Richard J. Nichols
- Department
of Chemistry, University of Liverpool, Crown Street, LiverpoolL69 7ZD, UK
| | - Thomas Howitt
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Alexandra L. Martin
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Thomas Arnold
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OxfordshireOX11
0DE, UK
- European
Spallation Source ERICPO Box 176, LundSE-221
00, Sweden
- ISIS
Pulsed Neutron and Muon Source, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Harwell, OxfordshireOX11 0QX, UK
- Department
of Chemistry, University of Bath, Claverton Down, BathBA2 7AY, UK
| | - Jonathan L. Rawle
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OxfordshireOX11
0DE, UK
| | - Christopher L. Nicklin
- Diamond
Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OxfordshireOX11
0DE, UK
| | - Timothy R. Dafforn
- School
of Biosciences, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Liam R. Cox
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| | - Sarah L. Horswell
- School
of Chemistry, University of Birmingham, Edgbaston, BirminghamB15 2TT, UK
| |
Collapse
|
5
|
Hybrid bilayer membranes as platforms for biomimicry and catalysis. Nat Rev Chem 2022; 6:862-880. [PMID: 37117701 DOI: 10.1038/s41570-022-00433-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
Hybrid bilayer membrane (HBM) platforms represent an emerging nanoscale bio-inspired interface that has broad implications in energy catalysis and smart molecular devices. An HBM contains multiple modular components that include an underlying inorganic surface with a biological layer appended on top. The inorganic interface serves as a support with robust mechanical properties that can also be decorated with functional moieties, sensing units and catalytic active sites. The biological layer contains lipids and membrane-bound entities that facilitate or alter the activity and selectivity of the embedded functional motifs. With their structural complexity and functional flexibility, HBMs have been demonstrated to enhance catalytic turnover frequency and regulate product selectivity of the O2 and CO2 reduction reactions, which have applications in fuel cells and electrolysers. HBMs can also steer the mechanistic pathways of proton-coupled electron transfer (PCET) reactions of quinones and metal complexes by tuning electron and proton delivery rates. Beyond energy catalysis, HBMs have been equipped with enzyme mimics and membrane-bound redox agents to recapitulate natural energy transport chains. With channels and carriers incorporated, HBM sensors can quantify transmembrane events. This Review serves to summarize the major accomplishments achieved using HBMs in the past decade.
Collapse
|
6
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
7
|
Labbé E, Buriez O. Electrode‐supported and free‐standing bilayer lipid membranes: Formation and uses in molecular electrochemistry. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Eric Labbé
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University Sorbonne Université CNRS Paris 75005 France
| | - Olivier Buriez
- PASTEUR Département de Chimie Ecole Normale Supérieure PSL University Sorbonne Université CNRS Paris 75005 France
| |
Collapse
|
8
|
Jemmett PN, Milan DC, Nichols RJ, Cox LR, Horswell SL. Effect of Molecular Structure on Electrochemical Phase Behavior of Phospholipid Bilayers on Au(111). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11887-11899. [PMID: 34590852 DOI: 10.1021/acs.langmuir.1c01975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid bilayers form the basis of biological cell membranes, selective and responsive barriers vital to the function of the cell. The structure and function of the bilayer are controlled by interactions between the constituent molecules and so vary with the composition of the membrane. These interactions also influence how a membrane behaves in the presence of electric fields they frequently experience in nature. In this study, we characterize the electrochemical phase behavior of dipalmitoylphosphatidylcholine (DPPC), a glycerophospholipid prevalent in nature and often used in model systems and healthcare applications. DPPC bilayers were formed on Au(111) electrodes using Langmuir-Blodgett and Langmuir-Schaefer deposition and studied with electrochemical methods, atomic force microscopy (AFM) and in situ polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). The coverage of the substrate determined with AFM is in accord with that estimated from differential capacitance measurements, and the bilayer thickness is slightly higher than for bilayers of the similar but shorter-chained lipid, dimyristoylphosphatidylcholine (DMPC). DPPC bilayers exhibit similar electrochemical response to DMPC bilayers, but the organization of molecules differs, particularly at negative charge densities. Infrared spectra show that DPPC chains tilt as the charge density on the metal is increased in the negative direction, but, unlike in DMPC, the chains then return to their original tilt angle at the most negative potentials. The onset of the increase in the chain tilt angle coincides with a decrease in solvation around the ester carbonyl groups, and the conformation around the acyl chain linkage differs from that in DMPC. We interpret the differences in behavior between bilayers formed from these structurally similar lipids in terms of stronger dispersion forces between DPPC chains and conclude that relatively subtle changes in molecular structure may have a significant impact on a membrane's response to its environment.
Collapse
Affiliation(s)
- Philip N Jemmett
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - David C Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
9
|
Wood MH, Milan DC, Nichols RJ, Casford MTL, Horswell SL. A quantitative determination of lipid bilayer deposition efficiency using AFM. RSC Adv 2021; 11:19768-19778. [PMID: 35479201 PMCID: PMC9033767 DOI: 10.1039/d1ra01920a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The efficacy of a number of different methods for depositing a dimyristoylphosphatidylcholine (DMPC) lipid bilayer or DMPC-cholesterol (3 : 1) mixed bilayer onto a silicon substrate has been investigated in a quantitative manner using atomic force microscopy (AFM) image analysis to extract surface coverage. Complementary AFM-IR measurements were used to confirm the presence of the lipids. For the Langmuir-Blodgett/Schaefer deposition method at temperatures below the chain-melting transition temperature (T m), a large number of bilayer defects resulted when DMPC was deposited from a water subphase. Addition of calcium ions to the trough led to smaller, more frequent defects, whereas addition of cholesterol to the lipid mixture led to a vast improvement in bilayer coverage. Poor coverage was achieved for deposition at temperatures above T m. Formation of the deposited bilayer from vesicle fusion proved a more reliable method for all systems, with formation of near-complete bilayers within 60 seconds at temperatures above T m, although this method led to a higher probability of multilayer formation and rougher bilayer surfaces.
Collapse
Affiliation(s)
- Mary H Wood
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| | - David C Milan
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Michael T L Casford
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
10
|
Bar L, Cordoyiannis G, Neupane S, Goole J, Grosfils P, Losada-Pérez P. Asymmetric Lipid Transfer between Zwitterionic Vesicles by Nanoviscosity Measurements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1087. [PMID: 33922325 PMCID: PMC8145678 DOI: 10.3390/nano11051087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
The interest in nano-sized lipid vesicles in nano-biotechnology relies on their use as mimics for endosomes, exosomes, and nanocarriers for drug delivery. The interactions between nanoscale size lipid vesicles and cell membranes involve spontaneous interbilayer lipid transfer by several mechanisms, such as monomer transfer or hemifusion. Experimental approaches toward monitoring lipid transfer between nanoscale-sized vesicles typically consist of transfer assays by fluorescence microscopy requiring the use of labels or calorimetric measurements, which in turn require a large amount of sample. Here, the capability of a label-free surface-sensitive method, quartz crystal microbalance with dissipation monitoring (QCM-D), was used to monitor lipid transfer kinetics at minimal concentrations and to elucidate how lipid physicochemical properties influence the nature of the transfer mechanism and dictate its dynamics. By studying time-dependent phase transitions obtained from nanoviscosity measurements, the transfer rates (unidirectional or bidirectional) between two vesicle populations consisting of lipids with the same head group and differing alkyl chain length can be estimated. Lipid transfer is asymmetric and unidirectional from shorter-chain lipid donor vesicles to longer-chain lipid acceptor vesicles. The transfer is dramatically reduced when the vesicle populations are incubated at temperatures below the melting of one of the vesicle populations.
Collapse
Affiliation(s)
- Laure Bar
- Experimental Soft Matter and Thermal Physics Group (EST), Department of Physics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - George Cordoyiannis
- Condensed Matter Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Shova Neupane
- Physical Chemistry of Surfaces Group, Institut de Recherche de Chimie Paris (IRCP), 75005 Paris, France;
| | - Jonathan Goole
- Laboratory of Pharmaceutics and Biopharmaceutics, Campus de la Plaine, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Patrick Grosfils
- Center for Nonlinear Phenomena and Complex Systems, Department of Physics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics Group (EST), Department of Physics, Université Libre de Bruxelles, 1050 Brussels, Belgium;
| |
Collapse
|
11
|
Kyropoulou M, Yorulmaz Avsar S, Schoenenberger CA, Palivan CG, Meier WP. From spherical compartments to polymer films: exploiting vesicle fusion to generate solid supported thin polymer membranes. NANOSCALE 2021; 13:6944-6952. [PMID: 33885496 DOI: 10.1039/d1nr01122g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid supported polymer membranes as scaffold for the insertion of functional biomolecules provide the basis for mimicking natural membranes. They also provide the means for unraveling biomolecule-membrane interactions and engineering platforms for biosensing. Vesicle fusion is an established procedure to obtain solid supported lipid bilayers but the more robust polymer vesicles tend to resist fusion and planar membranes rarely form. Here, we build on vesicle fusion to develop a refined and efficient way to produce solid supported membranes based on poly(dimethylsiloxane)-poly(2-methyl-2-oxazoline) (PMOXA-b-PDMS-b-PMOXA) amphiphilic triblock copolymers. We first create thiol-bearing polymer vesicles (polymersomes) and anchor them on a gold substrate. An osmotic shock then provokes polymersome rupture and drives planar film formation. Prerequisite for a uniform amphiphilic planar membrane is the proper combination of immobilized polymersomes and osmotic shock conditions. Thus, we explored the impact of the hydrophobic PDMS block length of the polymersome on the formation and the characteristics of the resulting solid supported polymer assemblies by quarz crystal microbalance with dissipation monitoring (QCM-D), atomic force microscopy (AFM) and spectroscopic ellipsometry (SE). When the PDMS block is short enough, attached polymersomes restructure in response to osmotic shock, resulting in a uniform planar membrane. Our approach to rapidly form planar polymer membranes by vesicle fusion brings many advantages to the development of synthetic planar membranes for bio-sensing and biotechnological applications.
Collapse
Affiliation(s)
- Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
12
|
Arunachalam B, Jaganathan M, Palanisamy T, Dhathathreyan A. Physico-chemical studies of elastic compliance and adsorption of DOPC vesicles and its mixture with charged lipids at fluid/solid interface. Colloids Surf B Biointerfaces 2021; 199:111544. [PMID: 33383550 DOI: 10.1016/j.colsurfb.2020.111544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Lipid bilayer mechanics is crucial to membrane dynamics and in design of liposomes for delivery applications. In this work, vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) (size from 50 nm to 1 μm) and its mixtures with anionic 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) sodium salt (DOPG) and cationic dimethyldioctadecylammonium bromide (DODAB), have been studied under shear stress at fluid/solid interface and their elastic compliance evaluated. Results show that the rate of spreading of the smaller vesicles (∼70 nm) is about 1.4 times slower than those of larger ones (∼1 μ) and that DOPC has the highest elastic compliance compared with DOPC + DOPG and DOPC + DODAB vesicles. A direct correlation between the elastic compliance and the size of the vesicles shows larger vesicles are more structurally labile during adsorption and subsequent adhesion to solid surfaces than the smaller ones. Specific role of bound water in DODAB is reflected in the lowest elastic compliance of DODAB compared to other lipids. Results show that during the process of adhesion at the fluid/air interface, the vesicles undergo contraction, thereby transmitting mechanical stresses to their microenvironment, which matches the SAXS electron density profiles that indicates larger vesicles have thicker bilayer membranes with larger volume of water compared to the smaller sized ones.
Collapse
Affiliation(s)
- Bruntha Arunachalam
- Advanced Materials Lab., CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | - Thanikaivelan Palanisamy
- Advanced Materials Lab., CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aruna Dhathathreyan
- Advanced Materials Lab., CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
13
|
Mrdenovic D, Su Z, Kutner W, Lipkowski J, Pieta P. Alzheimer's disease-related amyloid β peptide causes structural disordering of lipids and changes the electric properties of a floating bilayer lipid membrane. NANOSCALE ADVANCES 2020; 2:3467-3480. [PMID: 36134289 PMCID: PMC9417616 DOI: 10.1039/d0na00292e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/27/2020] [Indexed: 05/10/2023]
Abstract
Neurodegeneration in Alzheimer's disease is associated with disruption of the neuronal cell membrane by the amyloid β (Aβ) peptide. However, the disruption mechanism and the resulting changes in membrane properties remain to be elucidated. To address this issue, herein the interaction of amyloid β monomers (AβMs) and amyloid β oligomers (AβOs) with a floating bilayer lipid membrane (fBLM) was studied using electrochemical and IR spectroscopy techniques. IR measurements showed that both Aβ forms interacted similarly with the hydrophobic membrane core (lipid acyl chains), causing conformational and orientational changes of the lipid acyl chains, thus decreasing acyl chain mobility and altering the lipid packing unit cell. In the presence of AβOs, these changes were more significant than those in the presence of AβMs. However, respective interactions of AβMs and AβOs with the membrane hydrophilic exterior (lipid heads) were quite different. AβMs dehydrated lipid heads without affecting their orientation while AβOs changed the orientation of lipid heads keeping their hydration level intact. Electrochemical measurements showed that only AβOs porated the fBLM, thus significantly changing the fBLM electrical properties. The present results provide new molecular-level insight into the mechanism of membrane destruction by AβOs and changes in the membrane properties.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Department of Chemistry, University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Zhangfei Su
- Department of Chemistry, University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
- Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw Wóycickiego 1/3 01-815 Warsaw Poland
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph 50 Stone Road East Guelph Ontario N1G 2W1 Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
14
|
Ratner BD, Hoffman AS, McArthur SL. Physicochemical Surface Modification of Materials Used in Medicine. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Physical and electrochemical characterization of a Cu-based oxygen reduction electrocatalyst inside and outside a lipid membrane with controlled proton transfer kinetics. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Diverse effect of cationic lipopeptide on negatively charged and neutral lipid bilayers supported on gold electrodes. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Phase-segregated Membrane Model assessed by a combined SPR-AFM Approach. Colloids Surf B Biointerfaces 2018; 172:423-429. [DOI: 10.1016/j.colsurfb.2018.08.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/09/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
|
18
|
Abbasi F, Alvarez-Malmagro J, Su Z, Leitch JJ, Lipkowski J. Pore Forming Properties of Alamethicin in Negatively Charged Floating Bilayer Lipid Membranes Supported on Gold Electrodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13754-13765. [PMID: 30265810 DOI: 10.1021/acs.langmuir.8b02554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM), and photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) were employed to investigate the formation of alamethicin pores in negatively charged bilayers composed of a mixture of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) and egg-PG floating at gold (111) electrode surfaces modified by self-assembled monolayers of 1-thio-β-d-glucose (β-Tg). The EIS data showed that the presence of alamethicin decreases the membrane resistivity by about 1 order of magnitude. PM-IRRAS measurements provided information about the tilt angles of peptide helical axis with respect to the bilayer normal. The small tilt angles obtained for the peptide helical axis prove that the alamethicin molecules were inserted into the DMPC/egg-PG membranes. The tilt angles decreased when negative potentials were applied, which correlates with the observed decrease in membrane resistivity, indicating that ion pore formation is assisted by the transmembrane potential. Molecular resolution AFM images provided visual evidence that alamethicin molecules aggregate forming hexagonal porous 2D lattices with periodicities of 2.0 ± 0.2 nm. The pore formation by alamethicin in the negatively charged membrane was compared with the interaction of this peptide with a bilayer formed by zwitterionic lipids. The comparison of these results showed that alamethicin preferentially forms ion translocating pores in negatively charged phospholipid membranes.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | | | - ZhangFei Su
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - J Jay Leitch
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Jacek Lipkowski
- Department of Chemistry , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
19
|
Bi H, Wang X, Han X, Voïtchovsky K. Impact of Electric Fields on the Nanoscale Behavior of Lipid Monolayers at the Surface of Graphite in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9561-9571. [PMID: 30028144 DOI: 10.1021/acs.langmuir.8b01631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The nanoscale organization and dynamics of lipid molecules in self-assembled membranes is central to the biological function of cells and in the technological development of synthetic lipid structures as well as in devices such as biosensors. Here, we explore the nanoscale molecular arrangement and dynamics of lipids assembled in monolayers at the surface of highly ordered pyrolytic graphite (HOPG), in different ionic solutions, and under electrical potentials. Using a combination of atomic force microscopy and fluorescence recovery after photobleaching, we show that HOPG is able to support fully formed and fluid lipid membranes, but mesoscale order and corrugations can be observed depending on the type of the lipid considered (1,2-dioleoyl- sn-glycero-3-phosphocholine, 1,2-dioleoyl- sn-glycero-3-phospho-l-serine (DOPS), and 1,2-dioleoyl-3-trimethylammoniumpropane) and the ion present (Na+, Ca2+, Cl-). Interfacial solvation forces and ion-specific effects dominate over the electrostatic changes induced by moderate electric fields (±1.0 V vs Ag/AgCl reference electrode) with particularly marked effects in the presence of calcium, and for DOPS. Our results provide insights into the interplay between the molecular, ionic, and electrostatic interactions and the formation of dynamical ordered structures in fluid lipid membranes.
Collapse
Affiliation(s)
- Hongmei Bi
- College of Science , Heilongjiang Bayi Agricultural University , Daqing 163319 , China
| | - Xuejing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | | |
Collapse
|
20
|
Abbasi F, Leitch JJ, Su Z, Szymanski G, Lipkowski J. Direct visualization of alamethicin ion pores formed in a floating phospholipid membrane supported on a gold electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Juhaniewicz-Dębińska J, Tymecka D, Sęk S. Lipopeptide-induced changes in permeability of solid supported bilayers composed of bacterial membrane lipids. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.12.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Meléndrez D, Jowitt T, Iliut M, Verre AF, Goodwin S, Vijayaraghavan A. Adsorption and binding dynamics of graphene-supported phospholipid membranes using the QCM-D technique. NANOSCALE 2018; 10:2555-2567. [PMID: 29349454 DOI: 10.1039/c7nr05639g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We report on the adsorption dynamics of phospholipid membranes on graphene-coated substrates using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. We compare the lipid vesicle interaction and membrane formation on gold and silicon dioxide QCM crystal surfaces with their graphene oxide (GO) and reduced (r)GO coated counterparts, and report on the different lipid structures obtained. We establish graphene derivative coatings as support surfaces with tuneable hydrophobicity for the formation of controllable lipid structures. One structure of interest formed is lipid monolayer membranes which were formed on rGO, which are otherwise challenging to produce. We also demonstrate and monitor biotin-avidin binding on such a membrane, which will then serve as a platform for a wide range of biosensing applications. The QCM-D technique could be extended to both fundamental studies and applications of other covalent and non-covalent interactions in 2-dimensional materials.
Collapse
Affiliation(s)
- D Meléndrez
- School of Materials and National Graphene Institute, University of Manchester, Manchester M13 9PL, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Piantanida L, Bolt HL, Rozatian N, Cobb SL, Voïtchovsky K. Ions Modulate Stress-Induced Nanotexture in Supported Fluid Lipid Bilayers. Biophys J 2017; 113:426-439. [PMID: 28746853 PMCID: PMC5529180 DOI: 10.1016/j.bpj.2017.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Most plasma membranes comprise a large number of different molecules including lipids and proteins. In the standard fluid mosaic model, the membrane function is effected by proteins whereas lipids are largely passive and serve solely in the membrane cohesion. Here we show, using supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers in different saline solutions, that ions can locally induce ordering of the lipid molecules within the otherwise fluid bilayer when the latter is supported. This nanoordering exhibits a characteristic length scale of ∼20 nm, and manifests itself clearly when mechanical stress is applied to the membrane. Atomic force microscopy (AFM) measurements in aqueous solutions containing NaCl, KCl, CaCl2, and Tris buffer show that the magnitude of the effect is strongly ion-specific, with Ca2+ and Tris, respectively, promoting and reducing stress-induced nanotexturing of the membrane. The AFM results are complemented by fluorescence recovery after photobleaching experiments, which reveal an inverse correlation between the tendency for molecular nanoordering and the diffusion coefficient within the bilayer. Control AFM experiments on other lipids and at different temperatures support the hypothesis that the nanotexturing is induced by reversible, localized gel-like solidification of the membrane. These results suggest that supported fluid phospholipid bilayers are not homogenous at the nanoscale, but specific ions are able to locally alter molecular organization and mobility, and spatially modulate the membrane’s properties on a length scale of ∼20 nm. To illustrate this point, AFM was used to follow the adsorption of the membrane-penetrating antimicrobial peptide Temporin L in different solutions. The results confirm that the peptides do not absorb randomly, but follow the ion-induced spatial modulation of the membrane. Our results suggest that ionic effects have a significant impact for passively modulating the local properties of biological membranes, when in contact with a support such as the cytoskeleton.
Collapse
Affiliation(s)
- Luca Piantanida
- Department of Physics, Durham University, Durham, United Kingdom
| | - Hannah L Bolt
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Neshat Rozatian
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham, United Kingdom
| | | |
Collapse
|
24
|
Konarzewska D, Juhaniewicz J, Güzeloğlu A, Sęk S. Characterization of planar biomimetic lipid films composed of phosphatidylethanolamines and phosphatidylglycerols from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:475-483. [DOI: 10.1016/j.bbamem.2017.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 01/27/2023]
|
25
|
Shimizu H, Matsunaga S, Yamada T, Kobayashi T, Kawai M. Formation of Ordered Phospholipid Monolayer on a Hydrophilically Modified Au(111) Substrate. ACS NANO 2016; 10:7811-7820. [PMID: 27494363 DOI: 10.1021/acsnano.6b03421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The molecular arrangement of phospholipid molecules was investigated on a hydrophilically modified gold surface within an aqueous solution by scanning tunneling microscopy. By suspending phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC) nanoparticles in the aqueous electrolyte surrounding a hydrophilically modified gold (111) substrate with 3-mercaptopropionic acid (SH-C2H4-COOH, 3-MPA), well-ordered adlattices of POPC were observed. Traces of particle fusion were visualized before formation of the adlattice. Addition of cholesterol to the suspension seems to facilitate accommodation of POPC on this surface. The observed unit cells of POPC adlattices had dimensions of 0.5 nm × 1.9-2.5 nm. By high-resolution imaging, each unit cell was discerned to be occupied by one upright POPC molecule. The POPC + cholesterol suspension also leads to formation of a flat integrated POPC layer, which may be a lipid bilayer covering the surface.
Collapse
Affiliation(s)
- Hiroaki Shimizu
- RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Advanced Materials Science, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Soichiro Matsunaga
- RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Advanced Materials Science, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Taro Yamada
- RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | - Maki Kawai
- RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Advanced Materials Science, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
26
|
Positively charged supported lipid bilayer formation on gold surfaces for neuronal cell culture. Biointerphases 2016; 11:021003. [DOI: 10.1116/1.4945306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Trewby W, Livesey D, Voïtchovsky K. Buffering agents modify the hydration landscape at charged interfaces. SOFT MATTER 2016; 12:2642-51. [PMID: 26837938 DOI: 10.1039/c5sm02445e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Buffering agents are widely used to stabilise the pH of solutions in soft matter and biological sciences. They are typically composed of weak acids and bases mixed in an aqueous solution, and can interact electrostatically with charged surfaces such as biomembranes. Buffers can induce protein aggregation and structural modification of soft interfaces, but a molecular-level picture is still lacking. Here we use high-resolution atomic force microscopy to investigate the effect of five commonly used buffers, namely 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), 2-(N-morpholino)ethanesulfonic acid (MES), monosodium phosphate, saline sodium citrate (SSC) and tris(hydroxymethyl)aminomethane (Tris) on the hydration landscape of Muscovite mica in solution. Mica is an ideal model substrate due to its negative surface charge and identical lattice parameter when compared with gel-phase lipid bilayers. We show that buffer molecules can produce cohesive aggregates spanning over tens of nanometres of the interface. SSC, Tris and monosodium phosphate tend to create an amorphous mesh layer several molecules thick and with no preferential ordering. In contrast, MES and HEPES adopt epitaxial arrangements commensurate with the underlying mica lattice, suggesting that they offer the most suitable solution for high-resolution studies. To confirm that this effect persisted in biologically-relevant interfaces, the experiments were repeated on a silica-supported lipid bilayer. Similar trends were observed for this system using atomic force microscopy as well as ellipsometry. The effect of the buffering agents can be mitigated by the inclusion of salt which helps displace them from the interface.
Collapse
|
28
|
Matyszewska D, Bilewicz R, Su Z, Abbasi F, Leitch JJ, Lipkowski J. PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1791-1798. [PMID: 26829620 DOI: 10.1021/acs.langmuir.5b04052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A phospholipid bilayer composed of 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) was deposited onto the Au(111) electrode modified with a self-assembled monolayer of 1-thio-β-d-glucose (β-Tg) via the Langmuir-Blodgett and Langmuir-Schaefer (LB-LS) techniques. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane on a hydrophilic surface modified gold electrode. The results of the spectroscopic measurements showed that the tilt angle of acyl chains obtained for deuterated DMPC bilayers supported on the β-Tg-modified gold is significantly lower than that reported previously for DMPC bilayers deposited directly on Au(111) electrodes. Moreover, tilt angles of ∼18° were obtained for d54-DMPC bilayers on β-Tg self-assembled monolayers (SAMs) at positive potentials, which are similar to the values calculated for h-DMPC deposited on bare gold in the desorbed state and to those observed for a stack of hydrated DMPC bilayers. This data confirms that the β-thioglucose SAM promotes the formation of a water cushion that separates the phospholipid bilayer from the metal surface. As a result, the DMPC polar heads are not in direct contact with the electrode and can adopt a zigzag configuration, which strengthens the chain-chain interactions and allows for an overall decrease in the tilt of the acyl chains. These novel supported model membranes may be especially useful in studies pertaining to the incorporation of peptides and proteins into phospholipid bilayers.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw , ul. Pasteura 1, 02093 Warsaw, Poland
| | - ZhangFei Su
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Fatemah Abbasi
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - J Jay Leitch
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
29
|
Musgrove A, Bizzotto D. Potential Controls the Interaction of Liposomes with Octadecanol-Modified Au Electrodes: An in Situ AFM Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12797-12806. [PMID: 26528884 DOI: 10.1021/acs.langmuir.5b03605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The formation of supported lipid bilayers using liposomes requires interaction with the solid surface, rupture of the liposome, and spreading to cover the surface with a lipid bilayer. This can result in a less-than-uniform coating of the solid surface. Presented is a method that uses the electrochemical poration of an adsorbed lipid-like layer on a Au electrode to control the interaction of 100 nm DOPC liposomes. An octadecanol-coated Au-on-mica surface was imaged using tapping-mode AFM during the application of potential in the presence or absence of liposomes. When the substrate potential was made negative enough, defects formed in the adsorbed layer and new taller features were observed. More features were observed and existing features increased in size with time spent at this negative poration potential. The new features were 1.8-2.0 nm higher than the octadecanol-coated gold surface, half the thickness of a DOPC bilayer. These features were not observed in the absence of liposomes when undergoing the same potential perturbation. In the presence of liposomes, the application of a poration potential was needed to initiate the formation of these taller features. Once the applied potential was removed, the features stopped growing and no new regions were observed. The size of these new regions was consistent with the footprint of a flattened 100 nm liposome. It is speculated that the DOPC liposomes were able to interact with the defects and became soluble in the octadecanol, creating a taller region that was limited in size to the liposome that adsorbed and became incorporated. This AFM study confirms previous in situ fluorescence measurements of the same system and illustrates the use of a potential perturbation to control the formation of these regions of increased DOPC content.
Collapse
Affiliation(s)
- Amanda Musgrove
- AMPEL, Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Dan Bizzotto
- AMPEL, Department of Chemistry, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
30
|
Madrid E, Horswell SL. Effect of Deuteration on Phase Behavior of Supported Phospholipid Bilayers: A Spectroelectrochemical Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12544-51. [PMID: 26536482 DOI: 10.1021/acs.langmuir.5b02765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Differences in molecular organization of two sides of a chemically symmetric, planar bilayer supported on a Au(111) substrate have been monitored with charge density measurements and in situ polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Isotopic substitution of the hydrogen atoms in the hydrocarbon chains with deuterium atoms in one monolayer was employed to allow the monitoring of C-H vibrations from that monolayer alone. Charge density measurements of bilayers formed from dimyristoylphosphatidylethanolamine (DMPE) showed that the effect of placing the deuterated layer next to the substrate or electrolyte had little impact on the electrical barrier properties. In situ PM-IRRAS studies revealed that the structure of the two monolayers was the same at negative potentials, where the bilayer is separated from the Au substrate, but different at more positive potentials or small charge densities, where the bilayer is expected to be directly adsorbed on the Au surface. Thus, the differences observed for the related molecule dimyristoylphosphatidylcholine (DMPC) persist in planar structures, although to a lesser extent. A small but observable variation in the tilt angle was also apparent in the spectra of both isotopically asymmetric DMPE bilayers during the electrochemical phase transition. The fact that this effect was not previously observed for hydrogenous bilayers means that the dynamic behavior of deuterated DMPE and/or of bilayers composed of different monolayers is different from that of hydrogenous DMPE bilayers. These results have implications for future studies in which isotopic substitution is used to extract selectively information from one layer or component of lipid bilayers in spectroscopic or neutron measurements.
Collapse
Affiliation(s)
- Elena Madrid
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| | - Sarah L Horswell
- School of Chemistry, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
31
|
Bilayer membrane interactions with nanofabricated scaffolds. Chem Phys Lipids 2015; 192:75-86. [DOI: 10.1016/j.chemphyslip.2015.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/16/2015] [Accepted: 07/25/2015] [Indexed: 01/17/2023]
|
32
|
Pawłowski J, Juhaniewicz J, Güzeloğlu A, Sęk S. Mechanism of Lipid Vesicles Spreading and Bilayer Formation on a Au(111) Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11012-9. [PMID: 26010469 DOI: 10.1021/acs.langmuir.5b01331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Spreading of small unilamellar vesicles on solid surfaces is one of the most common ways to obtain supported lipid bilayers. Although the method has been used successfully for many years, the details of this process are still the subject of intense debate. Particularly controversial is the mechanism of bilayer formation on metallic surfaces like gold. In this work, we have employed scanning probe microscopy techniques to evaluate the details of lipid vesicles spreading and formation of the lipid bilayer on a Au(111) surface in a phosphate-buffered saline solution. Nanoscale imaging revealed that the mechanism of this process differs significantly from that usually assumed for hydrophilic surfaces such as mica, glass, and silicon oxide. Formation of the bilayer on gold involves several steps. Initially, the vesicles accumulate on a gold surface and release lipid molecules that adsorb on a Au(111) surface, giving rise to the appearance of highly ordered stripelike domains. The latter serve as a template for the buildup of a hemimicellar film, which contributes to the increased hydrophilicity of the external surface and facilitates further adsorption and rupture of the vesicles. As a result, the bilayer is spread over a hemimicellar film, and then it is followed by slow fusion between coupled layers leading to formation of a single bilayer supported on a gold surface. We believe that the results presented in this work may provide some new insights into the area of research related to supported lipid bilayers.
Collapse
Affiliation(s)
- Jan Pawłowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Joanna Juhaniewicz
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Alişan Güzeloğlu
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Sławomir Sęk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
33
|
Goreham RV, Thompson VC, Samura Y, Gibson CT, Shapter JG, Köper I. Interaction of silver nanoparticles with tethered bilayer lipid membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5868-5874. [PMID: 25950498 DOI: 10.1021/acs.langmuir.5b00586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Silver nanoparticles are well-known for their antibacterial properties. However, the detailed mechanism describing the interaction between the nanoparticles and a cell membrane is not fully understood, which can impede the use of the particles in biomedical applications. Here, a tethered bilayer lipid membrane has been used as a model system to mimic a natural membrane and to study the effect of exposure to small silver nanoparticles with diameters of about 2 nm. The solid supported membrane architecture allowed for the application of surface analytical techniques such as electrochemical impedance spectroscopy and atomic force microscopy. Exposure of the membrane to solutions of the silver nanoparticles led to a small but completely reversible perturbation of the lipid bilayer.
Collapse
Affiliation(s)
- Renee V Goreham
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Vanessa C Thompson
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Yuya Samura
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Christopher T Gibson
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Joseph G Shapter
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| | - Ingo Köper
- Flinders Centre for NanoScale Science and Technology and School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, Australia 5042
| |
Collapse
|
34
|
Peng PY, Chiang PC, Chao L. Mobile lipid bilayers on gold surfaces through structure-induced lipid vesicle rupture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3904-3911. [PMID: 25746237 DOI: 10.1021/la504532a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Forming fluid supported lipid bilayers (SLBs) on a gold surface can enable various lipid-membrane-associated biomolecular interactions to be investigated by several surface sensing techniques, such as surface plasmon resonance and scanning tunneling microscopy. However, forming fluid SLBs on a gold surface through lipid vesicle deposition continues to pose a challenge. In this study, we constructed nanograting structures on a gold surface to induce lipid vesicle rupture for forming a mobile layer of SLBs. Observations based on fluorescence recovery after photobleaching showed that SLBs on the prepared grating supports had some fluidity, while SLBs on the planar support had no fluidity. The anisotropic fluorescence intensity recovery shape changes observed in the SLBs on the grating support suggested that a second layer of SLBs partially formed on top of the first layer in contact with the gold surface and extended along the grating structure. Comparisons of the relative amounts of second bilayer and the fluorescence recovery fractions on supports with various grating edge densities suggested that the second layer formed at the edge regions and that the coverage ratio was directly proportional to the grating edge density. All of these results showed that the grating edges could serve as vesicle-rupture-inducing sites for the formation of a mobile second SLB on a gold surface. The formation of the second layer of SLBs at the edge regions but not in the flat regions enabled us to determine the second layer locations and provided us with an opportunity to pattern mobile lipid bilayers on gold surfaces by controlling the edge locations.
Collapse
Affiliation(s)
- Po-Yu Peng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Po-Chieh Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Ling Chao
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
35
|
Atomic Force Microscopy and Electrochemical Studies of Melittin Action on Lipid Bilayers Supported on Gold Electrodes. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.10.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Marquês JT, Antunes CA, Santos FC, de Almeida RF. Biomembrane Organization and Function. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Marquês JT, Viana AS, de Almeida RFM. A biomimetic platform to study the interactions of bioelectroactive molecules with lipid nanodomains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:12627-12637. [PMID: 25267380 DOI: 10.1021/la503086a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, we developed a biomimetic platform where the study of membrane associated redox processes and high-resolution imaging of lipid nanodomains can be both performed, based on a new functional gold modification, l-cysteine self-assembled monolayer. This monolayer proved to be ideal for the preparation of defect-free planar supported lipid bilayers (SLBs) where nanodomains with height difference of ∼1.5 nm are clearly resolved by atomic force microscopy. Single and multicomponent lipid compositions were used, leading to the formation of different phases and domains mimicking the lateral organization of cellular membranes, and in all cases stable and continuous bilayers were obtained. These platforms were tested toward the interaction with bioelectroactive molecules, the antioxidant quercetin, and the hormone epinephrine. Despite the weak interaction detected between epinephrine and lipid bilayers, our biomimetic interface was able to sense the redox process of membrane-bound epinephrine, obtain its surface concentration (9.36 × 10(-11) mol/cm(2) for a fluid bilayer), and estimate a mole fraction membrane/water partition coefficient (Kp) from cyclic voltammetric measurements (1.13 × 10(4) for a fluid phase membrane). This Kp could be used to quantitatively describe the minute changes observed in the photophysical properties of epinephrine intrinsic fluorescence upon its interaction with liposome suspensions. Moreover, we showed that the lipid membrane stabilizes epinephrine structure, preventing its oxidation, which occurs in neutral aqueous solution, and that epinephrine partition and mobility in membranes depends on lipid phase, expanding our knowledge on hormone membrane interactions.
Collapse
Affiliation(s)
- Joaquim T Marquês
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa , Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | |
Collapse
|
38
|
Ramkaran M, Badia A. Gel-to-Fluid Phase Transformations in Solid-Supported Phospholipid Bilayers Assembled by the Langmuir–Blodgett Technique: Effect of the Langmuir Monolayer Phase State and Molecular Density. J Phys Chem B 2014; 118:9708-21. [DOI: 10.1021/jp504092b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mohini Ramkaran
- Department of Chemistry,
FRQNT Centre for Self-Assembled Chemical Structures, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| | - Antonella Badia
- Department of Chemistry,
FRQNT Centre for Self-Assembled Chemical Structures, Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
39
|
|
40
|
Vakurov A, Galluzzi M, Podestà A, Gamper N, Nelson AL, Connell SDA. Direct characterization of fluid lipid assemblies on mercury in electric fields. ACS NANO 2014; 8:3242-3250. [PMID: 24625246 DOI: 10.1021/nn4037267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phospholipid monolayers on mercury (Hg) surfaces have received substantial and extensive scientific interest not only because of their use as a biomembrane model but also for their application as a successful toxicity-sensing element. The monolayers show characteristic and very reproducible phase transitions manifest as consecutive voltammetric peaks in response to applied transverse electric fields. Unfortunately, apart from the results of simulation studies, there is a lack of data on the lipid phase structures to help interpret these voltammetric peaks. In this paper we report on the direct measurement of the structural changes underlying the phase transitions of phospholipid layers of dioleoyl phosphatidylcholine (DOPC) at electrified Hg surfaces using atomic force microscopy force-distance techniques. These direct measurements enable a description of the following structural changes in fluid lipid assemblies on a liquid electrode within an increasing transverse electric field. At about -1.0 V (vs Ag/AgCl) a field-facilitated ingress of ions and water into the monolayer results in a phase transition to a structured 2D emulsion. This is followed by a further phase transition at more negative potentials involving the readsorption of bilayer patches. At stronger values of field the bilayer patches form semivesicles, which subsequently collapse to form a monolayer of uncertain composition at very negative potentials. The observation that a monolayer on Hg converts to a bilayer by increasing the applied potential has allowed techniques to be developed for preparing and characterizing a near-continuous DOPC bilayer on Hg in an applied potential window within -1.0 and -1.4 V (vs Ag/AgCl).
Collapse
|
41
|
Lipid bilayers supported on bare and modified gold – Formation, characterization and relevance of lipid rafts. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Casford MTL, Ge A, Kett PJN, Ye S, Davies PB. The Structure of Lipid Bilayers Adsorbed on Activated Carboxy-Terminated Monolayers Investigated by Sum Frequency Generation Spectroscopy. J Phys Chem B 2014; 118:3335-45. [DOI: 10.1021/jp410401z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael T. L. Casford
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW United Kingdom
| | - Aimin Ge
- Catalysis
Research Center, Hokkaido University, Sapporo, 001-0021 Japan
| | - Peter J. N. Kett
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW United Kingdom
| | - Shen Ye
- Catalysis
Research Center, Hokkaido University, Sapporo, 001-0021 Japan
| | - Paul B. Davies
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW United Kingdom
| |
Collapse
|
43
|
Uchida T, Osawa M, Lipkowski J. SEIRAS studies of water structure at the gold electrode surface in the presence of supported lipid bilayer. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.10.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Li Z, Tang Y, Zhang L, Wu J. Label-free study of the function of ion channel protein on a microfluidic optical sensor integrated with artificial cell membrane. LAB ON A CHIP 2014; 14:333-41. [PMID: 24232219 DOI: 10.1039/c3lc50937k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A label-free optical sensor was constructed by integrating pH sensing material and supported phospholipid bilayers (SPBs) in a microfluidic chip. The pH sensing material was composed of a double layer structure consisting of chitosan hydrogel and electrochemically etched porous silicon. The pH change in the microchip could induce a reversible swelling of the chitosan hydrogel layer and consequently caused a shift in effective optical thickness (EOT) of the double layer, which could be observed by Fourier transformed reflectometric interference spectroscopy (FT-RIS). After phospholipid bilayers (PLBs) were self-assembled on the sensing layer, the EOT almost remained constant during the cycling of pH from 7.4 to 6.2, indicating the blockage of H(+) translocation by the PLBs. For studying the behavior of ion channel protein, gramicidin A, a typical ion channel protein, was inserted in the SPBs for mimicking the ion transportation function of cell membrane. Due to the H(+) transportation capability of gramicidin A, the optical response to pH change could partially recover. In the presence of Ca(2+), the pore of the ion channel protein was blocked, causing a significant decrease in the EOT response upon pH change. The bio-functionalized microfluidic sensor fabricated in this work will provide a reliable platform for studying the function of ion channel protein, which is an important class of drug targets.
Collapse
Affiliation(s)
- Zhen Li
- Institute of Microanalytical System, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| | | | | | | |
Collapse
|
45
|
Biomimetic Membrane Supported at a Metal Electrode Surface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00001-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
46
|
Application of Infrared Spectroscopy for Structural Analysis of Planar Lipid Bilayers Under Electrochemical Control. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-411515-6.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
47
|
Su Z, Jiang Y, Velázquez-Manzanares M, Jay Leitch J, Kycia A, Lipkowski J. Electrochemical and PM-IRRAS studies of floating lipid bilayers assembled at the Au(111) electrode pre-modified with a hydrophilic monolayer. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
|
49
|
Mårtensson C, Agmo Hernández V. Ubiquinone-10 in gold-immobilized lipid membrane structures acts as a sensor for acetylcholine and other tetraalkylammonium cations. Bioelectrochemistry 2012; 88:171-80. [PMID: 22542468 DOI: 10.1016/j.bioelechem.2012.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/13/2012] [Accepted: 03/30/2012] [Indexed: 01/02/2023]
Abstract
It is reported that the reduction of ubiquinone incorporated into supported lipid bilayers and into immobilized liposome layers on gold electrodes is kinetically and thermodynamically enhanced by the presence of acetylcholine and tetrabutylammonium (TBA(+)) in solution. The reduction peak and the mid-peak potentials of the redox reactions, determined by cyclic voltammetry, are displaced towards more positive potentials by approximately 500 and 250mV, respectively, in the case of TBA(+); and by approximately 750 and 530mV, respectively, in the case of acetylcholine. The intensity of the signal varies with the cation concentration, allowing for quantitative determinations in the millimolar range. It is proposed that the enhanced reduction of ubiquinone arises from the formation of tetraalkylammonium cation-ubiquinone radical anion ion-pairs. Electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) measurements confirmed that the potential shift and the intensity of the redox signal are coupled with the adsorption of the tetraalkylammonium cations on the lipid membrane. The Langmuir adsorption equilibrium constant (K) of TBA(+) on lipid membranes at physiological pH is determined. In supported lipid bilayers K=440.7±160M(-1), while in an immobilized liposome layer K=35.53±3.53M(-1).
Collapse
Affiliation(s)
- Christoffer Mårtensson
- Department of Physical and Analytical Chemistry, Uppsala University, Husargatan 3, Box 579, 75123, Uppsala, Sweden.
| | | |
Collapse
|
50
|
Matyszewska D, Sek S, Bilewicz R. Electrochemical and microscopic characteristics of thiolipid layers as simple models of cell membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5182-5189. [PMID: 22352744 DOI: 10.1021/la2044027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The thiolipid 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) has been proposed as a component of a simple model of cell membranes, which can be used for the studies of the interactions with drugs and other biologically important species. Depending on the deposition technique, Langmuir-Blodgett method or self-assembly, the obtained model membranes exhibit differences in the organization and properties, as shown by electrochemical techniques. The surface concentration and area per molecule of DPPTE model membranes were determined using chronocoulometry, which gives more reliable results than the widely used reductive desorption method. The mean surface concentration of self-assembled DPPTE monolayer deposited on gold electrode is equal to 4.52 × 10(-10) mol·cm(-2), which corresponds to the area per molecule of 36.7 Å(2). Moreover, model membranes prepared by means of LB method tend to be less compact than self-assembled DPPTE monolayers. Adsorption/desorption behavior of the DPPTE molecules on Au(111) was also visualized by EC-STM method. At the beginning of the process at negative potentials, the physisorbed molecules formed a flat-lying adlayer. Changing the potential in the positive direction resulted in the formation of Au-S bonds, and as a consequence the upstanding phase with higher packing density was observed. The thickness of such a layer determined by atomic force microscopy method is equal to 2.08 nm and corresponds to that of a monomolecular film.
Collapse
|