1
|
Spahn JE, Zhang F, Smyth HDC. Mixing of dry powders for inhalation: A review. Int J Pharm 2022; 619:121736. [PMID: 35405281 DOI: 10.1016/j.ijpharm.2022.121736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
The process of solids mixing is applied across a considerable range of industries. Pharmaceutical science is one of those industries that utilizes solids mixing extensively. Specifically, solids mixing as a key factor in the preparation of dry powder inhalers using the ordered mixing process will be discussed here. This review opens with a history of dry powder mixing theory, continues to ordered mixing in the preparation for dry powder inhalers, details key interparticulate interactions, explains formulation components for dry powder blends, and finally discusses different types of mixers used in the production of dry powder blends for inhalation. Lastly, the authors offer some suggestions for future work on this topic.
Collapse
Affiliation(s)
- Jamie E Spahn
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Feng Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA
| | - Hugh D C Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, Austin, TX, USA.
| |
Collapse
|
2
|
Thalberg K, Papathanasiou F, Fransson M, Nicholas M. Controlling the performance of adhesive mixtures for inhalation using mixing energy. Int J Pharm 2021; 592:120055. [PMID: 33176199 DOI: 10.1016/j.ijpharm.2020.120055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
Abstract
A concept of mixing energy, ME, has been developed and applied to blending of adhesive mixtures for inhalation in a high shear blender. Six different systems were investigated, four of which included a coating agent. For blends containing a coating agent, it is shown that the applied ME is key to the control of two important functional mechanisms: i) coating of the carrier by the coating agent, and ii) the dispersibility of the active pharmaceutical ingredient (API). The mass of the carrier was identified to be the mass which is relevant to the forces acting during mixing. The dispersibility in terms of the fine particle fraction (FPF) can be expressed as the product of two exponentials which both are functions of ME. The first factor accounts for the initial increase in FPF, while the second accounts for the decrease observed at extensive mixing. For adhesive mixtures without a coating agent, a similar decrease in FPF is observed when high forces are applied during mixing. Mechanistic interpretation of the behavior is provided.
Collapse
Affiliation(s)
- Kyrre Thalberg
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden.
| | - Foteini Papathanasiou
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - Magnus Fransson
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| | - Mark Nicholas
- Inhalation Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca Gothenburg, Sweden
| |
Collapse
|
3
|
D'Angelo A, Reading M, Antonijevic M. A novel micro-photogrammetric instrument for visualizing in 3D small objects applied to the quantitative study of the dissolution behavior of a pharmaceutical dosage form. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:124101. [PMID: 31893811 DOI: 10.1063/1.5135378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The work presented here proposes an innovative approach to 3D chemical mapping of solid formulations by microphotogrammetry. We present details of a novel microphotogrammetry apparatus and the first results for the application of photogrammetry to the dissolution analysis of solid pharmaceutical dosage forms. Unlike other forms of optical imaging, microphotogrammetry allows a true 3D model to be constructed that includes direct observation of the sides of the sample rather than only top-down topographic imaging. Volume and structural changes are assessed quantitatively and related to chemical analysis by high performance liquid chromatography. The recently introduced method of chemical identification by dissolution analysis, or chemical imaging by dissolution analysis, is employed for the first time to obtain tomographic images of the dissolution process.
Collapse
Affiliation(s)
- Alessandra D'Angelo
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, United Kingdom
| | - Mike Reading
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, United Kingdom
| | - Milan Antonijevic
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, United Kingdom
| |
Collapse
|
4
|
Thieulin C, Pailler-Mattei C, Abdouni A, Djaghloul M, Zahouani H. Mechanical and topographical anisotropy for human skin: Ageing effect. J Mech Behav Biomed Mater 2019; 103:103551. [PMID: 32090946 DOI: 10.1016/j.jmbbm.2019.103551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 11/25/2022]
Abstract
Skin ageing is a complex process which strongly impacts the three skin layers (epidermis, dermis, hypodermis) both functionally and structurally. Of particular interest are the effects of ageing on the dermis biomechanics and how this evolution can impact the reorganization of the cutaneous lines which compose the skin relief. It has been argued that the skin relief could reflect the underlying mechanical condition of the skin. Nevertheless, there is not yet conclusive evidence of the existence of such a link. This work aims at experimentally studying, in vivo, the correlation between the anisotropy of human skin biomechanics and skin topography as a function of ageing. The study was conducted on a panel of 20 men divided into 4 groups according to age (from 23 to 64 years old). The measurements were performed on the right volar forearm of each volunteer. For the biomechanical measurements, an innovative contactless bio-rheometer was developed. It allows access to the mechanical behaviour of the skin in several directions. This device generates an air blast without any contact with the skin area and measures its dynamic response (evaluation of speed of wave propagation) with a linear laser. Moreover, a turntable enables measurements to be made in different angular directions. To analyse the topography of skin relief, we proposed a new method, based on watershed and linear radon transformations. First, an optical analysis of a replica of the skin relief is performed. Then, from the skin image obtained, the density of the cutaneous lines is calculated in different directions using watersheld transformation. The orientation of the detected lines is then estimated with an algorithm based on linear radon transformation. The results observed show a good correlation between the skin relief and the mechanical properties of the skin all along the ageing process. For both topography and mechanical properties, there is a transition from an almost isotropic mechanical behaviour to an anisotropic one as a function of ageing process. Thus, we might conclude that the skin relief reflects the underlying mechanical conditions of the skin.
Collapse
Affiliation(s)
- C Thieulin
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR-CNRS 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, Ecully, France.
| | - C Pailler-Mattei
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR-CNRS 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, Ecully, France; Université de Lyon, Faculté de Pharmacie-ISPB, Laboratoire de Biophysique, Lyon, France
| | - A Abdouni
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR-CNRS 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, Ecully, France
| | - M Djaghloul
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR-CNRS 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, Ecully, France
| | - H Zahouani
- Laboratoire de Tribologie et Dynamique des Systèmes, UMR-CNRS 5513, Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, Ecully, France
| |
Collapse
|
5
|
Chow MYT, Qiu Y, Liao Q, Kwok PCL, Chow SF, Chan HK, Lam JKW. High siRNA loading powder for inhalation prepared by co-spray drying with human serum albumin. Int J Pharm 2019; 572:118818. [PMID: 31678379 DOI: 10.1016/j.ijpharm.2019.118818] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/25/2019] [Accepted: 10/20/2019] [Indexed: 01/09/2023]
Abstract
The development of small interfering RNA (siRNA) formulation for pulmonary delivery is a key to the clinical translation of siRNA therapeutics for the treatment of respiratory diseases. Most inhalable siRNA powder formulations published to date were limited by the siRNA content which was often too low to be clinically relevant. This study aimed to prepare inhalable siRNA powder formulations that contained high siRNA loading of over 6% w/w by spray drying, with human serum albumin (HSA) investigated as a dispersion enhancer to improve the aerosol performance. The effect of siRNA, HSA and solute concentrations in the formulations were evaluated systemically using factorial analyses. All the spray dried siRNA powders exhibited excellent aerosol performance with fine particle fraction (FPF) consistently over 50% in all the formulations. An enrichment of HSA on the particle surface was observed. Surface corrugation was more prominent as HSA composition increased. Importantly, the bioactivity of siRNA was successfully preserved upon spray drying as demonstrated in the in vitro transfection study, and up to 78% of intact siRNA retained in the spray dried powder. Overall, HSA is an effective dispersion enhancer and spray drying is an appropriate technique to produce inhalable dry powder with high siRNA loading for further investigation.
Collapse
Affiliation(s)
- Michael Y T Chow
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong; Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Yingshan Qiu
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Qiuying Liao
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Philip C L Kwok
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, Pharmacy and Bank Building A15, The University of Sydney, NSW 2006, Australia
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
6
|
Nguon O, Lagugné-Labarthet F, Brandys FA, Li J, Gillies ER. Microencapsulation by in situ Polymerization of Amino Resins. POLYM REV 2017. [DOI: 10.1080/15583724.2017.1364765] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Olivier Nguon
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
- 3M Canada Company, London, Ontario, Canada
| | | | | | - Jian Li
- 3M Canada Company, London, Ontario, Canada
| | - Elizabeth R. Gillies
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
Abdouni A, Djaghloul M, Thieulin C, Vargiolu R, Pailler-Mattei C, Zahouani H. Biophysical properties of the human finger for touch comprehension: influences of ageing and gender. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170321. [PMID: 28878982 PMCID: PMC5579097 DOI: 10.1098/rsos.170321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/10/2017] [Indexed: 05/19/2023]
Abstract
The human finger plays an extremely important role in tactile perception, but little is known about how age and gender affect its biophysical properties and their role in tactile perception. We combined studies on contact characteristics, mechanical properties and surface topography to understand age and gender effects on the human finger. The values obtained regarding contact characteristics (i.e. adhesive force) were significantly higher for women than for men. As for mechanical properties (i.e. Young's modulus E), a significant and positive correlation with age was observed and found to be higher for women. A positive correlation was observed between age and the arithmetic mean of surface roughness for men. However, an inverse age effect was highlighted for women. The age and gender effects obtained have never been reported previously in the literature. These results open new perspectives for understanding the weakening of tactile perception across ages and how it differs between men and women.
Collapse
Affiliation(s)
- A. Abdouni
- Laboratoire de Tribologie et Dynamique des Systèmes-LTDS UMR-CNRS 5513, Université de Lyon, ECL-ENISE, 69134 Ecully, France
- Author for correspondence: A. Abdouni e-mail:
| | - M. Djaghloul
- Laboratoire de Tribologie et Dynamique des Systèmes-LTDS UMR-CNRS 5513, Université de Lyon, ECL-ENISE, 69134 Ecully, France
| | - C. Thieulin
- Laboratoire de Tribologie et Dynamique des Systèmes-LTDS UMR-CNRS 5513, Université de Lyon, ECL-ENISE, 69134 Ecully, France
| | - R. Vargiolu
- Laboratoire de Tribologie et Dynamique des Systèmes-LTDS UMR-CNRS 5513, Université de Lyon, ECL-ENISE, 69134 Ecully, France
| | - C. Pailler-Mattei
- Laboratoire de Tribologie et Dynamique des Systèmes-LTDS UMR-CNRS 5513, Université de Lyon, ECL-ENISE, 69134 Ecully, France
- Laboratoire de Biophysique, Faculté de Pharmacie-ISPB, Université Lyon 1, 69008 Lyon, France
| | - H. Zahouani
- Laboratoire de Tribologie et Dynamique des Systèmes-LTDS UMR-CNRS 5513, Université de Lyon, ECL-ENISE, 69134 Ecully, France
| |
Collapse
|
8
|
Analysis of cohesion forces between monodisperse microparticles with rough surfaces. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Vakili H, Nyman JO, Genina N, Preis M, Sandler N. Application of a colorimetric technique in quality control for printed pediatric orodispersible drug delivery systems containing propranolol hydrochloride. Int J Pharm 2016; 511:606-618. [DOI: 10.1016/j.ijpharm.2016.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/04/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
|
10
|
Pailler-Mattei C, Debret R, Vargiolu R, Sommer P, Zahouani H. In vivo skin biophysical behaviour and surface topography as a function of ageing. J Mech Behav Biomed Mater 2013; 28:474-83. [DOI: 10.1016/j.jmbbm.2013.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 03/19/2013] [Accepted: 04/09/2013] [Indexed: 12/22/2022]
|
11
|
|
12
|
Advanced microscopy techniques to assess solid-state properties of inhalation medicines. Adv Drug Deliv Rev 2012; 64:369-82. [PMID: 22120022 DOI: 10.1016/j.addr.2011.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/07/2011] [Accepted: 11/11/2011] [Indexed: 11/22/2022]
Abstract
Efficient control and characterisation of the physico-chemical properties of active pharmaceutical ingredients (APIs) and excipients for orally inhaled drug products (OIDPs) are critical to successful product development. Control and reduction of risk require the introduction of a material science based approach to product development and the use of advanced analytical tools in understanding how the solid-state properties of the input materials influence structure and product functionality. The key issues to be addressed, at a microscopic scale, are understanding how the critical quality attributes of input materials influence surface, interfacial and particulate interactions within OIDPs. This review offers an in-depth discussion on the use of advanced microscopy techniques in characterising of the solid-state properties of particulate materials for OIDPs. The review covers the fundamental principles of the techniques, instrumentation types, data interpretation and specific applications in relation to the product development of OIDPs.
Collapse
|
13
|
Lactose characteristics and the generation of the aerosol. Adv Drug Deliv Rev 2012; 64:233-56. [PMID: 21616107 DOI: 10.1016/j.addr.2011.05.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 04/27/2011] [Accepted: 05/06/2011] [Indexed: 11/23/2022]
Abstract
The delivery efficiency of dry-powder products for inhalation is dependent upon the drug formulation, the inhaler device, and the inhalation technique. Dry powder formulations are generally produced by mixing the micronised drug particles with larger carrier particles. These carrier particles are commonly lactose. The aerosol performance of a powder is highly dependent on the lactose characteristics, such as particle size distribution and shape and surface properties. Because lactose is the main component in these formulations, its selection is a crucial determinant of drug deposition into the lung, as interparticle forces may be affected by the carrier-particle properties. Therefore, the purpose of this article is to review the various grades of lactose, their production, and the methods of their characterisation. The origin of their adhesive and cohesive forces and their influence on aerosol generation are described, and the impact of the physicochemical properties of lactose on carrier-drug dispersion is discussed in detail.
Collapse
|
14
|
Yamasaki K, Kwok PCL, Fukushige K, Prud’homme RK, Chan HK. Enhanced dissolution of inhalable cyclosporine nano-matrix particles with mannitol as matrix former. Int J Pharm 2011; 420:34-42. [DOI: 10.1016/j.ijpharm.2011.08.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 11/27/2022]
|
15
|
Darbha GK, Schäfer T, Heberling F, Lüttge A, Fischer C. Retention of latex colloids on calcite as a function of surface roughness and topography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4743-4752. [PMID: 20201604 DOI: 10.1021/la9033595] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Adhesion of colloidal particles to mineral and rock surfaces is important for environmental and technological processes. Surface topography variations of mineral and rock surfaces at the submicrometer scale may play a significant role in colloid retention in the environment. Here, we present colloid deposition data on calcite as a function of submicrometer surface roughness based on surface data over a field of view of several square millimeters, sufficient to trace the pattern of common inhomogeneities on mineral surfaces. A freshly cleaved calcite crystal was reacted to produce a well-defined etch pit density of approximately 3.4 +/- 1.2 to 8.3 +/- 1.6 [10(-3) microm(-2)] and etch pit depth ranging from approximately 4 to 50 nm. This surface was exposed at the point of zero charge (PZC) of calcite to a colloidal suspension. We used a bimodal particle size distribution of nonfunctionalized polystyrene latex spheres with average diameters of 499 and 903 nm. Vertical scanning interferometry (VSI) was applied to quantify calcite surface topography variations as well as the retention of latex colloids. For both particle sizes, the experiments showed a positive correlation between the surface roughness (Rq) and the number of adsorbed particles. Etch pits were preferred sites for colloidal deposition in contrast to surface steps. The majority of adsorbed particles were trapped at etch pit walls compared to etch pit bottoms. Increasing pit density (D) and depth (d) resulted in an increase of colloidal retention. Deposition of smaller particles exceeded that of the larger-sized fraction of the bimodal system investigated here. Our results show that colloidal deposition at rough mineral and rock surfaces is an important geochemical process. The results about surface roughness dependent particle adsorption will foster the understanding and predictability of colloidal retention for a multitude of natural and technical processes.
Collapse
|
16
|
Philosof-Mazor L, Volinsky R, Jopp J, Blumberg P, Rapaport H, Marquez VE, Jelinek R. Lipid-Modulated Pharmacophore Nanorods Assembled at the Air/Water Interface. Chemphyschem 2009; 10:2615-9. [DOI: 10.1002/cphc.200900539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|