1
|
Adick A, Hoheisel W, Schneid S, Mulac D, Azhdari S, Langer K. Challenges of nanoparticle albumin bound (nab™) technology: Comparative study of Abraxane® with a newly developed albumin-stabilized itraconazole nanosuspension. Eur J Pharm Biopharm 2023; 193:129-143. [PMID: 37918678 DOI: 10.1016/j.ejpb.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Nanoparticle albumin bound™ (nab™) technology is an established delivery platform for development of albumin stabilized nanoparticles as drug delivery systems for poorly water-soluble drugs. By using albumin for particle stabilization, nab™ technology does not require solubilizers or emulsifiers for the formulation of poorly water-soluble drugs for intravenous use. Despite the great potential, however, to date only two products based on nab™ technology have been approved by the Food and Drug Administration: Abraxane® (nab™ paclitaxel) and Fyarro® (nab™ rapamycin). In this study, the commercially available product Abraxane® was characterized in comparison to an albumin stabilized nanosuspension for the poorly water-soluble drug itraconazole. The aim of this study was to identify critical product parameters of the nanosuspensions depending on the manufacturing process in order to assess the transferability of nab™ technology to other drugs. The colloidal properties, stabilizing protein composition and particle disintegration behavior were analyzed. In addition, studies were carried out on the impact of the key process step, the high-pressure homogenization, using a design of experiments (DoE) approach. A nanosuspension comprising spherical, stable drug nanoparticles stabilized by a large fraction of dissolved albumin around the nanoparticles were identified. During the manufacturing process, the drug core was coated with a layer of albumin, which was cross-linked to a certain level. The Abraxane® and itraconazole suspensions differed in the analyzed protein fraction, with stronger cross-linking at the particle surface for Abraxane®. Both active pharmaceutical ingredients were present in the amorphous state as nanoparticles. In vitro disintegration studies performed to mimic a strong dilution during intravenous application showed the disintegration of the nanoparticles. All in all, the analysis underlined the transferability of the nab™ technology to selected other poorly water-soluble drugs with the great advantage of eliminating solubilizers and emulsifiers for intravenous applications.
Collapse
Affiliation(s)
- Annika Adick
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Werner Hoheisel
- Invite GmbH, Formulation Technology, Chempark, Building W 32, 51368 Leverkusen, Germany
| | - Stefan Schneid
- Bayer AG, Pharmaceuticals, Drug Product Development, Friedrich-Ebert-Straße 475, 42117 Wuppertal, Germany
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Suna Azhdari
- Institute of Physical Chemistry, University Muenster, Corrensstraße 28/30, 48149 Muenster, Germany
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University Muenster, Corrensstraße 48, 48149 Muenster, Germany.
| |
Collapse
|
2
|
Wu B, Nan S, Zhang H, Deng L, Gong T, Zhang Z, Fu Y. Effect of Albumin Corona Conformation on In Vitro and In Vivo Profiles of Intravenously Administered Nanoparticles. Mol Pharm 2023. [PMID: 37115233 DOI: 10.1021/acs.molpharmaceut.3c00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Under physiological conditions, nanoparticles (NPs) inevitably interact with proteins, resulting in extensive protein adsorption and the formation of a protein corona. Recent studies have shown that the different surface properties of NPs lead to varying degrees of conformational changes of adsorbed proteins. However, the impact of corona protein conformation on the in vitro and in vivo profiles of NPs remain largely unexplored. Herein, d-α-tocopherol polyethylene glycol 1000 succinate-based NPs with natural human serum albumin (HSAN) corona or thermally denatured HSA (HSAD) corona were synthesized following a previously established method. We then conducted a systematic study of the protein conformation as well as adsorption behaviors. Additionally, the impact of protein corona conformation on the NPs profiles in vitro and in vivo were elucidated to gain insight into its biological behaviors as a targeted delivery system for renal tubule diseases. Overall, NPs modified by HSAN corona showed improved serum stability, greater cell uptake efficiency, better renal tubular targetability, and therapeutic efficacy on acute kidney injury in rats than NPs modified by HSAD corona. Hence, the conformation of protein adsorbed on the surface of NPs may impact the in vitro and in vivo profiles of NPs.
Collapse
Affiliation(s)
- Beibei Wu
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Simin Nan
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haonan Zhang
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Li Deng
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- Key Laboratory of Drug- Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Quantitative comparison of the protein corona of nanoparticles with different matrices. Int J Pharm X 2022; 4:100136. [PMID: 36304137 PMCID: PMC9594119 DOI: 10.1016/j.ijpx.2022.100136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Nanoparticles (NPs) are paving the way for improved treatments for difficult to treat diseases diseases; however, much is unknown about their fate in the body. One important factor is the interaction between NPs and blood proteins leading to the formation known as the “protein corona” (PC). The PC, consisting of the Hard (HC) and Soft Corona (SC), varies greatly based on the NP composition, size, and surface properties. This highlights the need for specific studies to differentiate the PC formation for each individual NP system. This work focused on comparing the HC and SC of three NPs with different matrix compositions: a) polymeric NPs based on poly(lactic-co-glycolic) acid (PLGA), b) hybrid NPs consisting of PLGA and Cholesterol, and c) lipidic NPs made only of Cholesterol. NPs were formulated and characterized for their physico-chemical characteristics and composition, and then were incubated in human plasma. In-depth purification, identification, and statistical analysis were then performed to identify the HC and SC components. Finally, similar investigations demonstrated whether the presence of a targeting ligand on the NP surface would affect the PC makeup. These results highlighted the different PC fingerprints of these NPs, which will be critical to better understand the biological influences of the PC and improve future NP designs. NPs with different matrices were formulated: PLGA, Cholesterol, or mixed PLGA-Chol hybrids. The hard and soft corona of each formulation was quantified and compared. The PC seems to be more strongly affected by the polymer rather than the lipid in mixed NPs. The soft corona depends more on the hard corona composition than on the matrix. Surface modification with a targeting ligand did not influence PC composition.
Collapse
|
4
|
Conformation Changes of Enkephalin in Coordination with Pb2+ Investigated by Gas Phase Hydrogen/Deuterium Exchange Mass Spectrometry Combined with Theoretical Calculations. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Banta RA, Collins TW, Curley R, O'Connell J, Young PW, Holmes JD, Flynn EJ. Regulated phase separation in nanopatterned protein-polysaccharide thin films by spin coating. Colloids Surf B Biointerfaces 2020; 190:110967. [DOI: 10.1016/j.colsurfb.2020.110967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 01/08/2023]
|
6
|
Nanoparticle-Protein Interaction: The Significance and Role of Protein Corona. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:175-198. [DOI: 10.1007/978-3-319-72041-8_11] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Co-precipitation synthesis and characterization of Co doped SnO 2 NPs, HSA interaction via various spectroscopic techniques and their antimicrobial and photocatalytic activities. Int J Biol Macromol 2017; 94:554-565. [DOI: 10.1016/j.ijbiomac.2016.10.057] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023]
|
8
|
Mortimer GM, Butcher NJ, Musumeci AW, Deng ZJ, Martin DJ, Minchin RF. Cryptic epitopes of albumin determine mononuclear phagocyte system clearance of nanomaterials. ACS NANO 2014; 8:3357-3366. [PMID: 24617595 DOI: 10.1021/nn405830g] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
While plasma proteins can influence the physicochemical properties of nanoparticles, the adsorption of protein to the surface of nanomaterials can also alter the structure and function of the protein. Here, we show that plasma proteins form a hard corona around synthetic layered silicate nanoparticles (LSN) and that one of the principle proteins is serum albumin. The protein corona was required for recognition of the nanoparticles by scavenger receptors, a major receptor family associated with the mononuclear phagocyte system (MPS). Albumin alone could direct nanoparticle uptake by human macrophages, which involved class A but not class B scavenger receptors. Upon binding to LSN, albumin unfolded to reveal a cryptic epitope that could also be exposed by heat denaturation. This work provides an understanding of how albumin, and possibly other proteins, can promote nanomaterial recognition by the MPS without albumin requiring chemical modification for scavenger receptor recognition. These findings also demonstrate an additional function for albumin in vivo.
Collapse
Affiliation(s)
- Gysell M Mortimer
- School of Biomedical Sciences and ‡Australian Institute for Bioengineering and Nanotechnology, University of Queensland , Brisbane, Queensland, 4072, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Olejnik P, Pawłowska A, Pałys B. Application of Polarization Modulated Infrared Reflection Absorption Spectroscopy for electrocatalytic activity studies of laccase adsorbed on modified gold electrodes. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.03.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Peng Z, Young B, Baird AE, Soper SA. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time. Anal Chem 2013; 85:7851-8. [PMID: 23869556 PMCID: PMC3864661 DOI: 10.1021/ac400729q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expression analysis of mRNAs transcribed from certain genes can be used as important sources of biomarkers for in vitro diagnostics. While the use of reverse transcription quantitative PCR (RT-qPCR) can provide excellent analytical sensitivity for monitoring transcript numbers, more sensitive approaches for expression analysis that can report results in near real-time are needed for many critical applications. We report a novel assay that can provide exquisite limits-of-quantitation and consists of reverse transcription (RT) followed by a ligase detection reaction (LDR) with single-pair fluorescence resonance energy transfer (spFRET) to provide digital readout through molecular counting. For this assay, no PCR was employed, which enabled short assay turnaround times. To facilitate implementation of the assay, a cyclic olefin copolymer (COC) microchip, which was fabricated using hot embossing, was employed to carry out the LDR in a continuous flow format with online single-molecule detection following the LDR. As demonstrators of the assay's utility, MMP-7 mRNA was expression profiled from several colorectal cancer cell lines. It was found that the RT-LDR/spFRET assay produced highly linear calibration plots even in the low copy number regime. Comparison to RT-qPCR indicated a better linearity over the low copy number range investigated (10-10,000 copies) with an R(2) = 0.9995 for RT-LDR/spFRET and R(2) = 0.98 for RT-qPCR. In addition, differentiating between copy numbers of 10 and 50 could be performed with higher confidence using RT-LDR/spFRET. To demonstrate the short assay turnaround times obtainable using the RT-LDR/spFRET assay, a two thermal cycle LDR was carried out on amphiphysin gene transcripts that can serve as important diagnostic markers for ischemic stroke. The ability to supply diagnostic information on possible stroke events in short turnaround times using RT-LDR/spFRET will enable clinicians to treat patients effectively with appropriate time-sensitive therapeutics.
Collapse
Affiliation(s)
- Zhiyong Peng
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | | | | |
Collapse
|
11
|
Gebregeorgis A, Bhan C, Wilson O, Raghavan D. Characterization of Silver/Bovine Serum Albumin (Ag/BSA) nanoparticles structure: Morphological, compositional, and interaction studies. J Colloid Interface Sci 2013; 389:31-41. [DOI: 10.1016/j.jcis.2012.08.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 01/29/2023]
|
12
|
Lee HS, Tsai S, Kuo CC, Bassani AW, Pepe-Mooney B, Miksa D, Masters J, Sullivan R, Composto RJ. Chitosan adsorption on hydroxyapatite and its role in preventing acid erosion. J Colloid Interface Sci 2012; 385:235-43. [PMID: 22840874 DOI: 10.1016/j.jcis.2012.06.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022]
Abstract
Polymer adsorption onto an artificial saliva (AS) layer is investigated using quartz-crystal microbalance with dissipation (QCM-D) and chitosan as the model polymer. QCM-D is utilized in an innovative manner to monitor in situ adsorption of chitosan (CH) onto a hydroxyapatite (HA) coated crystal and to examine the ability of the adsorbed layer to "protect" the HA upon sequential exposure to acidic solutions. After deposition of a thin AS layer (16 nm), the total thickness on the HA substrate increases to 37 nm upon exposure to CH at pH 5.5 for 10 min. Correspondingly, the surface charge changes from negative (i.e., AS) to positive, consistent with the adsorption the polycationic CH onto or into the AS layer. Upon exposure to an oxidizing agent, the chitosan cross-links and collapses as noted by a decrease in thickness to 10 nm and an increase in the shear modulus by an order of magnitude. Atomic force microscopy (AFM) is used to determine the surface morphology and RMS roughness of the coated and HA surfaces after citric acid challenges. Both physisorbed and cross-linked chitosan are demonstrated to limit and prevent the erosion of HA, respectively.
Collapse
Affiliation(s)
- Hyun-Su Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tsai DH, Elzey S, Delrio FW, Keene AM, Tyner KM, Clogston JD, Maccuspie RI, Guha S, Zachariah MR, Hackley VA. Tumor necrosis factor interaction with gold nanoparticles. NANOSCALE 2012; 4:3208-3217. [PMID: 22481570 DOI: 10.1039/c2nr30415e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on a systematic investigation of molecular conjugation of tumor necrosis factor-α (TNF) protein onto gold nanoparticles (AuNPs) and the subsequent binding behavior to its antibody (anti-TNF). We employ a combination of physical and spectroscopic characterization methods, including electrospray-differential mobility analysis, dynamic light scattering, polyacrylamide gel electrophoresis, attenuated total reflectance-Fourier transform infrared spectroscopy, fluorescence assay, and enzyme-linked immunosorbent assay. The native TNF used in this study exists in the active homotrimer configuration prior to conjugation. After binding to AuNPs, the maximum surface density of TNF is (0.09 ± 0.02) nm(-2) with a binding constant of 3 × 10(6) (mol L(-1))(-1). Dodecyl sulfate ions induce desorption of monomeric TNF from the AuNP surface, indicating a relatively weak intermolecular binding within the AuNP-bound TNF trimers. Anti-TNF binds to both TNF-conjugated and citrate-stabilized AuNPs, showing that non-specific binding is significant. Based on the number of anti-TNF molecules adsorbed, a substantially higher binding affinity was observed for the TNF-conjugated surface. The inclusion of thiolated polyethylene glycol (SH-PEG) on the AuNPs inhibits the binding of anti-TNF, and the amount of inhibition is related to the number ratio of surface bound SH-PEG to TNF and the way in which the ligands are introduced. This study highlights the challenges in quantitatively characterizing complex hybrid nanoscale conjugates, and provides insight on TNF-AuNP formation and activity.
Collapse
Affiliation(s)
- De-Hao Tsai
- National Institute of Standards and Technology, Material Measurement Laboratory, Gaithersburg, MD 20899-8520, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi(3) (+) primary ions. Biointerphases 2012; 6:135. [PMID: 21974684 DOI: 10.1116/1.3622347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although previous studies have demonstrated that TOF-SIMS is a powerful method for the characterization of adsorbed proteins due to its specificity and surface sensitivity, it was unclear from earlier work whether the differences between proteins observed on uniform flat surfaces were large enough to facilitate clear image contrast between similar proteins in small areas on topographically complex samples that are more typical of biological tissues. The goal of this study was to determine whether Bi(3) (+) could provide sufficiently high sensitivity to provide clear identification of the different proteins in an image. In this study, 10 μm polystyrene microspheres were adsorbed with one of three different proteins, human serum albumin (HSA), bovine serum albumin (BSA), and hemoglobin. Spheres coated with HSA were then mixed with spheres coated with either BSA (a very similar protein) or hemoglobin (a dramatically different protein), and deposited on silicon substrates. Fluorescent labeling was used to verify the SIMS results. With maximum autocorrelation factors (MAF) processing, images showed clear contrast between both the very different proteins (HSA and hemoglobin) and the very similar proteins (HSA and BSA). Similar results were obtained with and without the fluorescent labels. MAF images were calculated using both the full spectrum and only characteristic amino acid fragments. Although better image contrast was obtained using the full spectrum, differences between the spheres were still evident when only the amino acid fragments were included in the analysis, suggesting that we are truly observing differences between the proteins themselves. These results demonstrate that TOF-SIMS, with a Bi(3) (+) primary ion, is a powerful technique for characterizing interfacial proteins not only on large uniform surfaces, but also with high spatial resolution on the topographically complex samples typical in biological analysis.
Collapse
|
15
|
Tsai DH, DelRio FW, Keene AM, Tyner KM, MacCuspie RI, Cho TJ, Zachariah MR, Hackley VA. Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2464-77. [PMID: 21341776 DOI: 10.1021/la104124d] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The adsorption and conformation of bovine serum albumin (BSA) on gold nanoparticles (AuNPs) were interrogated both qualitatively and quantitatively via complementary physicochemical characterization methods. Dynamic light scattering (DLS), asymmetric-flow field flow fractionation (AFFF), fluorescence spectrometry, and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy were combined to characterize BSA-AuNP conjugates under fluid conditions, while conjugates in the aerosol state were characterized by electrospray-differential mobility analysis (ES-DMA). The presence of unbound BSA molecules interferes with DLS analysis of the conjugates, particularly as the AuNP size decreases (i.e., below 30 nm in diameter). Under conditions where the γ value is high, where γ is defined as the ratio of scattering intensity by AuNPs to the scattering intensity by unbound BSA, DLS size results are consistent with results obtained after fractionation by AFFF. Additionally, the AuNP hydrodynamic size exhibits a greater proportional increase due to BSA conjugation at pH values below 2.5 compared with less acidic pH values (3.4-7.3), corresponding with the reversibly denatured (E or F form) conformation of BSA below pH 2.5. Over the pH range from 3.4 to 7.3, the hydrodynamic size of the conjugate is nearly constant, suggesting conformational stability over this range. Because of the difference in the measurement environment, a larger increase of AuNP size is observed following BSA conjugation when measured in the wet state (i.e., by DLS and AFFF) compared to the dry state (by ES-DMA). Molecular surface density for BSA is estimated based on ES-DMA and fluorescence measurements. Results from the two techniques are consistent and similar, but slightly higher for ES-DMA, with an average adsorbate density of 0.015 nm(-2). Moreover, from the change of particle size, we determine the extent of adsorption for BSA on AuNPs using DLS and ES-DMA at 21 °C, which show that increasing the concentration of BSA increases the measured change in AuNP size. Using ES-DMA, we observe that the BSA surface density reaches 90% of saturation at a solution phase concentration between 10 and 30 μmol/L, which is roughly consistent with fluorescence and ATR-FTIR results. The equilibrium binding constant for BSA on AuNPs is calculated by applying the Langmuir equation, with resulting values ranging from 0.51 × 10(6) to 1.65 × 10(6) L/mol, suggesting a strong affinity due to bonding between the single free exterior thiol on N-form BSA (associated with a cysteine residue) and the AuNP surface. Moreover, the adsorption interaction induces a conformational change in BSA secondary structure, resulting in less α-helix content and more open structures (β-sheet, random, or expanded).
Collapse
Affiliation(s)
- De-Hao Tsai
- Material Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899-8520, United States
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Bellezza F, Cipiciani A, Latterini L, Posati T, Sassi P. Structure and catalytic behavior of myoglobin adsorbed onto nanosized hydrotalcites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10918-10924. [PMID: 19735144 DOI: 10.1021/la901448a] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The adsorption of myoglobin (Mb) onto nanosized nickel aluminum hydrotalcite (NiAl-HTlc) surface was studied, and the structural properties of the resulting protein layer were analyzed by using FT-IR, Raman, and fluorescence spectroscopies. Upon adsorption onto the nanoparticle surface, the protein molecules maintained their secondary structure, while the tertiary structure was altered. The fluorescence spectra and anisotropy values of adsorbed Mb revealed that the emitting amino acid residues are affected by different microenvironments when compared to the native protein behavior. Moreover, the decrease of fluorescence decay times of tryptophan indicated the occurrence of interactions among the fluorophores and the constituents of the nanoparticles, such as the metal cations, which can take place when conformational changes of Mb occur. Raman spectra indicated that the interaction of Mb molecules with NiAl-HTlc nanoparticles modified the porphyrin core, changing the spin state of the heme iron from high spin (HS) to low spin (LS). The enzymatic activity of the nanostructured biocomposite was evaluated in the oxidation of 2-methoxyphenol by hydrogen peroxide and discussed on the basis of structural properties of adsorbed myoglobin.
Collapse
Affiliation(s)
- Francesca Bellezza
- Dipartimento di Chimica, Università di Perugia, via Elce di Sotto, 8, 06123 Perugia, Italy
| | | | | | | | | |
Collapse
|