1
|
Laitila J, Wallgren-Pettersson C. Recent advances in nemaline myopathy. Neuromuscul Disord 2021; 31:955-967. [PMID: 34561123 DOI: 10.1016/j.nmd.2021.07.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
The nemaline myopathies constitute a large proportion of the congenital or structural myopathies. Common to all patients is muscle weakness and the presence in the muscle biopsy of nemaline rods. The causative genes are at least twelve, encoding structural or regulatory proteins of the thin filament, and the clinical picture as well as the histological appearance on muscle biopsy vary widely. Here, we suggest a renewed clinical classification to replace the original one, summarise what is known about the pathogenesis from mutations in each causative gene to the forms of nemaline myopathy described to date, and provide perspectives on pathogenetic mechanisms possibly open to therapeutic modalities.
Collapse
Affiliation(s)
- Jenni Laitila
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland; Department of Biomedical Sciences, University of Copenhagen, Denmark.
| | - Carina Wallgren-Pettersson
- The Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland; Department of Medical Genetics, Medicum, University of Helsinki, Finland
| |
Collapse
|
2
|
Abstract
Nebulin, encoded by NEB, is a giant skeletal muscle protein of about 6669 amino acids which forms an integral part of the sarcomeric thin filament. In recent years, the nebula around this protein has been largely lifted resulting in the discovery that nebulin is critical for a number of tasks in skeletal muscle. In this review, we firstly discussed nebulin’s role as a structural component of the thin filament and the Z-disk, regulating the length and the mechanical properties of the thin filament as well as providing stability to myofibrils by interacting with structural proteins within the Z-disk. Secondly, we reviewed nebulin’s involvement in the regulation of muscle contraction, cross-bridge cycling kinetics, Ca2+-homeostasis and excitation contraction (EC) coupling. While its role in Ca2+-homeostasis and EC coupling is still poorly understood, a large number of studies have helped to improve our knowledge on how nebulin affects skeletal muscle contractile mechanics. These studies suggest that nebulin affects the number of force generating actin-myosin cross-bridges and may also affect the force that each cross-bridge produces. It may exert this effect by interacting directly with actin and myosin and/or indirectly by potentially changing the localisation and function of the regulatory complex (troponin and tropomyosin). Besides unravelling the biology of nebulin, these studies are particularly helpful in understanding the patho-mechanism of myopathies caused by NEB mutations, providing knowledge which constitutes the critical first step towards the development of therapeutic interventions. Currently, effective treatments are not available, although a number of therapeutic strategies are being investigated.
Collapse
|
3
|
Murphy S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of giant skeletal muscle proteins. Expert Rev Proteomics 2019; 16:241-256. [DOI: 10.1080/14789450.2019.1575205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
4
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
5
|
Wu MC, Forbes JG, Wang K. Disorder profile of nebulin encodes a vernierlike position sensor for the sliding thin and thick filaments of the skeletal muscle sarcomere. Phys Rev E 2016; 93:062406. [PMID: 27415297 DOI: 10.1103/physreve.93.062406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/06/2023]
Abstract
Nebulin is an about 1μm long intrinsically disordered scaffold for the thin filaments of skeletal muscle sarcomere. It is a multifunctional elastic protein that wraps around actin filament, stabilizes thin filaments, and regulates Ca-dependent actomyosin interactions. This study investigates whether the disorder profile of nebulin might encode guidelines for thin and thick filament interactions in the sarcomere of the skeletal muscle. The question was addressed computationally by analyzing the predicted disorder profile of human nebulin (6669 residues, ∼200 actin-binding repeats) by pondr and the periodicity of the A-band stripes (reflecting the locations of myosin-associated proteins) in the electron micrographs of the sarcomere. Using the detrended fluctuation analysis, a scale factor for the A-band stripe image data with respect to the nebulin disorder profile was determined to make the thin and thick filaments aligned to have maximum correlation. The empirical mode decomposition method was then applied to identify hidden periodicities in both the nebulin disorder profile and the rescaled A-band data. The decomposition reveals three characteristic length scales (45 nm, 100 nm, and 200 nm) that are relevant for correlational analysis. The dynamical cross-correlation analyses with moving windows at various sarcomere lengths depict a vernierlike design for both periodicities, thus enabling nebulin to sense position and fine tune sarcomere overlap. This shows that the disorder profile of scaffolding proteins may encode a guideline for cellular architecture.
Collapse
Affiliation(s)
- Ming-Chya Wu
- Research Center for Adaptive Data Analysis, National Central University, Chungli, Taoyuan 32001, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | | | - Kuan Wang
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
- Nanomedicine Program, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
6
|
Abstract
Efficient muscle contraction in skeletal muscle is predicated on the regulation of actin filament lengths. In one long-standing model that was prominent for decades, the giant protein nebulin was proposed to function as a 'molecular ruler' to specify the lengths of the thin filaments. This theory was questioned by many observations, including experiments in which the length of nebulin was manipulated in skeletal myocytes; this approach revealed that nebulin functions to stabilize filamentous actin, allowing thin filaments to reach mature lengths. In addition, more recent data, mostly from in vivo models and identification of new interacting partners, have provided evidence that nebulin is not merely a structural protein. Nebulin plays a role in numerous cellular processes including regulation of muscle contraction, Z-disc formation, and myofibril organization and assembly.
Collapse
Affiliation(s)
- Miensheng Chu
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine and the Sarver Molecular Cardiovascular Research Program, The University of Arizona, 1656 East Mabel, MRB315, Tucson, AZ 85724, USA
| |
Collapse
|
7
|
Soltanizadeh N, Kadivar M. Nanomechanical Characteristics of Meat and Its Constituents Postmortem: A Review. Crit Rev Food Sci Nutr 2014; 54:1117-39. [DOI: 10.1080/10408398.2011.627518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Labeit S, Ottenheijm CAC, Granzier H. Nebulin, a major player in muscle health and disease. FASEB J 2010; 25:822-9. [PMID: 21115852 DOI: 10.1096/fj.10-157412] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nebulin is a giant 600- to 900-kDa filamentous protein that is an integral component of the skeletal muscle thin filament. Its functions have remained largely nebulous because of its large size and the difficulty in extracting nebulin in a native state from muscle. Recent improvements in the field, especially the development of knockout mouse models deficient in nebulin (NEB-KO mice), indicate now that nebulin performs a surprisingly wide range of functions. In addition to a major role in thin-filament length specification, nebulin also functions in the regulation of muscle contraction, as indicated by the findings that muscle fibers deficient in nebulin have a higher tension cost, and develop less force due to reduced myofilament calcium sensitivity and altered crossbridge cycling kinetics. In addition, the function of nebulin extends to a role in calcium homeostasis. These novel functions indicate that nebulin might have evolved in vertebrate skeletal muscles to develop high levels of muscle force efficiently. Finally, the NEB-KO mouse models also highlight the role of nebulin in the assembly and alignment of the Z disks. Notably, rapid progress in understanding the roles of nebulin in vivo provides clinically important insights into how nebulin deficiency in patients with nemaline myopathy contributes to debilitating muscle weakness.
Collapse
Affiliation(s)
- Siegfried Labeit
- Department of Integrative Pathophysiology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
9
|
Pappas CT, Bliss KT, Zieseniss A, Gregorio CC. The Nebulin family: an actin support group. Trends Cell Biol 2010; 21:29-37. [PMID: 20951588 DOI: 10.1016/j.tcb.2010.09.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/25/2022]
Abstract
Nebulin, a giant, actin-binding protein, is the largest member of a family of proteins (including N-RAP, nebulette, lasp-1 and lasp-2) that are assembled in a variety of cytoskeletal structures, and expressed in different tissues. For decades, nebulin has been thought to act as a molecular ruler, specifying the precise length of actin filaments in skeletal muscle. However, emerging evidence suggests that nebulin should not be viewed as a ruler but as an actin filament stabilizer required for length maintenance. Nebulin has also been implicated recently in an array of regulatory functions independent of its role in actin filament length regulation. In this review, we discuss the current evolutionary, biochemical, and functional data for the nebulin family of proteins - a family whose members, both large and small, function as cytoskeletal scaffolds and stabilizers.
Collapse
Affiliation(s)
- Christopher T Pappas
- Department of Cell Biology, and Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | | | | | | |
Collapse
|
10
|
Isolation of nebulin from rabbit skeletal muscle and its interaction with actin. J Biomed Biotechnol 2010; 2010:108495. [PMID: 20467585 PMCID: PMC2868979 DOI: 10.1155/2010/108495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/15/2010] [Indexed: 12/11/2022] Open
Abstract
Nebulin is about 800 kDa filamentous protein that binds the entire thin filament of vertebrate skeletal muscle sarcomeres. Nebulin cannot be isolated from muscle except in a completely denatured form by direct solubilization of myofibrils with SDS because nebulin is hardly soluble under salt conditions. In the present study, nebulin was solubilized by a salt solution containing 1 M urea and purified by DEAE-Toyopearl column chromatography via 4 M urea elution. Rotary-shadowed images of nebulin showed entangled knit-like particles, about 20 nm in diameter. The purified nebulin bound to actin filaments to form loose bundles. Nebulin was confirmed to bind actin, α-actinin, β-actinin, and tropomodulin, but not troponin or tropomyosin. The data shows that full-length nebulin can be also obtained in a functional and presumably native form, verified by data from experiments using recombinant subfragments.
Collapse
|