1
|
Moreira D, Regev O, Basílio N, Marques EF. Light and pH responsive catanionic vesicles based on a chalcone/flavylium photoswitch for smart drug delivery: From molecular design to the controlled release of doxorubicin. J Colloid Interface Sci 2023; 650:2024-2034. [PMID: 37536006 DOI: 10.1016/j.jcis.2023.07.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Spatially and temporally localized delivery is a promising strategy to circumvent adverse effects of traditional drug therapy such as drug toxicity and prolonged treatments. Stimuli-responsive colloidal nanocarriers can be crucial to attain such goals. Here, we develop a delivery system based on dual light and pH responsive vesicles having a cationic bis-quat gemini surfactant, 12-2-12, and a negatively charged amphiphilic chalcone, C4SCh. The premise is to exploit the chalcone/flavylium interconversion to elicit a morphological change of the vesicles leading to the controlled release of an encapsulated drug. First, the phase behavior of the catanionic system is studied and the desirable composition yielding stable unilamellar vesicles identified and selected for further studies. The solutions containing vesicles (Dh ≈ 200 nm, ζ-potential ≈ 80 mV) are in-depth characterized by light microscopy, cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS) and surface tension measurements. Upon subjecting the vesicles to UV irradiation (λ = 365 nm) at near neutral pH (≈ 6.0), no morphological effects are observed, yet when irradiation is coupled with pH = 3.0, the majority of the vesicles are disrupted into bilayer fragments. The anticancer drug doxorubicin (DOX) is successfully entrapped in the non-irradiated vesicles, yielding an encapsulation efficiency of ≈ 25% and a loading capacity of ≈ 3%. The release profile of the drug-loaded vesicles is then studied in vitro in four conditions: i) no stimuli (pH = 6.0); ii) irradiation, pH = 6.0; iii) no irradiation and adjusted pH = 3.0; iv) irradiation and adjusted pH = 3.0 Crucially, irradiation at pH = 3.0 leads to a sustained release of DOX to ca. 80% (within 4 h), whereas cases i) and ii) lead to only ≈ 25 % release and case iii) to 50% release but precipitation of the vesicles. Thus, our initial hypothesis is confirmed: we present a proof of concept delivery system where light and pH act as inputs of an AND logic gate mechanism for the controlled release of a relevant biomedical drug (output). This may prove useful if the irradiated nanocarriers meet acidified physiological environments such as tumors sites, endosomes or lysosomes.
Collapse
Affiliation(s)
- Dmitriy Moreira
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Oren Regev
- Department of Chemical Engineering and (d)Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Nuno Basílio
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Eduardo F Marques
- CIQUP, IMS (Institute of Molecular Sciences), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
2
|
Albanese P, Cataldini S, Ren CZJ, Valletti N, Brunetti J, Chen JLY, Rossi F. Light-Switchable Membrane Permeability in Giant Unilamellar Vesicles. Pharmaceutics 2022; 14:2777. [PMID: 36559270 PMCID: PMC9780837 DOI: 10.3390/pharmaceutics14122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In this work, giant unilamellar vesicles (GUVs) were synthesized by blending the natural phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with a photoswitchable amphiphile (1) that undergoes photoisomerization upon irradiation with UV-A (E to Z) and blue (Z to E) light. The mixed vesicles showed marked changes in behavior in response to UV light, including changes in morphology and the opening of pores. The fine control of membrane permeability with consequent cargo release could be attained by modulating either the UV irradiation intensity or the membrane composition. As a proof of concept, the photocontrolled release of sucrose from mixed GUVs is demonstrated using microscopy (phase contrast) and confocal studies. The permeability of the GUVs to sucrose could be increased to ~4 × 10-2 μm/s when the system was illuminated by UV light. With respect to previously reported systems (entirely composed of synthetic amphiphiles), our findings demonstrate the potential of photosensitive GUVs that are mainly composed of natural lipids to be used in medical and biomedical applications, such as targeted drug delivery and localized topical treatments.
Collapse
Affiliation(s)
- Paola Albanese
- Department of Earth, Environmental & Physical Sciences, University of Siena, Pian Mantellini 44, 53100 Siena, Italy
| | - Simone Cataldini
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Chloe Z-J Ren
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1142, New Zealand
| | - Nadia Valletti
- Department of Earth, Environmental & Physical Sciences, University of Siena, Pian Mantellini 44, 53100 Siena, Italy
| | - Jlenia Brunetti
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Jack L-Y Chen
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Via Aldo Moro, 53100 Siena, Italy
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Federico Rossi
- Department of Earth, Environmental & Physical Sciences, University of Siena, Pian Mantellini 44, 53100 Siena, Italy
| |
Collapse
|
3
|
Kolay S, Mondal A, Ali SM, Santra S, Molla MR. Photoswitchable polyurethane based nanoaggregates for on-command release of noncovalent guest molecules. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2132168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Soumya Kolay
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Sk. Mursed Ali
- Department of Chemistry, University of Calcutta, Kolkata, India
| | - Subrata Santra
- Department of Chemistry, University of Calcutta, Kolkata, India
| | | |
Collapse
|
4
|
Yamaguchi T, Ogawa M. Photoinduced movement: how photoirradiation induced the movements of matter. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:796-844. [PMID: 36465797 PMCID: PMC9718566 DOI: 10.1080/14686996.2022.2142955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Pioneered by the success on active transport of ions across membranes in 1980 using the regulation of the binding properties of crown ethers with covalently linked photoisomerizable units, extensive studies on the movements by using varied interactions between moving objects and environments have been reported. Photoinduced movements of various objects ranging from molecules, polymers to microscopic particles were discussed from the aspects of the driving for the movements, materials design to achieve the movements and systems design to see and to utilize the movements are summarized in this review.
Collapse
Affiliation(s)
- Tetsuo Yamaguchi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, South Korea
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
5
|
Opposite effect of cyclic and chain-like hydrocarbons on the trend of self-assembly transition in catanionic surfactant systems. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Mollé LM, Smyth CH, Yuen D, Johnston APR. Nanoparticles for vaccine and gene therapy: Overcoming the barriers to nucleic acid delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1809. [PMID: 36416028 PMCID: PMC9786906 DOI: 10.1002/wnan.1809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
Nucleic acid therapeutics can be used to control virtually every aspect of cell behavior and therefore have significant potential to treat genetic disorders, infectious diseases, and cancer. However, while clinically approved to treat a small number of diseases, the full potential of nucleic acid therapeutics is hampered by inefficient delivery. Nucleic acids are large, highly charged biomolecules that are sensitive to degradation and so the approaches to deliver these molecules differ significantly from traditional small molecule drugs. Current studies suggest less than 1% of the injected nucleic acid dose is delivered to the target cell in an active form. This inefficient delivery increases costs and limits their use to applications where a small amount of nucleic acid is sufficient. In this review, we focus on two of the major barriers to efficient nucleic acid delivery: (1) delivery to the target cell and (2) transport to the subcellular compartment where the nucleic acids are therapeutically active. We explore how nanoparticles can be modified with targeting ligands to increase accumulation in specific cells, and how the composition of the nanoparticle can be engineered to manipulate or disrupt cellular membranes and facilitate delivery to the optimal subcellular compartments. Finally, we highlight how with intelligent material design, nanoparticle delivery systems have been developed to deliver nucleic acids that silence aberrant genes, correct genetic mutations, and act as both therapeutic and prophylactic vaccines. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Lara M. Mollé
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Cameron H. Smyth
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Daniel Yuen
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Angus P. R. Johnston
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| |
Collapse
|
7
|
Silanteva IA, Komolkin AV, Mamontova VV, Gabrusenok PV, Vorontsov-Velyaminov PN, Santer S, Kasyanenko NA. Cis-Isomers of Photosensitive Cationic Azobenzene Surfactants in DNA Solutions at Different NaCl Concentrations: Experiment and Modeling. J Phys Chem B 2021; 125:11197-11207. [PMID: 34586822 DOI: 10.1021/acs.jpcb.1c07864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA.
Collapse
Affiliation(s)
- Irina A Silanteva
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Andrei V Komolkin
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Veronika V Mamontova
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel V Gabrusenok
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Pavel N Vorontsov-Velyaminov
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| | - Svetlana Santer
- Experimental Physics, Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Nina A Kasyanenko
- Faculty of Physics, Saint Petersburg University, 7-9 Universitetskaya Embankment, Saint Petersburg 199034, Russia
| |
Collapse
|
8
|
Lee DC, Guye KN, Paranji RK, Lachowski K, Pozzo LD, Ginger DS, Pun SH. Dual-Stimuli Responsive Single-Chain Polymer Folding via Intrachain Complexation of Tetramethoxyazobenzene and β-Cyclodextrin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10126-10134. [PMID: 34369796 DOI: 10.1021/acs.langmuir.1c01442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We synthesize and characterize a triblock polymer with asymmetric tetramethoxyazobenzene (TMAB) and β-cyclodextrin functionalization, taking advantage of the well-characterized azobenzene derivative-cyclodextrin inclusion complex to promote photoresponsive, self-contained folding of the polymer in an aqueous system. We use 1H NMR to show the reversibility of (E)-to-(Z) and (Z)-to-(E) TMAB photoisomerization, and evaluate the thermal stability of (Z)-TMAB and the comparatively rapid acid-catalyzed thermal (Z)-to-(E) isomerization. Important for its potential use as a functional material, we show the photoisomerization cyclability of the polymeric TMAB chromophore and calculate isomerization quantum yields by extinction spectroscopy. To verify self-inclusion of the polymeric TMAB and cyclodextrin, we use two-dimensional 1H NOESY NMR data to show proximity of TMAB and cyclodextrin in the (E)-state only; however, (Z)-TMAB is not locally correlated with cyclodextrin. Finally, the observed decrease in photoisomerization quantum yield for the dual-functionalized polymer compared to the isolated chromophore in an aqueous solution confirms TMAB and β-cyclodextrin not only are in proximity to one another, but also form the inclusion complex.
Collapse
Affiliation(s)
- Daniel C Lee
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Rajan K Paranji
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Kacper Lachowski
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Suzie H Pun
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
UV-responsive micellar systems and aqueous two-phase systems based on cationic ester-containing gemini surfactant and sodium trans-ortho-methoxycinnamate. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021; 18:205-227. [PMID: 32969740 PMCID: PMC7904578 DOI: 10.1080/17425247.2021.1828339] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Nanocarrier-based delivery systems offer multiple benefits to overcome limitations of the traditional drug dosage forms, such as protection of the drug, enhanced bioavailability, targeted delivery to disease site, etc. Nanocarriers have exhibited tremendous successes in targeted delivery of therapeutics to the desired tissues and cells with improved bioavailability, high drug loading capacity, enhanced intracellular delivery, and better therapeutic effect. A specific design of stimuli-responsive nanocarriers allows for changing their structural and physicochemical properties in response to exogenous and endogenous stimuli. These nanocarriers show a promise in site specific controlled release of therapeutics under certain physiological conditions or external stimuli. AREAS COVERED This review highlights recent progresses on the multifunctional and stimuli-sensitive nanocarriers for targeted therapeutic drug delivery applications. EXPERT OPINION The progress from single functional to multifunctional nanocarriers has shown tremendous potential for targeted delivery of therapeutics. On our opinion, the future of targeted delivery of drugs, nucleic acids, and other substances belongs to the site-targeted multifunctional and stimuli-based nanoparticles with controlled release. Targeting of nanocarriers to the disease site enhance the efficacy of the treatment by delivering more therapeutics specifically to the affected cells and substantially limiting adverse side effects upon healthy organs, tissues, and cells.
Collapse
Affiliation(s)
- Joydeb Majumder
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Environmental and Occupational Health Science Institute, Piscataway, NJ, USA
| |
Collapse
|
11
|
Suppression of Peritoneal Fibrosis by Sonoporation of Hepatocyte Growth Factor Gene-Encoding Plasmid DNA in Mice. Pharmaceutics 2021; 13:pharmaceutics13010115. [PMID: 33477422 PMCID: PMC7829751 DOI: 10.3390/pharmaceutics13010115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Gene therapy is expected to be used for the treatment of peritoneal fibrosis, which is a serious problem associated with long-term peritoneal dialysis. Hepatocyte growth factor (HGF) is a well-known anti-fibrotic gene. We developed an ultrasound and nanobubble-mediated (sonoporation) gene transfection system, which selectively targets peritoneal tissues. Thus, we attempted to treat peritoneal fibrosis by sonoporation-based human HGF (hHGF) gene transfection in mice. To prepare a model of peritoneal fibrosis, mice were intraperitoneally injected with chlorhexidine digluconate. We evaluated the preventive and curative effects of sonoporation-based hHGF transfection by analyzing the following factors: hydroxyproline level, peritoneum thickness, and the peritoneal equilibration test. The transgene expression characteristics of sonoporation were also evaluated using multicolor deep imaging. In early-stage fibrosis in mice, transgene expression by sonoporation was observed in the submesothelial layer. Sonoporation-based hHGF transfection showed not only a preventive effect but also a curative effect for early-stage peritoneal fibrosis. Sonoporation-based hHGF transfection may be suitable for the treatment of peritoneal fibrosis regarding the transfection characteristics of transgene expression in the peritoneum under fibrosis.
Collapse
|
12
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
13
|
Sharma B, Kaur G, Chaudhary GR. Optimization and utilization of single chain metallocatanionic vesicles for antibacterial photodynamic therapy (aPDT) against E. coli. J Mater Chem B 2020; 8:9304-9313. [PMID: 32966540 DOI: 10.1039/d0tb01551b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Currently, bacterial infection due to multi-drug-resistant bacteria is one of the foremost problems in public health. Photodynamic therapy plays a significant role against bacterial infection, without causing any side effects. But the photosensitizers are associated with many drawbacks, which lessen their photodynamic efficiency. In this context, the current study describes the synthesis of new metallocatanionic vesicles and employs them in photodynamic therapy. These vesicles were synthesized by using a single-chain cationic metallosurfactant (CuCPC I) and sodium oleate (NaOl) as an anionic component. These vesicles were characterized from conductivity, dynamic light scattering, zeta potential, field emission scanning electron microscopy, and confocal microscopy measurements. Methylene blue (MB) was used as a photosensitizer and its singlet oxygen quantum yield in the presence of these vesicles was determined by irradiating with 650 nm wavelength laser light. These vesicles play a dual-functional role, one helping in delivering the photosensitizer and the second doubling their singlet oxygen production capability due to the presence of metal ions. Antibacterial photodynamic therapy (aPDT) was studied against E. coli bacteria (Gram-negative bacteria). These vesicles also inherit their antibacterial activity and MB-encapsulated metallocatanionic vesicles on irradiation have shown 100% killing efficiency. In summary, we offer metallocatanionic vesicles prepared via a facile approach, which encapsulate a photosensitizer and can be used to combat E. coli infection through photodynamic therapy. We envisage that these synthesized metallocatanionic vesicles will provide a new modification to the catanionic mixture family and could be used for various applications in the future.
Collapse
Affiliation(s)
- Bunty Sharma
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.
| | - Gurpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.
| | - Ganga Ram Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Seidel ZP, Zhang X, MacMullan MA, Graham NA, Wang P, Lee CT. Photo-Triggered Delivery of siRNA and Paclitaxel into Breast Cancer Cells Using Catanionic Vesicles. ACS APPLIED BIO MATERIALS 2020; 3:7388-7398. [DOI: 10.1021/acsabm.0c00503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zumra Peksaglam Seidel
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Xiaoyang Zhang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Melanie A. MacMullan
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Nicholas Alexander Graham
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Pin Wang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - C. Ted Lee
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
15
|
Ma S, Kurihara S, Tomimori Y, Kim S, Kwon E, Muramatsu A, Kanie K. Self-assembly of photoresponsive azo-containing phospholipids with a polar group as the tail. RSC Adv 2020; 10:32984-32991. [PMID: 35516475 PMCID: PMC9056651 DOI: 10.1039/d0ra06803a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Vesicles or micelles prepared from amphiphiles with azobenzene (Az) moieties and long alkyl chains have attracted much attention in drug delivery systems. To induce release behavior from smart carriers via trans–cis photoisomerization of the Az groups, UV light exposure is typically used, but it can damage DNA and hardly penetrates cells. In this paper, Az-containing phospholipids without long alkyl tails were designed and synthesized; in these compounds, the end group of the Az moiety was substituted with a –NO2 and –OCH3 group (abbreviated N6 and M6, respectively). N6 self-assembled into H-aggregates with an interdigitated bilayered structure in water through the antiparallel orientation due to π–π interactions of the Az group, the attractive van der Waals forces, and the interactions and bending behavior of the phosphocholine groups. Vesicles showing visible light stimuli-responsive behavior were obtained by mixing N6 and M6, and the release of encapsulated calcein was triggered by visible light. A mixture of a nitro- and methoxy-substituted azo-containing phospholipids without long alkyl tails formed vesicles showing visible light stimuli-responsive behavior. Release of encapsulated calcein from the vesicles was triggered by visible light.![]()
Collapse
Affiliation(s)
- Su Ma
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan .,School of Chemistry, Biology and Material Engineering, Suzhou University of Science and Technology No. 99 Xuefu Road, Huqiu District Suzhou 215009 China
| | - Seiji Kurihara
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Yasuhiro Tomimori
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Sunnam Kim
- Department of Applied Chemistry and Biochemistry, Graduate School of Science and Technology, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Eunsang Kwon
- Graduate School of Science Research and Analytical Center for Giant Molecules, Tohoku University 6-3 Aramakiazaaoba, Aoba-ku Sendai 990-8578 Japan
| | - Atsushi Muramatsu
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Aoba-ku Sendai 980-8577 Japan
| | - Kiyoshi Kanie
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Aoba-ku Sendai 980-8577 Japan
| |
Collapse
|
16
|
Chen W, Goldys EM, Deng W. Light-induced liposomes for cancer therapeutics. Prog Lipid Res 2020; 79:101052. [DOI: 10.1016/j.plipres.2020.101052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
|
17
|
Zhang Y, Cai HY, Hu SS, Li JG, Gong QT, Ma WJ, Liu ZY, Zhang L, Zhang L, Zhao S. Interfacial dilational properties of betaines and sulfonate mixtures: Effects of alkyl chain length. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2018.1561305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Enhanced Oil Recovery, Beijing, P. R. China
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing, P. R. China
| | - Hong-Yan Cai
- State Key Laboratory of Enhanced Oil Recovery, Beijing, P. R. China
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing, P. R. China
| | - Song-Shuang Hu
- Yanshan Branch, Beijing Research Institute of Chemical Industry, SINOPEC, Beijing, P. R. China
| | - Jian-Guo Li
- State Key Laboratory of Enhanced Oil Recovery, Beijing, P. R. China
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing, P. R. China
| | - Qing-Tao Gong
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wang-Jing Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zi-Yu Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Lu Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| | - Sui Zhao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
18
|
Surface properties and phase behavior of Gemini/conventional surfactant mixtures based on multiple quaternary ammonium salts. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.02.126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Do HD, Couillaud BM, Doan BT, Corvis Y, Mignet N. Advances on non-invasive physically triggered nucleic acid delivery from nanocarriers. Adv Drug Deliv Rev 2019; 138:3-17. [PMID: 30321618 DOI: 10.1016/j.addr.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022]
Abstract
Nucleic acids (NAs) have been considered as promising therapeutic agents for various types of diseases. However, their clinical applications still face many limitations due to their charge, high molecular weight, instability in biological environment and low levels of transfection. To overcome these drawbacks, therapeutic NAs should be carried in a stable nanocarrier, which can be viral or non-viral vectors, and released at specific target site. Various controllable gene release strategies are currently being evaluated with interesting results. Endogenous stimuli-responsive systems, for example pH-, redox reaction-, enzymatic-triggered approaches have been widely studied based on the physiological differences between pathological and normal tissues. Meanwhile, exogenous triggered release strategies require the use of externally non-invasive physical triggering signals such as light, heat, magnetic field and ultrasound. Compared to internal triggered strategies, external triggered gene release is time and site specifically controllable through active management of outside stimuli. The signal induces changes in the stability of the delivery system or some specific reactions which lead to endosomal escape and/or gene release. In the present review, the mechanisms and examples of exogenous triggered gene release approaches are detailed. Challenges and perspectives of such gene delivery systems are also discussed.
Collapse
|
20
|
Wei J, Jin TT, Yin YF, Jiang XM, Zheng ST, Zhan TG, Cui J, Liu LJ, Kong LC, Zhang KD. Red-light-responsive molecular encapsulation in water: an ideal combination of photochemistry and host–guest interaction. Org Chem Front 2019. [DOI: 10.1039/c8qo01157e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Red-light-responsive CB[8]-mediated host–guest system featured with high photoisomerization ratio was fabricated which could be used as molecular container with red-light-activated release ability.
Collapse
|
21
|
Tan X, Burchfield EL, Zhang K. Light-responsive Drug Delivery Systems. STIMULI-RESPONSIVE DRUG DELIVERY SYSTEMS 2018. [DOI: 10.1039/9781788013536-00163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Materials that interact with light and subsequently change their physicochemical properties are of great interest for drug delivery. The human body is semitransparent to light of the near-infrared (NIR) region, which makes it possible to use light as an external stimulus to trigger drug release. In this chapter, we review light-triggered drug release systems of both photochemical and photothermal mechanisms. We explore recent literature on a variety of light-responsive materials for drug delivery, including organic, inorganic, and hybrid systems, which collectively embody the strategies for synergizing light responsiveness for controlled drug release/activation with other drug delivery techniques.
Collapse
Affiliation(s)
- X. Tan
- Northeastern University, Department of Chemistry and Chemical Biology 360 Huntington Ave. Boston MA 02115 USA
| | - E. L. Burchfield
- Northeastern University, Department of Chemistry and Chemical Biology 360 Huntington Ave. Boston MA 02115 USA
| | - K. Zhang
- Northeastern University, Department of Chemistry and Chemical Biology 360 Huntington Ave. Boston MA 02115 USA
| |
Collapse
|
22
|
Tabor RF, McCoy TM, Hu Y, Wilkinson BL. Physicochemical and Biological Characterisation of Azobenzene-Containing Photoswitchable Surfactants. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rico F. Tabor
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas M. McCoy
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Yingxue Hu
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Brendan L. Wilkinson
- School of Science and Technology, University of New England, Armidale, New South Wales 2351, Australia
| |
Collapse
|
23
|
Design and development of a robust photo-responsive block copolymer framework for tunable nucleic acid delivery and efficient gene silencing. Polym J 2018. [DOI: 10.1038/s41428-018-0077-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Zhang Y, Chan PPY, Herr AE. Rapid Capture and Release of Nucleic Acids through a Reversible Photo-Cycloaddition Reaction in a Psoralen-Functionalized Hydrogel. Angew Chem Int Ed Engl 2018; 57:2357-2361. [PMID: 29316080 PMCID: PMC5955697 DOI: 10.1002/anie.201711441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/21/2022]
Abstract
Reversible immobilization of DNA and RNA is of great interest to researchers who seek to manipulate DNA or RNA in applications such as microarrays, DNA hydrogels, and gene therapeutics. However, there is no existing system that can rapidly capture and release intact nucleic acids. To meet this unmet need, we developed a functional hydrogel for rapid DNA/RNA capture and release based on the reversible photo-cycloaddition of psoralen and pyrimidines. The functional hydrogel can be easily fabricated through copolymerization of acrylamide with the synthesized allylated psoralen. The psoralen-functionalized hydrogel exhibits effective capture and release of nucleic acids spanning a wide range of lengths in a rapid fashion; over 90 % of the capture process is completed within 1 min, and circa 100 % of the release process is completed within 2 min. We observe no deleterious effects on the hybridization to the captured targets.
Collapse
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peggy P Y Chan
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
- Faculty of Science Engineering & Technology, Swinburne University of Technology, Melbourne, VIC, 3122, Australia
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
25
|
Uda RM, Nishimoto N. Photoinduced DNA Solubilization in Chloroform Solution by Complexing with Photoionizable Malachite Green Derivative. CHEM LETT 2018. [DOI: 10.1246/cl.171049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ryoko M. Uda
- Department of Chemical Engineering, National Institute of Technology, Nara College, Yata 22, Yamato-koriyama, Nara 639-1080, Japan
| | - Noriko Nishimoto
- Department of Chemical Engineering, National Institute of Technology, Nara College, Yata 22, Yamato-koriyama, Nara 639-1080, Japan
| |
Collapse
|
26
|
di Gregorio MC, Gubitosi M, Travaglini L, Pavel NV, Jover A, Meijide F, Vázquez Tato J, Sennato S, Schillén K, Tranchini F, De Santis S, Masci G, Galantini L. Supramolecular assembly of a thermoresponsive steroidal surfactant with an oppositely charged thermoresponsive block copolymer. Phys Chem Chem Phys 2018; 19:1504-1515. [PMID: 27990552 DOI: 10.1039/c6cp05665b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular rearrangements are crucial in determining the response of stimuli sensitive soft matter systems such as those formed by mixtures of oppositely charged amphiphiles. Here mixtures of this kind were prepared by mixing the cationic block copolymer pAMPTMA30-b-pNIPAAM120 and an anionic surfactant obtained by the modification of the bile salt sodium cholate. As pure components, the two compounds presented a thermoresponsive self-assembly at around 30-35 °C; a micelle formation in the case of the copolymer and a transition from fibers to tubes in the case of the bile salt derivative. When both were present in the same solution they associated into mixed aggregates that showed complex thermoresponsive features. At room temperature, the core of the aggregate was comprised of a supramolecular twisted ribbon of the bile salt derivative. The block copolymers were anchored on the surface of this ribbon through electrostatic interactions between their charged blocks and the oppositely charged heads of the bile salt molecules. The whole structure was stabilized by a corona of the uncharged blocks that protruded into the surrounding solvent. By increasing the temperature to 30-34 °C the mixed aggregates transformed into rods with smooth edges that associated into bundles and clusters, which in turn induced clouding of the solution. Circular dichroism allowed us to follow progressive rearrangements of the supramolecular organization within the complex, occurring in the range of temperature of 20-70 °C.
Collapse
Affiliation(s)
- M C di Gregorio
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - M Gubitosi
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - L Travaglini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - N V Pavel
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - A Jover
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - F Meijide
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - J Vázquez Tato
- Departamento de Química Física, Facultad de Ciencias, Universidad de Santiago de Compostela, Avda. Alfonso X El Sabio s/n, 27002 Lugo, Spain
| | - S Sennato
- Department of Physics and CNR-IPCF UOS Roma, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - K Schillén
- Division of Physical Chemistry, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - F Tranchini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - S De Santis
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | | | - L Galantini
- Department of Chemistry, "Sapienza" University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
27
|
Zhang Y, Chan PPY, Herr AE. Rapid Capture and Release of Nucleic Acids through a Reversible Photo-Cycloaddition Reaction in a Psoralen-Functionalized Hydrogel. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yizhe Zhang
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
| | - Peggy P. Y. Chan
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
- Faculty of Science Engineering & Technology; Swinburne University of Technology; Melbourne VIC 3122 Australia
| | - Amy E. Herr
- Department of Bioengineering; University of California, Berkeley; Berkeley CA 94720 USA
| |
Collapse
|
28
|
Montagna M, Guskova O. Photosensitive Cationic Azobenzene Surfactants: Thermodynamics of Hydration and the Complex Formation with Poly(methacrylic acid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:311-321. [PMID: 29228776 DOI: 10.1021/acs.langmuir.7b03638] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this computational work, we investigate the photosensitive cationic surfactants with the trimethylammonium or polyamine hydrophilic head and the azobenzene-containing hydrophobic tail. The azobenzene-based molecules are known to undergo a reversible trans-cis-trans isomerization reaction when subjected to UV-visible light irradiation. Combining the density functional theory and the all-atom molecular dynamics simulations, the structural and the hydration properties of the trans- and the cis-isomers and their interaction with the oppositely charged poly(methacrylic acid) in aqueous solution are investigated. We establish and quantify the correlations of the molecular structure and the isomerization state of the surfactants and their hydrophilicity/hydrophobicity and the self-assembling altered by light. For this reason, we compare the hydration free energies of the trans- and the cis-isomers. Moreover, the investigations of the interaction strength between the azobenzene molecules and the polyanion provide additional elucidations of the recent experimental and theoretical studies on the light triggered reversible deformation behavior of the microgels and the polymer brushes loaded with azobenzene surfactants.
Collapse
Affiliation(s)
- Maria Montagna
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, D-01069 Dresden, Germany
| | - Olga Guskova
- Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden , Hohe Str. 6, D-01069 Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden , D-01062 Dresden, Germany
| |
Collapse
|
29
|
Ruttala HB, Ramasamy T, Madeshwaran T, Hiep TT, Kandasamy U, Oh KT, Choi HG, Yong CS, Kim JO. Emerging potential of stimulus-responsive nanosized anticancer drug delivery systems for systemic applications. Arch Pharm Res 2017; 41:111-129. [DOI: 10.1007/s12272-017-0995-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 01/05/2023]
|
30
|
Stimuli-responsive nanocarriers for intracellular delivery. Biophys Rev 2017; 9:931-940. [PMID: 29178081 DOI: 10.1007/s12551-017-0341-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022] Open
Abstract
The emergence of different nanoparticles (NPs) has made a significant revolution in the field of medicine. Different NPs in the form of metallic NPs, dendrimers, polymeric NPs, carbon quantum dots and liposomes have been functionalized and used as platforms for intracellular delivery of biomolecules, drugs, imaging agents and nucleic acids. These NPs are designed to improve the pharmacokinetic properties of the drug, improve their bioavailability and successfully surpass physiological or pathological obstacles in the biological system so that therapeutic efficacy is achieved. In this review I present some of the current approaches used in intracellular delivery systems, with a focus on various stimuli-responsive nanocarriers, including cell-penetrating peptides, to highlight their various biomedical applications.
Collapse
|
31
|
|
32
|
Dhawan VV, Nagarsenker MS. Catanionic systems in nanotherapeutics – Biophysical aspects and novel trends in drug delivery applications. J Control Release 2017; 266:331-345. [DOI: 10.1016/j.jconrel.2017.09.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/28/2017] [Indexed: 01/10/2023]
|
33
|
Moratz J, Stricker L, Engel S, Ravoo BJ. Controlling Complex Stability in Photoresponsive Macromolecular Host–Guest Systems: Toward Reversible Capture of DNA by Cyclodextrin Vesicles. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Moratz
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Lucas Stricker
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Sabrina Engel
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft NanoscienceWestfälische Wilhelms‐Universität Münster Corrensstr. 40 48149 Münster Germany
| |
Collapse
|
34
|
Gupta M, Lee HI. A Pyrene Derived CO2-Responsive Polymeric Probe for the Turn-On Fluorescent Detection of Nerve Agent Mimics with Tunable Sensitivity. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01200] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Moumita Gupta
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyung-il Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| |
Collapse
|
35
|
Li Y, Gao J, Zhang C, Cao Z, Cheng D, Liu J, Shuai X. Stimuli-Responsive Polymeric Nanocarriers for Efficient Gene Delivery. Top Curr Chem (Cham) 2017; 375:27. [DOI: 10.1007/s41061-017-0119-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/31/2017] [Indexed: 11/25/2022]
|
36
|
Geng S, Wang Y, Wang L, Kouyama T, Gotoh T, Wada S, Wang JY. A Light-Responsive Self-Assembly Formed by a Cationic Azobenzene Derivative and SDS as a Drug Delivery System. Sci Rep 2017; 7:39202. [PMID: 28051069 PMCID: PMC5209711 DOI: 10.1038/srep39202] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/21/2016] [Indexed: 11/23/2022] Open
Abstract
The structure of a self-assembly formed from a cationic azobenzene derivative, 4-cholesterocarbonyl-4'-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and surfactant sodium dodecyl sulfate (SDS) in aqueous solution was studied by cryo-TEM and synchrotron radiation small-angle X-ray scattering (SAXS). Both unilamellar and multilamellar vesicles could be observed. CAB in vesicles were capable to undergo reversible trans-to-cis isomerization upon UV or visible light irradiation. The structural change upon UV light irradiation could be catched by SAXS, which demonstrated that the interlamellar spacing of the cis-multilamellar vesicles increased by 0.2-0.3 nm. Based on this microstructural change, the release of rhodamine B (RhB) and doxorubicin (DOX) could be triggered by UV irradiation. When incubated NIH 3T3 cells and Bel 7402 cells with DOX-loaded CAB/SDS vesicles, UV irradiation induced DOX release decreased the viability of both cell lines significantly compared with the non-irradiated cells. The in vitro experiment indicated that CAB/SDS vesicles had high efficiency to deliver loaded molecules into cells. The in vivo experiment showed that CAB/SDS vesicles not only have high drug delivery efficiency into rat retinas, but also could maintain high drug concentration for a longer time. CAB/SDS catanionic vesicles may find potential applications as a smart drug delivery system for controlled release by light.
Collapse
Affiliation(s)
- Shengyong Geng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yuzhu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Liping Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tsutomu Kouyama
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Toshiaki Gotoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, Advanced Photonics Technology Development Group, Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198, Japan
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
37
|
Feng L, Xu L, Dong S, Hao J. Thermo-reversible capture and release of DNA by zwitterionic surfactants. SOFT MATTER 2016; 12:7495-7504. [PMID: 27539945 DOI: 10.1039/c6sm00704j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The thermo-reversible capture and release of DNA were studied by the protonation and deprotonation of alkyldimethylamine oxide (CnDMAO, n = 10, 12 and 14) in Tris-HCl buffer solution. DNA/C14DMAO in Tris-HCl buffer solution with pH = 7.2 is transparent at 25 °C, indicating that DNA molecules exist mainly in individuals and the binding of C14DMAO is weak. With the increase of temperature, the pH of the buffer solution continuously decreases, which leads to protonation of C14DMAO (C14DMAO + H(+)→ C14DMAOH(+)) and an obvious increase of the turbidity of the samples. This indicates a stronger binding of the protonated C14DMAOH(+) to DNA. Further investigations demonstrated the formation of DNA/C14DMAOH(+) complexes, in which the stretched DNA molecules are effectively compacted as evidenced from UV-vis absorptions, circular dichroism (CD) measurements, atomic force microscopy (AFM) observations, dynamic light scattering (DLS) measurements and agarose gel electrophoresis (AGE). Interestingly, when the temperature is turned back to 25 °C, the compacted DNA molecules can fully recover to the stretched conformation. This cycle can be repeated several times without obvious loss of efficiency. The effect of the chain length of CnDMAO has also been investigated. When C14DMAO was replaced by C12DMAO, similar phenomena can be observed with a slightly higher critical surfactant concentration for DNA compaction and a slightly lower pH of Tris-HCl buffer solution with pH = 6.8. For the DNA/C10DMAO system, however, no DNA compaction was observed even in Tris-HCl buffer solution with a much lower pH and a much higher C10DMAO concentration. The negative charges of DNA molecules can easily be neutralized by positive charges of cationic CnDMAOH(+) (n = 12 and 14) micelles. DNA was compacted and then insoluble DNA/CnDMAOH(+) complexes were formed. Because of the much higher critical micelle concentration (cmc) of the shorter chain length C10DMAOH(+), cationic C10DMAOH(+) micelles cannot form under the studied condition to compact DNA. The strategy may provide an efficient and alternative approach for stimuli-responsive gene therapy and drug release.
Collapse
Affiliation(s)
- Lei Feng
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China.
| | | | | | | |
Collapse
|
38
|
Moradi N, Zakrevskyy Y, Javadi A, Aksenenko E, Fainerman V, Lomadze N, Santer S, Miller R. Surface tension and dilation rheology of DNA solutions in mixtures with azobenzene-containing cationic surfactant. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Tomašić V, Mihelj T. The review on properties of solid catanionic surfactants: Main applications and perspectives of new catanionic surfactants and compounds with catanionic assisted synthesis. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1180992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Vlasta Tomašić
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tea Mihelj
- Department of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
40
|
Synergistic solubilization of polycyclic aromatic hydrocarbons by mixed micelles composed of a photoresponsive surfactant and a conventional non-ionic surfactant. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Incorporation of Amphipathic Diblock Copolymer in Lipid Bilayer for Improving pH Responsiveness. INT J POLYM SCI 2016. [DOI: 10.1155/2016/5879428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Diblock copolymers (mPEG-b-PDPA), which were designed to possess pH-sensitivity as well as amphipathy, were used as an intelligent lock in the liposomal membrane. The so-called pH-sensitive liposomes were prepared by simple mixing of the synthesized mPEG-b-PDPA with phospholipids and cholesterol. Fluorescence polarization at pH 7.4 showed that the membrane stability of the hybrid liposome was significantly increased compared with the pure liposome. Therefore, in the neutral environment, the leakage of doxorubicin (DOX) was inhibited. However, when pH decreased to 6.0, DOX release rate increased by 60% due to the escape of copolymer. The effects of the membrane composition and the PDPA segment length on bilayer membrane functions were investigated. These results revealed that the synthesized copolymers increased the difference in DOX cumulative release between pH 7.4 and 6.0, that is, improved the pH-controllability of the drug release from hybrid liposomes.
Collapse
|
42
|
Xu L, Wang Y, Wei G, Feng L, Dong S, Hao J. Ordered DNA-Surfactant Hybrid Nanospheres Triggered by Magnetic Cationic Surfactants for Photon- and Magneto-Manipulated Drug Delivery and Release. Biomacromolecules 2015; 16:4004-12. [DOI: 10.1021/acs.biomac.5b01372] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lu Xu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Guangcheng Wei
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education, Jinan 250100, China
| |
Collapse
|
43
|
Uda RM, Matsui T. Photoinduced conformational changes in DNA by poly(vinyl alcohol) carrying a malachite green moiety for protecting DNA against attack by nuclease. SOFT MATTER 2015; 11:8246-8252. [PMID: 26339777 DOI: 10.1039/c5sm01874a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Light is a highly advantageous means of specific cell targeting. Though targeted gene delivery is an important characteristic of an ideal delivery vehicle, there has been little effort to develop a photoresponsive vector. Among nonviral vectors, cationic substances interact effectively with negatively charged DNA. With this property in mind, we designed copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG) with different molecular weights. Though PVAMG has no affinity for DNA in the absence of light, it undergoes photoionization in the presence of light to afford cationic DNA binding sites. The DNA-PVAMG complex was investigated with respect to DNA conformational changes and its protective nature, which are important properties for nonviral vectors. PVAMG irradiation promoted DNA conformational transitions from coils to partial globules to compacted globules. The complex had a protective effect against DNase I after PVAMG irradiation, while DNA was degraded under dark conditions. The effect on DNA transition and the protective nature were sensitive to the molecular weight of PVAMG. The data regarding binding constants and binding mode provided insight into the structure of the DNA-PVAMG complex. To withstand DNase I attacks, complexation results in the compaction of DNA, which is further covered with PVAMG.
Collapse
Affiliation(s)
- Ryoko M Uda
- Department of Chemical Engineering, Nara National College of Technology, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | - Takashi Matsui
- Department of Chemical Engineering, Nara National College of Technology, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| |
Collapse
|
44
|
Abstract
Externally triggerable drug delivery systems provide a strategy for the delivery of therapeutic agents preferentially to a target site, presenting the ability to enhance therapeutic efficacy while reducing side effects. Light is a versatile and easily tuned external stimulus that can provide spatiotemporal control. Here we will review the use of nanoparticles in which light triggers drug release or induces particle binding to tissues (phototargeting).
Collapse
Affiliation(s)
- Alina Y. Rwei
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institutes for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel S. Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institutes for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Sarvašová N, Ulbrich P, Tokárová V, Zadražil A, Štěpánek F. Artificial swarming: Towards radiofrequency control of reversible micro-particle aggregation and deposition. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.01.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Abstract
Chemotherapeutic regimens are often restricted by dose-limiting toxicities that arise from drug exposure to off-site tissues. Nanoparticle drug carriers that specifically deliver therapeutics to the site of malignant tissue are being actively researched today. One strategy is to utilize materials that are light-responsive, such that the carrier can be triggered to release its drug payload at the distinct time and location of light exposure. This review discusses recent advances in the development of such light-responsive drug carriers. With continued optimization and in vivo validation, these approaches may offer novel treatment options for cancer management.
Collapse
|
47
|
Zheng Z, Liu C, Qiao W. pH-Responsive and CO2-responsive vesicles can be formed byN-decylimidazole. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhibo Zheng
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian P. R. China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian P. R. China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; Dalian P. R. China
| |
Collapse
|
48
|
Long J, Tian S, Niu Y, Jin Y, Li L. Electrochemically Reversible Solubilization of Polycyclic Aromatic Hydrocarbons by Mixed Micelles Composed of Redox-active Cationic Surfactant and Conventional Nonionic Surfactant. Polycycl Aromat Compd 2015. [DOI: 10.1080/10406638.2014.939767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Shi S, Yin T, Tao X, Shen W. Light induced micelle to vesicle transition in an aqueous solution of a surface active ionic liquid. RSC Adv 2015. [DOI: 10.1039/c5ra12047k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new simple surface active ionic liquid displayed reversible micelle–vesicle transition under alternative UV/vis irradiation without additives.
Collapse
Affiliation(s)
- Shaoxiong Shi
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Tianxiang Yin
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoyi Tao
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weiguo Shen
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
- Department of Chemistry
| |
Collapse
|
50
|
Chatterjee S, Salaün F, Campagne C. The influence of 1-butanol and trisodium citrate ion on morphology and chemical properties of chitosan-based microcapsules during rigidification by alkali treatment. Mar Drugs 2014; 12:5801-16. [PMID: 25474188 PMCID: PMC4278202 DOI: 10.3390/md12125801] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022] Open
Abstract
Linseed oil which has various biomedical applications was encapsulated by chitosan (Chi)-based microcapsules in the development of a suitable carrier. Oil droplets formed in oil-in-water emulsion using sodium dodecyl sulfate (SDS) as emulsifier was stabilized by Chi, and microcapsules with multilayers were formed by alternate additions of SDS and Chi solutions in an emulsion through electrostatic interaction. No chemical cross-linker was used in the study and the multilayer shell membrane was formed by ionic gelation using Chi and SDS. The rigidification of the shell membrane of microcapsules was achieved by alkali treatment in the presence of a small amount of 1-butanol to reduce aggregation. A trisodium citrate solution was used to stabilize the charge of microcapsules by ionic cross-linking. Effects of butanol during alkali treatment and citrate in post alkali treatment were monitored in terms of morphology and the chemical properties of microcapsules. Various characterization techniques revealed that the aggregation was decreased and surface roughness was increased with layer formation.
Collapse
Affiliation(s)
| | - Fabien Salaün
- University of Lille Nord de France, F-59000 Lille, France.
| | | |
Collapse
|