1
|
Fortenberry A, Mohammad SA, Werfel TA, Smith AE. Comparative Investigation of the Hydrolysis of Charge-Shifting Polymers Derived from an Azlactone-Based Polymer. Macromol Rapid Commun 2022; 43:e2200420. [PMID: 35820157 PMCID: PMC9780167 DOI: 10.1002/marc.202200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/28/2022] [Indexed: 12/25/2022]
Abstract
Poly 2-vinyl-4,4-dimethylazlactone (PVDMA) has received much attention as a "reactive platform" to prepare charge-shifting polycations via post-polymerization modification with tertiary amines that possess primary amine or hydroxyl reactive handles. Upon hydrolysis of the resulting amide or ester linkages, the polymers can undergo a gradual transition in net charge from cationic to anionic. Herein, a systematic investigation of the hydrolysis rate of PVDMA-derived charge-shifting polymers is described. PVDMA is modified with tertiary amines bearing either primary amine, hydroxyl, or thiol reactive handles. The resulting polymers possess tertiary amine side chains connected to the backbone via amide, ester, or thioester linkages. The hydrolysis rates of each PVDMA derivative are monitored at 25 and 50 °C at pH values of 5.5, 7.5, and 8.5, respectively. While the hydrolysis rate of the amide-functionalized PVDMA is negligible over the period investigated, the hydrolysis rates of the ester- and thioester-functionalized PVDMA increase with increasing temperature and pH. Interestingly, the hydrolysis rate of the thioester-functionalized PVDMA appears to be more rapid than the ester-functionalized PVDMA at all pH values and temperatures investigated. It is believed that these results can be utilized to inform the future preparation of PVDMA-based charge-shifting polymers for biomedical applications.
Collapse
Affiliation(s)
- Alex Fortenberry
- Department of Chemical Engineering, University of Mississippi, MS, USA
| | - Sk Arif Mohammad
- Department of Biomedical Engineering, University of Mississippi, MS, USA
| | - Thomas A. Werfel
- Department of Chemical Engineering, University of Mississippi, MS, USA
- Department of Biomedical Engineering, University of Mississippi, MS, USA
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Adam E. Smith
- Department of Chemical Engineering, University of Mississippi, MS, USA
- Department of Biomedical Engineering, University of Mississippi, MS, USA
| |
Collapse
|
2
|
Ho HT, Montembault V, Pascual S, Fontaine L, Gigmes D, Phan TNT. Well-defined amine-reactive polymethacrylates through organocatalyzed controlled radical polymerization. Polym Chem 2022. [DOI: 10.1039/d2py00873d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel alkyl iodide bearing an azlactone group was successfully employed as a reversible complex-mediated polymerization (RCMP) initiator for synthesizing for the first-time well-defined α-azlactone-terminated polymethacrylates (Đ < 1.30). The amine-scavenging ability of the resulting functional polymers was demonstrated by using benzylamine.
Collapse
Affiliation(s)
- Hien The Ho
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, France
| | - Véronique Montembault
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS– Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Sagrario Pascual
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS– Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Laurent Fontaine
- Institut des Molécules et Matériaux du Mans (IMMM) UMR 6283 CNRS– Le Mans Université, Av. O. Messiaen, 72085 Le Mans cedex 9, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, France
| | - Trang N. T. Phan
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille, France
| |
Collapse
|
3
|
Ścigalski F, Jędrzejewska B. Structural effect of oxazolone derivatives on the initiating abilities of dye-borate photoredox systems in radical polymerization under visible light. RSC Adv 2020; 10:21487-21494. [PMID: 35518722 PMCID: PMC9054382 DOI: 10.1039/d0ra02230f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Three photoinitiating systems based on new oxazolone derivatives have been developed and their performance in initiation of radical polymerization of acrylate monomers has been tested by differential scanning calorimetry. The absorption characteristics of the oxazol-5(4H)-ones is compatible with the emission characteristics of different light sources like diode pulse solid state lasers. Thus, the dyes were used as sensitizers which are photoreduced during a photochemical reaction in the presence of phenyltriethylborate salt. Results showed that the increase in the dimensionality of the molecule extends the range of light absorption and increases the efficiency of the photoinitiation process. The photoreduction of the oxazolone–borate complex was studied using steady-state and nanosecond laser flash photolysis. The dye singlet and triplet were found to be quenched by the electron donor via an electron transfer process. Rate constants for the quenching of the excited states were high and were found to depend on the dye structure. Three photoinitiating systems based on new oxazolone derivatives have been developed and their performance in initiation of radical polymerization of acrylate monomers has been tested by differential scanning calorimetry.![]()
Collapse
Affiliation(s)
- F. Ścigalski
- Faculty of Chemical Technology and Engineering
- UTP University of Science and Technology
- 85-326 Bydgoszcz
- Poland
| | - B. Jędrzejewska
- Faculty of Chemical Technology and Engineering
- UTP University of Science and Technology
- 85-326 Bydgoszcz
- Poland
| |
Collapse
|
4
|
Liebscher J, Teßmar J, Groll J. In Situ Polymer Analogue Generation of Azlactone Functions at Poly(oxazoline)s for Peptide Conjugation. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Julia Liebscher
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| | - Jörg Teßmar
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI) University of Würzburg Pleicherwall 2 97070 Würzburg Germany
| |
Collapse
|
5
|
Masigol M, Fattahi N, Barua N, Lokitz BS, Retterer ST, Platt TG, Hansen RR. Identification of Critical Surface Parameters Driving Lectin-Mediated Capture of Bacteria from Solution. Biomacromolecules 2019; 20:2852-2863. [PMID: 31150217 DOI: 10.1021/acs.biomac.9b00609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lectin-functional interfaces are useful for isolation of bacteria from solution because they are low-cost and allow nondestructive, reversible capture. This study provides a systematic investigation of physical and chemical surface parameters that influence bacteria capture over lectin-functionalized polymer interfaces and then applies these findings to construct surfaces with significantly enhanced bacteria capture. The designer block copolymer poly(glycidyl methacrylate)- block-poly(vinyldimethyl azlactone) was used as a lectin attachment layer, and lectin coupling into the polymer film through azlactone-lectin coupling reactions was first characterized. Here, experimental parameters including polymer areal chain density, lectin molecular weight, and lectin coupling buffer were systematically varied to identify parameters driving highest azlactone conversions and corresponding lectin surface densities. To introduce physical nanostructures into the attachment layer, nanopillar arrays (NPAs) of varied heights (300 and 2100 nm) were then used to provide an underlying surface template for the functional polymer layer. Capture of Escherichia coli on lectin-polymer surfaces coated over both flat and NPA surfaces was then investigated. For flat polymer interfaces, bacteria were detected on the surface after incubation at a solution concentration of 103 cfu/mL, and a corresponding detection limit of 1.7 × 103 cfu/mL was quantified. This detection limit was 1 order of magnitude lower than control lectin surfaces functionalized with standard, carbodiimide coupling chemistry. NPA surfaces containing 300 nm tall pillars further improved the detection limit to 2.1 × 102 cfu/mL, but also reduced the viability of captured cells. Finally, to investigate the impact of cell surface parameters on capture, we used Agrobacterium tumefaciens cells genetically modified to allow manipulation of exopolysaccharide adhesin production levels. Statistical analysis of surface capture levels revealed that lectin surface density was the primary factor driving capture, as opposed to exopolysaccharide adhesin expression. These findings emphasize the critical importance of the synthetic interface and the development of surfaces that combine high lectin densities with tailored physical features to drive high levels of capture. These insights will aid in design of biofunctional interfaces with physicochemical surface properties favorable for capture and isolation of bacteria cells from solutions.
Collapse
|
6
|
Qiao J, Liu Q, Wu H, Cai H, Qi L. Non-enzymatic detection of serum glucose using a fluorescent nanopolymer probe. Mikrochim Acta 2019; 186:366. [PMID: 31114937 DOI: 10.1007/s00604-019-3475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/29/2019] [Indexed: 01/05/2023]
Abstract
A fluorescent probe is described for the determination of serum glucose after hepatotoxin-induced liver injury. The probe is based on the use of a water-soluble polymer and has been prepared from a multi-functional azlactone polymer as the linker, amino boronic acid, and Alizarin Red as the signalling moiety. The excitation/emission peaks of the polymeric fluorescent probe are at 468/567 nm. Fluorescence is reduced on addition of glucose. Intensity drops linearly in the 0.1 mM to 14 mM glucose concentration range. The probe was applied to non-enzymatic detection of glucose in rat serum after CCl4-induced liver damage. Graphical abstract A polymer based fluorescent probe has been constructed and applied for non-enzymatic monitoring of serum glucose following hepatotoxin induced liver injury.
Collapse
Affiliation(s)
- Juan Qiao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China
| | - Qianrong Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Han Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huiwu Cai
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Li Qi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
7
|
Ferrand-Drake Del Castillo G, Koenig M, Müller M, Eichhorn KJ, Stamm M, Uhlmann P, Dahlin A. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3479-3489. [PMID: 30742441 DOI: 10.1021/acs.langmuir.9b00056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Catalysis by enzymes on surfaces has many applications. However, strategies for efficient enzyme immobilization with preserved activity are still in need of further development. In this work, we investigate polyelectrolyte brushes prepared by both grafting-to and grafting-from with the aim to achieve high catalytic activity. For comparison, self-assembled monolayers that bind enzymes with the same chemical interactions are included. We use the model enzyme glucose oxidase and two kinds of polymers: anionic poly(acrylic acid) and cationic poly(diethylamino)methyl methacrylate. Surface plasmon resonance and spectroscopic ellipsometry are used for accurate quantification of surface coverage. Besides binding more enzymes, the "3D-like" brush environment enhances the specific activity compared to immobilization on self-assembled monolayers. For grafting-from brushes, multilayers of enzymes were spontaneously and irreversibly immobilized without conjugation chemistry. When the pH was between the pI of the enzyme and the p Ka of the polymer, binding was considerable (thousands of ng/cm2 or up to 50% of the polymer mass), even at physiological ionic strength. However, binding was observed also when the brushes were neutrally charged. For acidic brushes (both grafting-to and grafting-from), the activity was higher for covalent immobilization compared to noncovalent. For grafting-from brushes, a fully preserved specific activity compared to enzymes in the liquid bulk was achieved, both with covalent (acidic brush) and noncovalent (basic brush) immobilization. Catalytic activity of hundreds of pmol cm-2 s-1 was easily obtained for polybasic brushes only tens of nanometers in dry thickness. This study provides new insights for designing functional interfaces based on enzymatic catalysis.
Collapse
Affiliation(s)
| | - Meike Koenig
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Klaus-Jochen Eichhorn
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Technische Universität Dresden, Physical Chemistry of Polymer Materials, Dresden , Germany
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden , Hohe Str. 6 , D-01069 Dresden , Germany
- Department of Chemistry , University of Nebraska-Lincoln , Hamilton Hall, 639 North 12th Street , Lincoln , Nebraska 68588 , United States
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering , Chalmers University of Technology , 41296 Göteborg , Sweden
| |
Collapse
|
8
|
Marschelke C, Müller M, Köpke D, Matura A, Sallat M, Synytska A. Hairy Particles with Immobilized Enzymes: Impact of Particle Topology on the Catalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1645-1654. [PMID: 30525381 DOI: 10.1021/acsami.8b17703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enzymes are described as ideal green biocatalysts because they are highly specific and selective. However, their practical application is hampered because of the low stability and missing reusability of free enzymes. One method to overcome these problems is the immobilization of enzymes onto carriers. Although numerous publications discuss different immobilization strategies, optimization of these carriers for the highest enzyme activity and loading capacity, enzyme selectivity, reusability, and reactor system configuration still remains a challenging task. In this contribution, we aim to address the role of the core-shell particle design with respect to their geometry as well as the polymer shell thickness on the immobilization of biomolecules. We discovered that spherical particles with a core diameter of 200 nm and intermediate shell thickness as well as platelet-like particles exhibited excellent results with a maximum immobilization yield of laccase from Trametes versicolor of up to 92% and an activity on the carrier material of 5.722 U/(g particle). Especially, the platelet-like particles offered a scalable and convenient alternative for the immobilization of laccase. Circular dichroism measurements proved that the secondary structure of the enzyme is not impaired by immobilization onto all kinds of carrier particles. Moreover, the immobilized laccase was successfully used for the decolorization of Cibacron blue P-3R in up to 18 cycles. Finally, particle separation was achieved via citrate-induced flocculation within 10 min. This detailed study contributes to the understanding of rational design of catalytically active hybrid materials and their effective performance at interfaces for applications in textile industry and environmental technologies.
Collapse
Affiliation(s)
- Claudia Marschelke
- Leibniz Institute of Polymer Research Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
| | | | | | - Marco Sallat
- Sächsisches Textilforschungsinstitut e.V. , Annaberger Straße 240 , 09125 Chemnitz , Germany
| | - Alla Synytska
- Leibniz Institute of Polymer Research Dresden e.V. , Hohe Str. 6 , 01069 Dresden , Germany
| |
Collapse
|
9
|
Rosenthal A, Rauch S, Eichhorn KJ, Stamm M, Uhlmann P. Enzyme immobilization on protein-resistant PNIPAAm brushes: impact of biotin linker length on enzyme amount and catalytic activity. Colloids Surf B Biointerfaces 2018; 171:351-357. [PMID: 30056296 DOI: 10.1016/j.colsurfb.2018.07.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 11/16/2022]
Abstract
Thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes with terminal click functionality can be used to selectively immobilize enzymes. Exploiting their inherent protein-repellent and thus non-fouling properties, surfaces with specific bioactivity can be created in this way. This report describes the functionalization of alkyne-PNIPAAm brushes with two biotin linkers of different poly(ethylene glycol) (PEG) spacer length via click chemistry and the subsequent immobilization of streptavidin-conjugated horseradish peroxidase (SA-HRP) by the strong interaction between biotin and streptavidin. Spectroscopic ellipsometry is used to quantify the biotin and the SA-HRP amount on the PNIPAAm brushes. Enzyme activities are determined by UV‑vis spectroscopy. A better accessibility to the alkyne-functionalized chain ends for the short biotin-PEG3 linker leads to a higher biotin amount on these PNIPAAm brushes, which in turn results in higher SA‑HRP amounts on biotin-PEG3-modified brushes in the swollen (20 °C) and collapsed state (37 °C) compared to biotin-PEG23-modified ones. For both linkers, an increased immobilization temperature leads to higher SA-HRP amounts due to an enhanced reaction kinetics and mobility. All immobilized SA-HRP amounts are in range of 81-98% monolayer coverage, except for SA-HRP immobilized on biotin-PEG23-modified PNIPAAm brushes at 20 °C, exhibiting only 43% monolayer coverage. A high mobility of the biotin linker combined with a low surface loading of SA-HRP is found to be beneficial for the activity of SA-HRP. Hence, the highest specific activity as measured by HRP-catalyzed 3,3´,5,5´‑tetramethylbenzidine (TMB) oxidation is found for a low SA-HRP amount on biotin-PEG23-modified brushes.
Collapse
Affiliation(s)
- Alice Rosenthal
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany; Technische Universität Dresden, Physical Chemistry of Polymeric Materials, 01062 Dresden, Germany
| | - Sebastian Rauch
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | | | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany; Technische Universität Dresden, Physical Chemistry of Polymeric Materials, 01062 Dresden, Germany
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany; Department of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, Lincoln, NE, 68588, United States.
| |
Collapse
|
10
|
Masigol M, Barua N, Lokitz BS, Hansen RR. Fabricating Reactive Surfaces with Brush-like and Crosslinked Films of Azlactone-Functionalized Block Co-Polymers. J Vis Exp 2018. [PMID: 30010667 DOI: 10.3791/57562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this paper, fabrication methods that generate novel surfaces using the azlactone-based block co-polymer, poly (glycidyl methacrylate)-block-poly (vinyl dimethyl azlactone) (PGMA-b-PVDMA), are presented. Due to the high reactivity of azlactone groups towards amine, thiol, and hydroxyl groups, PGMA-b-PVDMA surfaces can be modified with secondary molecules to create chemically or biologically functionalized interfaces for a variety of applications. Previous reports of patterned PGMA-b-PVDMA interfaces have used traditional top-down patterning techniques that generate non-uniform films and poorly controlled background chemistries. Here, we describe customized patterning techniques that enable precise deposition of highly uniform PGMA-b-PVDMA films in backgrounds that are chemically inert or that have biomolecule-repellent properties. Importantly, these methods are designed to deposit PGMA-b-PVDMA films in a manner that completely preserves azlactone functionality through each processing step. Patterned films show well-controlled thicknesses that correspond to polymer brushes (~90 nm) or to highly crosslinked structures (~1-10 μm). Brush patterns are generated using either the parylene lift-off or interface directed assembly methods described and are useful for precise modulation of overall chemical surface reactivity by adjusting either the PGMA-b-PVDMA pattern density or the length of the VDMA block. In contrast, the thick, crosslinked PGMA-b-PVDMA patterns are obtained using a customized micro-contact printing technique and offer the benefit of higher loading or capture of secondary material due to higher surface area to volume ratios. Detailed experimental steps, critical film characterizations, and trouble-shooting guides for each fabrication method are discussed.
Collapse
Affiliation(s)
| | - Niloy Barua
- Chemical Engineering Department, Kansas State University
| | - Bradley S Lokitz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory
| | - Ryan R Hansen
- Chemical Engineering Department, Kansas State University;
| |
Collapse
|
11
|
Sun H, Hong Y, Xi Y, Zou Y, Gao J, Du J. Synthesis, Self-Assembly, and Biomedical Applications of Antimicrobial Peptide-Polymer Conjugates. Biomacromolecules 2018. [PMID: 29539262 DOI: 10.1021/acs.biomac.8b00208] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antimicrobial peptides (AMPs) have been attracting much attention due to their excellent antimicrobial efficiency and low rate in driving antimicrobial resistance (AMR), which has been increasing globally to alarming levels. Conjugation of AMPs into functional polymers not only preserves excellent antimicrobial activities but reduces the toxicity and offers more functionalities, which brings new insight toward developing multifunctional biomedical materials such as hydrogels, polymer vesicles, polymer micelles, and so forth. These nanomaterials have been exhibiting excellent antimicrobial activity against a broad spectrum of bacteria including multidrug-resistant (MDR) ones, high selectivity, and low cytotoxicity, suggesting promising potentials in wound dressing, implant coating, antibiofilm, tissue engineering, and so forth. This Perspective seeks to highlight the state-of-the-art strategy for the synthesis, self-assembly, and biomedical applications of AMP-polymer conjugates and explore the promising directions for future research ranging from synthetic strategies, multistage and stimuli-responsive antibacterial activities, antifungi applications, and potentials in elimination of inflammation during medical treatment. It also will provide perspectives on how to stem the remaining challenges and unresolved problems in combating bacteria, including MDR ones.
Collapse
Affiliation(s)
- Hui Sun
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yuanxiu Hong
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yuejing Xi
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Yijie Zou
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jingyi Gao
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering , Tongji University , 4800 Caoan Road , Shanghai 201804 , China.,Department of Orthopedics, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , China
| |
Collapse
|
12
|
Valikhani D, Bolivar JM, Viefhues M, McIlroy DN, Vrouwe EX, Nidetzky B. A Spring in Performance: Silica Nanosprings Boost Enzyme Immobilization in Microfluidic Channels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34641-34649. [PMID: 28921951 DOI: 10.1021/acsami.7b09875] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Enzyme microreactors are important tools of miniaturized analytics and have promising applications in continuous biomanufacturing. A fundamental problem of their design is that plain microchannels without extensive static internals, or packings, offer limited exposed surface area for immobilizing the enzyme. To boost the immobilization in a manner broadly applicable to enzymes, we coated borosilicate microchannels with silica nanosprings and attached the enzyme, sucrose phosphorylase, via a silica-binding module genetically fused to it. We showed with confocal fluorescence microscopy that the enzyme was able to penetrate the ∼70 μm-thick nanospring layer and became distributed uniformly in it. Compared with the plain surface, the activity of immobilized enzyme was enhanced 4.5-fold upon surface coating with nanosprings and further increased up to 10-fold by modifying the surface of the nanosprings with sulfonate groups. Operational stability during continuous-flow biocatalytic synthesis of α-glucose 1-phosphate was improved by a factor of 11 when the microreactor coated with nanosprings was used. More than 85% of the initial conversion rate was retained after 840 reactor cycles performed with a single loading of enzyme. By varying the substrate flow rate, the microreactor performance was conveniently switched between steady states of quantitative product yield (50 mM) and optimum productivity (19 mM min-1) at a lower product yield of 40%. Surface coating with silica nanosprings thus extends the possibilities for enzyme immobilization in microchannels. It effectively boosts the biocatalytic function of a microstructured reactor limited otherwise by the solid surface available for immobilizing the enzyme.
Collapse
Affiliation(s)
- Donya Valikhani
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, 8010 Graz, Austria
| | - Juan M Bolivar
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, 8010 Graz, Austria
| | - Martina Viefhues
- Micronit Microtechnologies B.V. , Colosseum 15, 7521 PV, Enschede, The Netherlands
| | - David N McIlroy
- Department of Physics, Oklahoma State University , Stillwater, Oklahoma 74078-3072, United States
| | - Elwin X Vrouwe
- Micronit Microtechnologies B.V. , Colosseum 15, 7521 PV, Enschede, The Netherlands
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz , Petersgasse 12, 8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology , Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|
13
|
Amperometric biosensor for 5-hydroxymethylcytosine based on enzymatic catalysis and using spherical poly(acrylic acid) brushes. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2401-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
15
|
Choi JW, Carter MCD, Wei W, Kanimozi C, Speetjens FW, Mahanthappa MK, Lynn DM, Gopalan P. Self-Assembly and Post-Fabrication Functionalization of Microphase Separated Thin Films of a Reactive Azlactone-Containing Block Copolymer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jonathan W. Choi
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Matthew C. D. Carter
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Wei Wei
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Catherine Kanimozi
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Frank W. Speetjens
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Mahesh K. Mahanthappa
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemical Engineering & Materials Science, 421 Washington Ave. S.E., University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - David M. Lynn
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department of Chemical & Biological Engineering, 1415 Engineering Drive, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Padma Gopalan
- Department
of Materials Science and Engineering, 1509 University Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
- Department
of Chemistry, 1101 University
Avenue, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
16
|
Yan S, Shi H, Song L, Wang X, Liu L, Luan S, Yang Y, Yin J. Nonleaching Bacteria-Responsive Antibacterial Surface Based on a Unique Hierarchical Architecture. ACS APPLIED MATERIALS & INTERFACES 2016; 8:24471-81. [PMID: 27579893 DOI: 10.1021/acsami.6b08436] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacteria-responsive surfaces popularly exert their smart antibacterial activities by bacteria-triggered delivery of antibacterial agents; however, the antibacterial agents should be additionally reloaded for the renewal of these surfaces. Herein, a reversible, nonleaching bacteria-responsive antibacterial surface is prepared by taking advantage of a hierarchical polymer brush architecture. In this hierarchical surface, a pH-responsive poly(methacrylic acid) (PMAA) outer layer serves as an actuator modulating the surface behavior on demand, while antimicrobial peptides (AMP) are covalently immobilized on the inner layer. The PMAA hydration layer renders the hierarchical surface resistant to initial bacterial attachment and biocompatible under physiological conditions. When bacteria colonize the surface, the bacteria-triggered acidification allows the outermost PMAA chains to collapse, therefore exposing the underlying bactericidal AMP to on-demand kill bacteria. In addition, the dead bacteria can be released once the PMAA chains resume their hydrophilicity because of the environmental pH increase. The functionality of the nonleaching surface is reversible without additional reloading of the antibacterial agents. This approach provides a new methodology for the development of smart surfaces in a variety of practical biomedical applications.
Collapse
Affiliation(s)
- Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Yuming Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| |
Collapse
|
17
|
Zayas-Gonzalez YM, Lynn DM. Degradable Amine-Reactive Coatings Fabricated by the Covalent Layer-by-Layer Assembly of Poly(2-vinyl-4,4-dimethylazlactone) with Degradable Polyamine Building Blocks. Biomacromolecules 2016; 17:3067-75. [PMID: 27525718 DOI: 10.1021/acs.biomac.6b00975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the fabrication of reactive and degradable cross-linked polymer multilayers by the reactive/covalent layer-by-layer assembly of a non-degradable azlactone-functionalized polymer [poly(2-vinyl-4,4-dimethylazlactone), PVDMA] with hydrolytically or enzymatically degradable polyamine building blocks. Fabrication of multilayers using PVDMA and a hydrolytically degradable poly(β-amino ester) (PBAE) containing primary amine side chains yielded multilayers (∼100 nm thick) that degraded over ∼12 days in physiologically relevant media. Physicochemical characterization and studies on stable films fabricated using PVDMA and an analogous non-degradable poly(amidoamine) suggested that erosion occurred by chemical hydrolysis of backbone esters in the PBAE components of these assemblies. These degradable assemblies also contained residual amine-reactive azlactone functionality that could be used to impart new functionality to the coatings post-fabrication. Cross-linked multilayers fabricated using PVDMA and the enzymatically degradable polymer poly(l-lysine) were structurally stable for prolonged periods in physiological media, but degraded over ∼24 h when the enzyme trypsin was added. Past studies demonstrate that multilayers fabricated using PVDMA and non-degradable polyamines [e.g., poly(ethylenimine)] enable the design and patterning of useful nano/biointerfaces and other materials that are structurally stable in physiological media. The introduction of degradable functionality into PVDMA-based multilayers creates opportunities to exploit the reactivity of azlactone groups for the design of reactive materials and functional coatings that degrade or erode in environments that are relevant in biomedical, biotechnological, and environmental contexts. This "degradable building block" strategy should be general; we anticipate that this approach can also be extended to the design of amine-reactive multilayers that degrade upon exposure to specific chemical triggers, selective enzymes, or contact with cells by judicious design of the degradable polyamine building blocks used to fabricate the coatings.
Collapse
Affiliation(s)
- Yashira M Zayas-Gonzalez
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States , and
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison , 1415 Engineering Drive, Madison, Wisconsin 53706, United States , and.,Department of Chemistry, University of Wisconsin-Madison , 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Carter MCD, Jennings J, Appadoo V, Lynn DM. Synthesis and Characterization of Backbone Degradable Azlactone-Functionalized Polymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Matthew C. D. Carter
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - James Jennings
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| | - Visham Appadoo
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M. Lynn
- Department
of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Chemical and Biological Engineering, University of Wisconsin—Madison, 1415 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers (Basel) 2015. [DOI: 10.3390/polym7071346] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
20
|
Oktay B, Demir S, Kayaman-Apohan N. Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:386-93. [DOI: 10.1016/j.msec.2015.02.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 10/24/2022]
|
21
|
Dubey NC, Tripathi BP, Müller M, Stamm M, Ionov L. Enhanced activity of acetyl CoA synthetase adsorbed on smart microgel: an implication for precursor biosynthesis. ACS APPLIED MATERIALS & INTERFACES 2015; 7:1500-1507. [PMID: 25561344 DOI: 10.1021/am5063376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Acetyl coenzyme A (acetyl CoA) is an essential precursor molecule for synthesis of metabolites such as the polyketide-based drugs (tetracycline, mitharamycin, Zocor, etc.) fats, lipids, and cholesterol. Acetyl CoA synthetase (Acs) is one of the enzymes that catalyzes acetyl CoA synthesis, and this enzyme is essentially employed for continuous supply of the acetyl CoA for the production of these metabolites. To achieve reusable and a more robust entity of the enzyme, we carried out the immobilization of Acs on poly(N-isopropylacrylamide)-poly(ethylenimine) (PNIPAm-PEI) microgels via adsorption. Cationic PNIPAm-PEI microgel was synthesized by one-step graft copolymerization of NIPAm and N,N-methylene bis-acrylamide (MBA) from PEI. Adsorption studies of Acs on microgel indicated high binding of enzymes, with a maximum binding capacity of 286 μg/mg of microgel for Acs was achieved. The immobilized enzymes showed improved biocatalytic efficiency over free enzymes, beside this, the reaction parameters and circular dichroism (CD) spectroscopy studies indicated no significant changes in the enzyme structure after immobilization. This thoroughly characterized enzyme bioconjugate was further immobilized on an ultrathin membrane to assess the same reaction in flow through condition. Bioconjugate was covalently immobilized on a thin layer of preformed microgel support upon polyethylene terephthalate (PET) track etched membrane. The prepared membrane was used in a dead end filtration device to monitor the bioconversion efficiency and operational stability of cross-linked bioconjugate. The membrane reactor showed consistent operational stability and maintained >70% of initial activity after 7 consecutive operation cycles.
Collapse
Affiliation(s)
- Nidhi Chandrama Dubey
- Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e. V. , Hohe Str. 6, D-01069 Dresden, Germany
| | | | | | | | | |
Collapse
|
22
|
Fernandes AE, Ye Q, Collard L, Le Duff C, d'Haese C, Deumer G, Haufroid V, Nysten B, Riant O, Jonas AM. Effects of Thickness and Grafting Density on the Activity of Polymer-Brush-Immobilized Tris(triazolyl) Copper(I) Catalysts. ChemCatChem 2015. [DOI: 10.1002/cctc.201402913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Jo H, Theato P. Post-polymerization Modification of Surface-Bound Polymers. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Mu X, Qiao J, Qi L, Dong P, Ma H. Poly(2-vinyl-4,4-dimethylazlactone)-functionalized magnetic nanoparticles as carriers for enzyme immobilization and its application. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21346-54. [PMID: 25360545 DOI: 10.1021/am5063025] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Fabrication of various efficient enzyme reactors has triggered increasing interests for its extensive applications in biological and clinical research. In this study, magnetic nanoparticles were functionalized by a biocompatible reactive polymer, poly(2-vinyl-4,4-dimethylazlactone), which was synthesized by reversible addition-fragmentation chain transfer polymerization. Then, the prepared polymer-modified magnetic nanoparticles were employed as favorable carriers for enzyme immobilization. l-Asparaginase was selected as the model enzyme to fabricate the enzyme reactor, and the prepared enzyme reactor exhibited high loading capacity of 318.0 μg mg(-1) magnetic nanoparticle. Interestingly, it has been observed that the enzymolysis efficiency increased slightly with the lengthened polymer chain, resulting from the increased immobilization amount of enzyme. Meanwhile, the immobilized enzyme could retain more than 95.7% activity after 10 repeated uses and maintain more than 72.6% activity after 10 weeks storage. Moreover, an extracorporeal shunt system was simulated to estimate the potential application capability of the prepared l-asparaginase reactor in acute lymphoblastic leukemia treatment.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P.R. China
| | | | | | | | | |
Collapse
|
25
|
Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 2014; 114:10976-1026. [PMID: 25353708 DOI: 10.1021/cr500252u] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahentha Krishnamoorthy
- Institute of Bioengineering and ‡School of Engineering and Materials Science, Queen Mary University of London , Mile End Road, London E1 4NS, United Kingdom
| | | | | | | |
Collapse
|
26
|
Arnold RM, Patton DL, Popik VV, Locklin J. A dynamic duo: pairing click chemistry and postpolymerization modification to design complex surfaces. Acc Chem Res 2014; 47:2999-3008. [PMID: 25127014 DOI: 10.1021/ar500191m] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Advances in key 21st century technologies such as biosensors, biomedical implants, and organic light-emitting diodes rely heavily on our ability to imagine, design, and understand spatially complex interfaces. Polymer-based thin films provide many advantages in this regard, but the direct synthesis of polymers with incompatible functional groups is extremely difficult. Using postpolymerization modification in conjunction with click chemistry can circumvent this limitation and result in multicomponent surfaces that are otherwise unattainable. The two methods used to form polymer thin films include physisorption and chemisorption. Physisorbed polymers suffer from instability because of the weak intermolecular forces between the film and the substrate, which can lead to dewetting, delamination, desorption, or displacement. Covalent immobilization of polymers to surfaces through either a "grafting to" or "grafting from" approach provides thin films that are more robust and less prone to degradation. The grafting to technique consists of adsorbing a polymer containing at least one reactive group along the backbone to form a covalent bond with a complementary surface functionality. Grafting from involves polymerization directly from the surface, in which the polymer chains deviate from their native conformation in solution and stretch away from the surface because of the high density of chains. Postpolymerization modification (PPM) is a strategy used by our groups over the past several years to immobilize two or more different chemical functionalities onto substrates that contain covalently grafted polymer films. PPM exploits monomers with reactive pendant groups that are stable under the polymerization conditions but are readily modified via covalent attachment of the desired functionality. "Click-like" reactions are the most common type of reactions used for PPM because they are orthogonal, high-yielding, and rapid. Some of these reactions include thiol-based additions, activated ester coupling, azide-alkyne cycloadditions, some Diels-Alder reactions, and non-aldol carbonyl chemistry such as oxime, hydrazone, and amide formation. In this Account, we highlight our research combining PPM and click chemistry to generate complexity in polymer thin films. For the purpose of this Account, we define a complex coating as a polymer film grafted to a planar surface that acts as a template for the patterning of two or more discrete chemical functionalities using PPM. After a brief introduction to grafting, the rest of the review is arranged in terms of the sequence in which PPM is performed. First, we describe sequential functionalization using iterations of the same click-type reaction. Next, we discuss the use of two or more different click-like reactions performed consecutively, and we conclude with examples of self-sorting reactions involving orthogonal chemistries used for one-pot surface patterning.
Collapse
Affiliation(s)
- Rachelle M Arnold
- Department of Chemistry, College of Engineering, and the Center for Nanoscale Science and Engineering, University of Georgia , Athens, Georgia 30602, United States
| | | | | | | |
Collapse
|
27
|
Bhakta SA, Benavidez TE, Garcia CD. Immobilization of glucose oxidase to nanostructured films of polystyrene-block-poly(2-vinylpyridine). J Colloid Interface Sci 2014; 430:351-6. [PMID: 24980481 DOI: 10.1016/j.jcis.2014.05.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/31/2022]
Abstract
A critical step for the development of biosensors is the immobilization of the biorecognition element to the surface of a substrate. Among other materials that can be used as substrates, block copolymers have the untapped potential to provide significant advantages for the immobilization of proteins. To explore such possibility, this manuscript describes the fabrication and characterization of thin-films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP). These films were then used to investigate the immobilization of glucose oxidase, a model enzyme for the development of biosensors. According to the results presented, the nanoporous films can provide significant increases in surface area of the substrate and the immobilization of larger amounts of active enzyme. The characterization of the substrate-enzyme interface discussed in the manuscript aims to provide critical information about relationship between the surface (material, geometry, and density of pores), the protein structure, and the immobilization conditions (pH, and protein concentration) required to improve the catalytic activity and stability of the enzymes. A maximum normalized activity of 3300±700 U m(-2) was achieved for the nanoporous film of PS-b-P2VP.
Collapse
Affiliation(s)
- Samir A Bhakta
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA
| | - Tomas E Benavidez
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
28
|
Qu Z, Chen K, Gu H, Xu H. Covalent Immobilization of Proteins on 3D Poly(acrylic acid) Brushes: Mechanism Study and a More Effective and Controllable Process. Bioconjug Chem 2014; 25:370-8. [DOI: 10.1021/bc400530s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhenyuan Qu
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Kaimin Chen
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hongchen Gu
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - Hong Xu
- Shanghai Engineering Research
Center of Medical Device and Technology at Med-X, School of Biomedical
Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| |
Collapse
|
29
|
Liu H, Chen B, Sun D, Zhou Y, Tang Y, Chen Y, Lu T. Sn–Fe cyanogels noncovalently grafted to carbon nanotubes in a versatile biointerface design: an efficient matrix and a facile platform for glucose oxidase immobilization. J Mater Chem B 2014; 2:4615-4624. [DOI: 10.1039/c4tb00406j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Hansen RR, Hinestrosa JP, Shubert KR, Morrell-Falvey JL, Pelletier DA, Messman JM, Kilbey SM, Lokitz BS, Retterer ST. Lectin-functionalized poly(glycidyl methacrylate)-block-poly(vinyldimethyl azlactone) surface scaffolds for high avidity microbial capture. Biomacromolecules 2013; 14:3742-8. [PMID: 24003861 DOI: 10.1021/bm4011358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microbial exopolysaccharides (EPS) play a critical and dynamic role in shaping the interactions between microbial community members and their local environment. The capture of targeted microbes using surface immobilized lectins that recognize specific extracellular oligosaccharide moieties offers a nondestructive method for functional characterization of EPS content. In this report, we evaluate the use of the block copolymer, poly(glycidyl methacrylate)-block-4,4-dimethyl-2-vinylazlactone (PGMA-b-PVDMA), as a surface scaffold for lectin-specific microbial capture. Three-dimensional polymer films were patterned on silicon substrates to provide discrete, covalent coupling sites for Triticum vulgare and Lens culinaris lectins. This material increased the number of Pseudomonas fluorescens microbes captured by up to 43% compared to control scaffolds that did not contain the copolymer. These results demonstrate that PGMA-b-PVDMA scaffolds provide a platform for improved microbe capture and screening of EPS content by combining high avidity lectin surfaces with three-dimensional surface topography.
Collapse
Affiliation(s)
- Ryan R Hansen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhu Y, Quek JY, Lowe AB, Roth PJ. Thermoresponsive (Co)polymers through Postpolymerization Modification of Poly(2-vinyl-4,4-dimethylazlactone). Macromolecules 2013. [DOI: 10.1021/ma401096r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yicheng Zhu
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Jing Yang Quek
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Andrew B. Lowe
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| | - Peter J. Roth
- Centre for
Advanced Macromolecular Design (CAMD), School
of Chemical Engineering, University of New South Wales, UNSW Sydney NSW 2052, Australia
| |
Collapse
|
32
|
Broderick AH, Carter MCD, Lockett MR, Smith LM, Lynn DM. Fabrication of oligonucleotide and protein arrays on rigid and flexible substrates coated with reactive polymer multilayers. ACS APPLIED MATERIALS & INTERFACES 2013; 5:351-9. [PMID: 23237360 PMCID: PMC3553252 DOI: 10.1021/am302285n] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a top-down approach to the fabrication of oligonucleotide and protein arrays on surfaces coated with ultrathin, amine-reactive polymer multilayers fabricated by the covalent "layer-by-layer" (LbL) assembly of polyethyleneimine (PEI) and the amine-reactive, azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA). Manual spotting of amine-terminated oligonucleotide probe sequences on planar glass slides coated with PEI/PVDMA multilayers (~35 nm thick) yielded arrays of immobilized probes that hybridized fluorescently labeled complementary sequences with high signal intensities, high signal-to-noise ratios, and high sequence specificity. Treatment of residual azlactone functionality with the nonfouling small-molecule amine d-glucamine resulted in regions between the features of these arrays that resisted adsorption of protein and permitted hybridization in complex media containing up to 10 mg/mL protein. The residual azlactone groups in these films were also exploited to immobilize proteins on film-coated surfaces and fabricate functional arrays of proteins and enzymes. The ability to deposit PEI/PVDMA multilayers on substrates of arbitrary size, shape, and composition permitted the fabrication of arrays of oligonucleotides on the surfaces of multilayer-coated sheets of poly(ethylene terephthalate) and heat-shrinkable polymer film. Arrays fabricated on these flexible plastic substrates can be bent, cut, resized, and manipulated physically in ways that are difficult using more conventional rigid substrates. This approach could thus contribute to the development of new assay formats and new applications of biomolecule arrays. The methods described here are straightforward to implement, do not require access to specialized equipment, and should also be compatible with automated liquid-handling methods used to fabricate higher-density arrays of oligonucleotides and proteins on more traditional surfaces.
Collapse
Affiliation(s)
- Adam H Broderick
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
33
|
Ho HT, Levere ME, Pascual S, Montembault V, Casse N, Caruso A, Fontaine L. Thermoresponsive block copolymers containing reactive azlactone groups and their bioconjugation with lysozyme. Polym Chem 2013. [DOI: 10.1039/c2py20714a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Lokitz BS, Wei J, Hinestrosa JP, Ivanov I, Browning JF, Ankner JF, Kilbey SM, Messman JM. Manipulating Interfaces through Surface Confinement of Poly(glycidyl methacrylate)-block-poly(vinyldimethylazlactone), a Dually Reactive Block Copolymer. Macromolecules 2012. [DOI: 10.1021/ma300991p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bradley S. Lokitz
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jifeng Wei
- Department of Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - Juan Pablo Hinestrosa
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Ilia Ivanov
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - James F. Browning
- Spallation Neutron Source, Oak Ridge National Laboratory, One Bethel Valley Road,
Oak Ridge, Tennessee 37831, United States
| | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, One Bethel Valley Road,
Oak Ridge, Tennessee 37831, United States
| | - S. Michael Kilbey
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996,
United States
| | - Jamie M. Messman
- Center for Nanophase Materials
Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
35
|
Galvin CJ, Genzer J. Applications of surface-grafted macromolecules derived from post-polymerization modification reactions. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.12.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Laquièvre A, Allaway NS, Lyskawa J, Woisel P, Lefebvre JM, Fournier D. Highly efficient ring-opening reaction of azlactone-based copolymer platforms for the design of functionalized materials. Macromol Rapid Commun 2012; 33:848-55. [PMID: 22508541 DOI: 10.1002/marc.201200063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/12/2012] [Indexed: 11/08/2022]
Abstract
Azlactone-based homopolymers and copolymers were successfully synthesized using the reversible addition-fragmentation chain transfer (RAFT) process. The functional monomer 2-styryl-4,4-dimethylazlactone (SDA) was first homopolymerized in bulk then copolymerized with styrene, leading to (co)polymers with low polydispersity indices (PDI = 1.10-1.20). The reactive azlactone rings, located along the backbone of the copolymers were subjected to highly efficient ring-opening reactions with functionalized primary amine derivatives incorporating a fluorescent (naphthalene) or an electrochemical (ferrocene) probes, a biological fragment (glutathione), a sugar unit (β-cyclodextrin), or an oligomeric fluorinated moiety, leading to materials with various interesting properties.
Collapse
Affiliation(s)
- Aurélie Laquièvre
- Université Lille Nord de France, 59000 Lille, France, USTL, Unité des Matériaux Et Transformations (UMET, UMR 8207), Ingénierie des Systèmes polymères Team, 59655 Villeneuve d'Ascq Cedex, France
| | | | | | | | | | | |
Collapse
|
37
|
Günay KA, Schüwer N, Klok HA. Synthesis and post-polymerization modification of poly(pentafluorophenyl methacrylate) brushes. Polym Chem 2012. [DOI: 10.1039/c2py20162c] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Prai-in Y, Tankanya K, Rutnakornpituk B, Wichai U, Montembault V, Pascual S, Fontaine L, Rutnakornpituk M. Azlactone functionalization of magnetic nanoparticles using ATRP and their bioconjugation. POLYMER 2012. [DOI: 10.1016/j.polymer.2011.11.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Buck ME, Lynn DM. Azlactone-Functionalized Polymers as Reactive Platforms for the Design of Advanced Materials: Progress in the Last Ten Years. Polym Chem 2012; 3:66-80. [PMID: 29492112 PMCID: PMC5826603 DOI: 10.1039/c1py00314c] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymers functionalized with azlactone (or oxazolone) functionality have become increasingly useful for the rapid and modular design of functional materials. Because azlactones can react via ring-opening reactions with a variety of different nucleophilic species (e.g., primary amines, hydroxyl groups, and thiol functionality), azlactone-functionalized materials can serve as convenient 'reactive' platforms for the post-synthesis or post-fabrication introduction of a broad range of chemical functionality to soluble polymers, insoluble supports, and surfaces/interfaces. The last decade has seen an increase in both the number and the variety of reports that exploit the properties and the reactivities of azlactone-functionalized polymers. Here, we highlight recent work from several different laboratories, including our own, toward the design and characterization of azlactone-functionalized polymers, with a particular emphasis on: (i) new synthetic approaches for the preparation of well-defined azlactone-functionalized polymers using living/controlled methods of polymerization, (ii) the design and modular synthesis of side-chain functionalized polymers and block copolymers via post-polymerization modification of azlactone-functionalized polymers, (iii) the development of reactive polymeric supports useful in the contexts of separations and catalysis, and (iv) methods for the fabrication of reactive thin films and other approaches to the immobilization of azlactone functionality on surfaces and interfaces. Examples discussed herein reveal a growing awareness of azlactone functionality as a useful tool for polymer chemists, and highlight several ways that the unique reactivity of these materials can both complement and provide useful alternatives to other reactive polymers currently used to design functional materials.
Collapse
Affiliation(s)
- Maren E Buck
- Department of Chemistry, 1101 University Avenue, Madison, WI 53706
| | - David M Lynn
- Department of Chemistry, 1101 University Avenue, Madison, WI 53706
- Department of Chemical and Biological Engineering, 1415 Engineering Drive, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
40
|
Arnold RM, Huddleston NE, Locklin J. Utilizing click chemistry to design functional interfaces through post-polymerization modification. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31708g] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
41
|
Bayramoglu G, Senkal BF, Yilmaz M, Arica MY. Immobilization and stabilization of papain on poly(hydroxyethyl methacrylate-ethylenglycol dimethacrylate) beads grafted with epoxy functional polymer chains via surface-initiated-atom transfer radical polymerization (SI-ATRP). BIORESOURCE TECHNOLOGY 2011; 102:9833-9837. [PMID: 21908189 DOI: 10.1016/j.biortech.2011.08.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
Poly(hydroxyethyl methacrylate-ethylen glycol dimethacrylate), p(HEMA-EGDMA), beads were prepared by suspension polymerization, and were decorated with fibrous poly(glycidyl methacrylate), p(GMA), via surface initiated-atom transfer radical polymerization (SI-ATRP). The functional epoxy groups of the beads were used for covalent immobilization of papain. The average amount of immobilized enzyme was 18.7 mg/g beads. The immobilized enzyme was characterized by temperature, pH, operational and storage stability experiments. The maximum velocity of the free and immobilized enzymes (V(max)) and Michaelis-Menten constant (K(m)) values were determined as 10.7 and 8.3 U/mg proteins and 274 and 465 μM, respectively. The immobilized papain was operated in a batch reactor, and it was very effective for hydrolysis of different proteins (i.e., casein and cytochrom c).
Collapse
Affiliation(s)
- Gulay Bayramoglu
- Gazi University, Faculty of Sciences, Biochemical Processing and Biomaterial Research Laboratory, 06500 Teknikokullar, Ankara, Turkey.
| | | | | | | |
Collapse
|
42
|
Jeong Y, Duncan B, Park MH, Kim C, Rotello VM. Reusable biocatalytic crosslinked microparticles self-assembled from enzyme-nanoparticle complexes. Chem Commun (Camb) 2011; 47:12077-9. [PMID: 21998820 DOI: 10.1039/c1cc14448k] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Emulsions stabilized by enzyme-nanoparticle (NP) complexes were used to fabricate robust biocatalytic scaffolds after core solidification via crosslinking. These biocatalysts feature ease of formation, high retention of enzymatic activity and reusability.
Collapse
Affiliation(s)
- Youngdo Jeong
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
43
|
Broderick AH, Azarin SM, Buck ME, Palecek SP, Lynn DM. Fabrication and selective functionalization of amine-reactive polymer multilayers on topographically patterned microwell cell culture arrays. Biomacromolecules 2011; 12:1998-2007. [PMID: 21504222 DOI: 10.1021/bm200296a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report an approach to the fabrication and selective functionalization of amine-reactive polymer multilayers on the surfaces of 3-D polyurethane-based microwell cell culture arrays. "Reactive" layer-by-layer assembly of multilayers using branched polyethyleneimine (BPEI) and the azlactone-functionalized polymer poly(2-vinyl-4,4'-dimethylazlactone) (PVDMA) yielded film-coated microwell arrays that could be chemically functionalized postfabrication by treatment with different amine-functionalized macromolecules or small molecule primary amines. Treatment of film-coated arrays with the small molecule amine d-glucamine resulted in microwell surfaces that resisted the adhesion and proliferation of mammalian fibroblast cells in vitro. These and other experiments demonstrated that it was possible to functionalize different structural features of these arrays in a spatially resolved manner to create dual-functionalized substrates (e.g., to create arrays having either (i) azlactone-functionalized wells, with regions between the wells functionalized with glucamine or (ii) substrates with spatially resolved regions of two different cationic polymers). In particular, spatial control over glucamine functionalization yielded 3-D substrates that could be used to confine cell attachment and growth to microwells for periods of up to 28 days and support the 3-D culture of arrays of cuboidal cell clusters. These approaches to dual functionalization could prove useful for the long-term culture and maintenance of cell types for which the presentation of specific and chemically well-defined 3-D culture environments is required for control over cell growth, differentiation, and other important behaviors. More generally, our approach provides methods for the straightforward chemical functionalization of otherwise unreactive topographically patterned substrates that could prove to be useful in a range of other fundamental and applied contexts.
Collapse
Affiliation(s)
- Adam H Broderick
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
44
|
Lane SM, Kuang Z, Yom J, Arifuzzaman S, Genzer J, Farmer B, Naik R, Vaia RA. Poly(2-hydroxyethyl methacrylate) for Enzyme Immobilization: Impact on Activity and Stability of Horseradish Peroxidase. Biomacromolecules 2011; 12:1822-30. [DOI: 10.1021/bm200173y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sarah M. Lane
- Air Force Research Laboratory, Materials and Manufactoring Directorate, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Zhifeng Kuang
- Air Force Research Laboratory, Materials and Manufactoring Directorate, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Jeannie Yom
- Air Force Research Laboratory, Materials and Manufactoring Directorate, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Shafi Arifuzzaman
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Jan Genzer
- Department of Chemical & Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Barry Farmer
- Air Force Research Laboratory, Materials and Manufactoring Directorate, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Rajesh Naik
- Air Force Research Laboratory, Materials and Manufactoring Directorate, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Richard A. Vaia
- Air Force Research Laboratory, Materials and Manufactoring Directorate, Wright-Patterson AFB, Ohio 45433-7750, United States
| |
Collapse
|
45
|
Ho TH, Levere M, Soutif JC, Montembault V, Pascual S, Fontaine L. Synthesis of thermoresponsive oxazolone end-functional polymers for reactions with amines using thiol-Michael addition “click” chemistry. Polym Chem 2011. [DOI: 10.1039/c1py00071c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Levere ME, Ho HT, Pascual S, Fontaine L. Stable azlactone-functionalized nanoparticles prepared from thermoresponsive copolymers synthesized by RAFT polymerization. Polym Chem 2011. [DOI: 10.1039/c1py00320h] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Costantini F, Benetti EM, Reinhoudt DN, Huskens J, Vancso GJ, Verboom W. Enzyme-functionalized polymer brush films on the inner wall of silicon-glass microreactors with tunable biocatalytic activity. LAB ON A CHIP 2010; 10:3407-3412. [PMID: 20941436 DOI: 10.1039/c0lc00187b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The lipase from Candida Rugosa was immobilized to a poly(methacrylic acid) polymer brush layer, grown on the inner wall of silicon-glass microreactors. The hydrolysis of 4-nitrophenyl acetate was used as a model reaction to study the activity of this biocatalytic system. The amount of bound lipase could be tuned by changing the polymerization time of the brush formation. The Michaelis-Menten constants and V(max) values, determined for immobilized and free lipase, are similar, demonstrating that the lipase's substrate affinity and its activity remain unchanged upon immobilization to the microchannel wall.
Collapse
Affiliation(s)
- Francesca Costantini
- Molecular Nanofabrication (MnF), University of Twente, MESA+ Institute for Nanotechnology, P.O. Box 217, 7500, AE, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Pascual S, Blin T, Saikia PJ, Thomas M, Gosselin P, Fontaine L. Block copolymers based on 2-vinyl-4,4-dimethyl-5-oxazolone by RAFT polymerization: Experimental and computational studies. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
49
|
Buck ME, Lynn DM. Functionalization of fibers using azlactone-containing polymers: layer-by-layer fabrication of reactive thin films on the surfaces of hair and cellulose-based materials. ACS APPLIED MATERIALS & INTERFACES 2010; 2:1421-9. [PMID: 20402471 PMCID: PMC2877158 DOI: 10.1021/am1000882] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report an approach to the functionalization of fibers and fiber-based materials that is based on the deposition of reactive azlactone-functionalized polymers and the "reactive" layer-by-layer assembly of azlactone-containing thin films. We demonstrate (i) that the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) can be used to modify the surfaces of a model protein-based fiber (horsehair) and cellulose-based materials (e.g., cotton and paper), and (ii) that fibers functionalized in this manner can be used to support the fabrication of covalently cross-linked and reactive polymer multilayers assembled using PVDMA and poly(ethyleneimine) (PEI). The growth, chemical reactivity, and uniformity of films deposited on these substrates were characterized using fluorescence microscopy, confocal microscopy, and scanning electron microscopy (SEM). In addition to the direct functionalization of fibers, we demonstrate that the residual azlactone functionality in PVDMA-treated or film-coated fibers can be exploited to chemically modify the surface chemistry and physicochemical properties of fiber-based materials postfabrication using amine functionalized molecules. For example, we demonstrate that this approach permits control over the surface properties of paper (e.g., absorption of water) by simple postfabrication treatment of film-coated paper with the hydrophobic amine n-decylamine. The azlactone functionality present in these materials provides a platform for the modification of polymer-treated and film-coated fibers with a broad range of other chemical and biological species (e.g., enzymes, peptides, catalysts, etc.). The results of this investigation thus provide a basis for the functionalization of fibers and fiber-based materials (e.g., textile fabrics or nonwoven mats) of potential utility in a broad range of consumer, industrial, and biomedical contexts.
Collapse
Affiliation(s)
- Maren E Buck
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
50
|
Bayramoglu G, Arica MY. Reversible immobilization of catalase on fibrous polymer grafted and metal chelated chitosan membrane. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|