1
|
Degirmenci A, Sanyal R, Sanyal A. Plug-and-Play Biointerfaces: Harnessing Host-Guest Interactions for Fabrication of Functional Polymeric Coatings. Biomacromolecules 2023; 24:3568-3579. [PMID: 37406159 PMCID: PMC10428160 DOI: 10.1021/acs.biomac.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Polymeric surface coatings capable of effectively integrating desired functional molecules and ligands are attractive for fabricating bio-interfaces necessary for various applications. Herein, we report the design of a polymeric platform amenable to such modifications in a modular fashion through host-guest chemistry. Copolymers containing adamantane (Ada) moieties, diethylene glycol (DEG) units, and silyloxy groups to provide functionalization handles, anti-biofouling character, and surface attachment, respectively, were synthesized. These copolymers were employed to modify silicon/glass surfaces to enable their functionalization using beta-cyclodextrin (βCD) containing functional molecules and bioactive ligands. Moreover, surface functionalization could be spatially controlled using a well-established technique like microcontact printing. Efficient and robust functionalization of polymer-coated surfaces was demonstrated by immobilizing a βCD-conjugated fluorescent rhodamine dye through the specific noncovalent binding between Ada and βCD units. Furthermore, biotin, mannose, and cell adhesive peptide-modified βCD were immobilized onto the Ada-containing polymer-coated surfaces to direct noncovalent conjugation of streptavidin, concanavalin A (ConA), and fibroblast cells, respectively. It was demonstrated that the mannose-functionalized coating could selectively bind to the target lectin ConA, and the interface could be regenerated and reused several times. Moreover, the polymeric coating was adaptable for cell attachment and proliferation upon noncovalent modification with cell-adhesive peptides. One can envision that the facile synthesis of the Ada-based copolymers, mild conditions for coating surfaces, and their effective transformation to various functional interfaces in a modular fashion offers an attractive approach to engineering functional interfaces for several biomedical applications.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| |
Collapse
|
2
|
Self-Assembly of Cyclodextrin-Coated Nanoparticles:Fabrication of Functional Nanostructures for Sensing and Delivery. Molecules 2023; 28:molecules28031076. [PMID: 36770743 PMCID: PMC9919557 DOI: 10.3390/molecules28031076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
In recent years, the bottom-up approach has emerged as a powerful tool in the fabrication of functional nanomaterials through the self-assembly of nanoscale building blocks. The cues embedded at the molecular level provide a handle to control and direct the assembly of nano-objects to construct higher-order structures. Molecular recognition among the building blocks can assist their precise positioning in a predetermined manner to yield nano- and microstructures that may be difficult to obtain otherwise. A well-orchestrated combination of top-down fabrication and directed self-assembly-based bottom-up approach enables the realization of functional nanomaterial-based devices. Among the various available molecular recognition-based "host-guest" combinations, cyclodextrin-mediated interactions possess an attractive attribute that the interaction is driven in aqueous environments, such as in biological systems. Over the past decade, cyclodextrin-based specific host-guest interactions have been exploited to design and construct structural and functional nanomaterials based on cyclodextrin-coated metal nanoparticles. The focus of this review is to highlight recent advances in the self-assembly of cyclodextrin-coated metal nanoparticles driven by the specific host-guest interaction.
Collapse
|
3
|
Liu M, Zhao D, Lv H, Liang Y, Yang Y, Hong Z, Liu J, Dai K, Xiao X. Controllable Fabrication and Oil-Water Separation Properties of Polyethylene Terephthaloyl-Ethylenediamine-IPN-poly(N-Isopropylacrylamide) Microcapsules. Polymers (Basel) 2022; 15:polym15010053. [PMID: 36616403 PMCID: PMC9824317 DOI: 10.3390/polym15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
In this paper, we report a microcapsule embedded PNIPAN in P (TPC-EDA) shell and it can be regarded as an interpenetrating polymer network (IPN) structure, which can accelerate the penetration of oily substances at a certain temperature, and the microcapsules are highly monodisperse and dimensionally reproducible. The proposed microcapsules were fabricated in a three-step process. The first step was the optimization of the conditions for preparing oil in water emulsions by microfluidic device. In the second step, monodisperse polyethylene terephthaloyl-ethylenediamine (P(TPC-EDA)) microcapsules were prepared by interfacial polymerization. In the third step, the final microcapsules with poly(N-isopropylacrylamide) (PNIPAM)-based interpenetrating polymer network (IPN) structure in P(TPC-EDA) shells were finished by free radical polymerization. We conducted careful data analysis on the size of the emulsion prepared by microfluidic technology and used a very intuitive functional relationship to show the production characteristics of microfluidics, which is rarely seen in other literatures. The results show that when the IPN-structured system swelled for 6 h, the adsorption capacity of kerosene was the largest, which was promising for water-oil separation or extraction and separation of hydrophobic drugs. Because we used microfluidic technology, the products obtained have good monodispersity and are expected to be produced in large quantities in industry.
Collapse
Affiliation(s)
- Meng Liu
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Dan Zhao
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Hui Lv
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yunjing Liang
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Yannan Yang
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Zongguo Hong
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
| | - Jingxue Liu
- The College of Art and Science, The Ohio State University, Columbus, OH 43210, USA
| | - Kang Dai
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (K.D.); (X.X.)
| | - Xincai Xiao
- School of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
- National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan 430074, China
- Correspondence: (K.D.); (X.X.)
| |
Collapse
|
4
|
Cyclodextrin-containing redox-responsive nanogels: Fabrication of a modular targeted drug delivery system. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Yang S, Qin W, He F, Zhao X, Zhou Q, Lin F, Gong H, Zhang S, Yu G, Feng Y, Li J. Tuning Supramolecular Polymers' Amphiphilicity via Host-Guest Interfacial Recognition for Stabilizing Multiple Pickering Emulsions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51661-51672. [PMID: 34696581 DOI: 10.1021/acsami.1c13715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular host-guest chemistry bridging the adjustable amphiphilicity and macromolecular self-assembly is well advanced in aqueous media. However, the interfacial self-assembled behaviors have not been further exploited. Herein, we designed a β-cyclodextrin-grafted alginate/azobenzene-functionalized dodecyl (Alg-β-CD/AzoC12) supra-amphiphilic system that possessed tunable amphiphilicity by host-guest interfacial self-assembly. Especially, supra-amphiphilic aggregates could be utilized as highly efficient soft colloidal emulsifiers for stabilizing water-in-oil-water (W/O/W) Pickering emulsions due to the excellent interfacial activity. Meanwhile, the assembled particle structures could be modulated by adjusting the oil-water ratio, resulting from the tunable aggregation behavior of supra-amphiphilic macromolecules. Additionally, the interfacial adsorption films could be partially destroyed/reconstructed upon ultraviolet/visible irradiation due to the stimuli-altering balance of amphiphilicity of Alg-β-CD/AzoC12 polymers, further constructing the stimulus-responsive Pickering emulsions. Therefore, the supramolecular interfacial self-assembly-mediated approach not only technologically advances the continued development of creative templates to construct multifunctional soft materials with anisotropic structures but also serves as a creative bridge between supramolecular host-guest chemistry, colloidal interface science, and soft material technology.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Wenqi Qin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Xinyu Zhao
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Qichang Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Feilin Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Houkui Gong
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Siqi Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, College of Chemical Engineering and Technology, Hainan University, 58 Renmin Road, Haikou 570228, Hainan, China
| |
Collapse
|
6
|
Varshney R, Agashe C, Gill AK, Alam M, Joseph R, Patra D. Modulation of liquid structure and controlling molecular diffusion using supramolecular constructs. Chem Commun (Camb) 2021; 57:10604-10607. [PMID: 34569581 DOI: 10.1039/d1cc04417f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The non-equilibrium liquid structure was achieved by interfacial jamming of pillar[5]arene carboxylic acid (P[5]AA) mediated by hydrogen bonding interactions. The assembly was reversibly modulated via jamming to unjamming transition thus dynamically shaping the liquid droplets. Interestingly, these supramolecular constructs showed pH-switchable gated diffusion of encapsulants, hence showcasing a next generation smart release system.
Collapse
Affiliation(s)
- Rohit Varshney
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Chinmayee Agashe
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Arshdeep Kaur Gill
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Mujeeb Alam
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| | - Roymon Joseph
- Department of Chemistry, University of Calicut, Calicut, Kerala, 673635, India
| | - Debabrata Patra
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Nagar, Punjab, 140306, India.
| |
Collapse
|
7
|
Li L, Sun H, Li M, Yang Y, Russell TP, Shi S. Gated Molecular Diffusion at Liquid-Liquid Interfaces. Angew Chem Int Ed Engl 2021; 60:17394-17397. [PMID: 34046998 DOI: 10.1002/anie.202105500] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/23/2021] [Indexed: 12/27/2022]
Abstract
The jamming of nanoparticle surfactants (NPSs) at liquid-liquid interface imparts attractive properties to the interfacial assemblies and enables the structuring of liquids. Herein, we report photoresponsive supramolecular microcapsules with jammed NPS assemblies at the oil-water interface, taking advantage of host-guest molecular recognition. The permeability of the colloidal membrane can be effectively manipulated by switching the NPSs from a jammed state to an unjammed state with a photo trigger, leading to a controlled molecular diffusion and release, affording a versatile platform for the construction of next generation smart microcapsule systems.
Collapse
Affiliation(s)
- Lianshun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huilou Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yang Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
|
9
|
|
10
|
Sun H, Li L, Russell TP, Shi S. Photoresponsive Structured Liquids Enabled by Molecular Recognition at Liquid–Liquid Interfaces. J Am Chem Soc 2020; 142:8591-8595. [DOI: 10.1021/jacs.0c02555] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huilou Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lianshun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Thomas P. Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Ghosh SK, Böker A. Self‐Assembly of Nanoparticles in 2D and 3D: Recent Advances and Future Trends. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Alexander Böker
- Fraunhofer‐Institut für Angewandte Polymerforschung Geiselbergstraβe 69 14476 Potsdam‐Golm Germany
| |
Collapse
|
12
|
Shi S, Russell TP. Nanoparticle Assembly at Liquid-Liquid Interfaces: From the Nanoscale to Mesoscale. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800714. [PMID: 30035834 DOI: 10.1002/adma.201800714] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Indexed: 05/21/2023]
Abstract
In the past few decades, novel syntheses of a wide range of nanoparticles (NPs) with well-defined chemical composition and structure have opened tremendous opportunities in areas ranging from optical and electronic devices to biomedical markers. Controlling the assembly of such well-defined NPs is important to effectively harness their unique properties. The assembly of NPs at liquid-liquid interfaces is becoming a central topic both in surface and colloid science. Hierarchical structures, including 2D films, 3D capsules, and structured liquids, have been generating significant interest and are showing promise for physical, chemical, and biological applications. Here, a brief overview of the development of the self-assembly of NPs at liquid-liquid interfaces is provided, from theory to experiment, from synthetic NPs to bio-nanoparticles, from water-oil to water-water, and from "liquid-like" to "solid-like" assemblies.
Collapse
Affiliation(s)
- Shaowei Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Thomas P Russell
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Abstract
Contemporary chemical and material engineering often takes inspiration from nature, targeting for example strong yet light materials and materials composed of highly ordered domains at multiple different lengthscales for fundamental science and applications in e.g. sensing, catalysis, coating technology, and delivery. The preparation of such hierarchically structured functional materials through guided bottom-up assembly of synthetic building blocks requires a high level of control over their synthesis, interactions and assembly pathways. In this perspective we showcase recent work demonstrating how molecular control can be exploited to direct colloidal assembly into responsive materials with mechanical, optical or electrical properties that can be adjusted post-synthesis with external cues.
Collapse
Affiliation(s)
- M Gerth
- Laboratory of Physical Chemistry, and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MD, Eindhoven, The Netherlands
| | | |
Collapse
|
14
|
Engel S, Möller N, Ravoo BJ. Stimulus-Responsive Assembly of Nanoparticles using Host-Guest Interactions of Cyclodextrins. Chemistry 2018; 24:4741-4748. [DOI: 10.1002/chem.201705540] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Sabrina Engel
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Nadja Möller
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience; Westfälische Wilhelms-Universität Münster; Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
15
|
Kulathinte Meethal S, Sasmal R, Pahwa M, C S, Das Saha N, Agasti SS. Cucurbit[7]uril-Directed Assembly of Colloidal Membrane and Stimuli-Responsive Microcapsules at the liquid-liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:693-699. [PMID: 29262683 DOI: 10.1021/acs.langmuir.7b03554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Colloidal microcapsules based on supramolecular architectures feature attractive properties and offer new opportunities in diverse areas such as delivery, sensing, and catalysis. Herein, we report a new strategy to fabricate the colloidal membrane and stimuli-responsive microcapsules by utilizing cucurbit[7]uril-mediated interfacial host-guest molecular recognition. In contrast to the traditionally used cross-linking approach, this method exploits the engineered interaction between a nanoparticle ligand and cucurbit[7]uril to tune the interfacial energy and stabilize the colloidal assembly at the interface. These capsules provide a versatile platform for simultaneous encapsulation of dual cargos. Additionally, the dynamic nature of the supramolecular interactions allows triggered release of the encapsulated cargos through the orthogonal presentation of a high affinity guest molecule.
Collapse
Affiliation(s)
- Shafeekh Kulathinte Meethal
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Meenakshi Pahwa
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Soumya C
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Nilanjana Das Saha
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| | - Sarit S Agasti
- New Chemistry Unit and ‡Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) , Jakkur, Bangalore 560064, India
| |
Collapse
|
16
|
Locatelli-Champagne C, Suau JM, Guerret O, Pellet C, Cloitre M. Versatile Encapsulation Technology Based on Tailored pH-Responsive Amphiphilic Polymers: Emulsion Gels and Capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:14020-14028. [PMID: 29144757 DOI: 10.1021/acs.langmuir.7b02689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a multipurpose technology to encapsulate hydrophobic substances in micron-sized emulsion droplets and capsules. The encapsulating agent is a comblike stimuli-responsive copolymer comprising side-chain surfactants attached to a methacrylic acid/ethyl acrylate polyelectrolyte backbone. The composition and structure of the hydrophobic moieties of the side chains are customized to tune the particle morphology and the processing conditions. The technology exploits the synergy of properties provided by the copolymer: interfacial activity, pH responsiveness, and viscoelasticity. A one-pot process produces emulsion gels or capsule dispersions consisting of a hydrophobic liquid core surrounded by a polymer shell. The dispersions resist high ionic strengths and exhibit long-term stability. The versatility of the method is demonstrated by encapsulating various hydrophobic substances covering a broad range of viscosities and polarities-conventional and technical oils, perfumes, and alkyd paints-with a high degree of morphological and rheological control.
Collapse
Affiliation(s)
- Clémentine Locatelli-Champagne
- Soft Matter and Chemistry, CNRS, ESPCI Paris, PSL Research University , 10 rue Vauquelin, 75005 Paris, France
- Coatex SAS , 35 Rue Ampère, 69730 Genay, France
| | | | - Olivier Guerret
- Coatex SAS , 35 Rue Ampère, 69730 Genay, France
- M2i Life Sciences , 1 Rue Royale, 92210 Saint Cloud, France
| | - Charlotte Pellet
- Soft Matter and Chemistry, CNRS, ESPCI Paris, PSL Research University , 10 rue Vauquelin, 75005 Paris, France
| | - Michel Cloitre
- Soft Matter and Chemistry, CNRS, ESPCI Paris, PSL Research University , 10 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
17
|
Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017; 46:2091-2126. [DOI: 10.1039/c6cs00632a] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a comprehensive overview of the synthesis strategies and the progress made so far of bringing colloidal capsules closer to technical and biomedical applications.
Collapse
Affiliation(s)
- Tobias Bollhorst
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Kurosch Rezwan
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Michael Maas
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| |
Collapse
|
18
|
Mejia-Ariza R, Graña-Suárez L, Verboom W, Huskens J. Cyclodextrin-based supramolecular nanoparticles for biomedical applications. J Mater Chem B 2016; 5:36-52. [PMID: 32263433 DOI: 10.1039/c6tb02776h] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular host-guest interactions are ideal for engineering supramolecular nanoparticles (SNPs), because their modular character offers the possibility of using the same basic SNPs made of very similar building blocks in a variety of applications. The most widely used host is cyclodextrin (CD), therefore, this review will focus on SNPs involving CD as the host entity. In the first part, particle formation and size control are described, and the forces that induce the assembly between the different components and, therefore, result in the formation of stable and controllable nanoparticles. In the second part, the use of CD-based SNPs for diagnostics and therapeutics is described. Here, the emphasis is on how the therapeutic agent/imaging component is included in the system and how it is released at the target site. CD-based SNPs provide great possibilities for the formulation of nanoparticles for biomedical applications because of their high flexibility, stability, modular character, and biocompatibility.
Collapse
Affiliation(s)
- Raquel Mejia-Ariza
- University of Twente, MESA+, Molecular Nanofabrication, P. O. Box 217, 7500 AE, Enschede, Netherlands.
| | | | | | | |
Collapse
|
19
|
Hayashida O, Harada Y, Kojima M. Synthesis of coumarin-appended cyclophanes and evaluation of their complexation with myoglobin. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0546-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Yeh YC, Tang R, Mout R, Jeong Y, Rotello VM. Fabrication of multiresponsive bioactive nanocapsules through orthogonal self-assembly. Angew Chem Int Ed Engl 2014; 53:5137-41. [PMID: 24692293 PMCID: PMC4068418 DOI: 10.1002/anie.201400559] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Indexed: 01/24/2023]
Abstract
Multifunctional self-assembled systems present platforms for fundamental research and practical applications as they provide tunability of structure, functionality, and stimuli responsiveness. Pragmatic structures for biological applications have multiple design requirements, including control of size, stability, and environmental response. Here we present the fabrication of multifunctional nanoparticle-stabilized capsules (NPSCs) by using a set of orthogonal supramolecular interactions. In these capsules, fluorescent proteins are attached to quantum dots through polyhistidine coordination. These anionic assemblies interact laterally with cationic gold nanoparticles that are anchored to the fatty acid core through guanidinium-carboxylate interactions. The lipophilic core then provides a reservoir for hydrophobic endosome-disrupting agents, thereby generating a system featuring stimuli-responsive release of a payload into the cytosol with fluorescence monitoring.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Rui Tang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Youngdo Jeong
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| |
Collapse
|
21
|
Yeh YC, Tang R, Mout R, Jeong Y, Rotello VM. Fabrication of Multiresponsive Bioactive Nanocapsules through Orthogonal Self-Assembly. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201400559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Multiphase flow microfluidics for the production of single or multiple emulsions for drug delivery. Adv Drug Deliv Rev 2013; 65:1420-46. [PMID: 23770061 DOI: 10.1016/j.addr.2013.05.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/17/2013] [Accepted: 05/30/2013] [Indexed: 11/20/2022]
Abstract
Considerable effort has been directed towards developing novel drug delivery systems. Microfluidics, capable of generating monodisperse single and multiple emulsion droplets, executing precise control and operations on these droplets, is a powerful tool for fabricating complex systems (microparticles, microcapsules, microgels) with uniform size, narrow size distribution and desired properties, which have great potential in drug delivery applications. This review presents an overview of the state-of-the-art multiphase flow microfluidics for the production of single emulsions or multiple emulsions for drug delivery. The review starts with a brief introduction of the approaches for making single and multiple emulsions, followed by presentation of some potential drug delivery systems (microparticles, microcapsules and microgels) fabricated in microfluidic devices using single or multiple emulsions as templates. The design principles, manufacturing processes and properties of these drug delivery systems are also discussed and compared. Furthermore, drug encapsulation and drug release (including passive and active controlled release) are provided and compared highlighting some key findings and insights. Finally, site-targeting delivery using multiphase flow microfluidics is also briefly introduced.
Collapse
|
23
|
Hayashida O, Kaku Y. Synthesis of dabsyl-appended cyclophanes and their heterodimer formation with pyrene-appended cyclophanes. J Org Chem 2013; 78:10437-42. [PMID: 24047400 DOI: 10.1021/jo4018843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As a quencher-type host, dabsyl-appended cyclophanes bearing positively and negatively charged side chains (1a and 1b, respectively) were synthesized. Formation of cyclophane heterodimers of 1a with anionic fluorescent cyclophane bearing a pyrene moiety 2b was confirmed by fluorescence titration experiments. The 1:1 binding constant (K) of 1a toward 2b was calculated to be 1.6 × 10(5) M(-1). On the other hand, almost no complexation affinity of 1a toward cationic analogue of fluorescent cyclophane 2a was confirmed by the identical methods, indicating that electrostatic interactions became effective in the formation of cyclophane heterodimers. In addition, van't Hoff analysis applied to the temperature-dependent K values for the heterodimer formation gave negative enthalpy (ΔH) and entropy changes (ΔS). The large and negative ΔH values as well as small and also negative ΔS values showed that the complexation is an exothermic and enthalpy-controlled but not entropy-driven process. A similar trend of molecular recognition was also confirmed for formation of cyclophane heterodimers of 1b with 2a by the identical methods.
Collapse
Affiliation(s)
- Osamu Hayashida
- Department of Chemistry, Faculty of Science, Fukuoka University , Nanakuma 8-19-1, Fukuoka 814-0180, Japan
| | | |
Collapse
|
24
|
Zhang J, Ellsworth K, Ma PX. Synthesis of β-cyclodextrin containing copolymer via "click" chemistry and its self-assembly in the presence of guest compounds. Macromol Rapid Commun 2012; 33:664-71. [PMID: 22318939 PMCID: PMC3893059 DOI: 10.1002/marc.201100814] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 12/24/2011] [Indexed: 01/17/2023]
Abstract
We report the synthesis of a hydrophilic copolymer with one polyethylene glycol (PEG) block and one β-cyclodextrin (β-CD) containing block by a "click" reaction between azido-substituted β-CD and propargyl flanking copolymer. (1)H NMR study suggested a highly efficient conjugation of β-CD units by this approach. The obtained copolymer was used as a host macromolecule to construct assemblies in the presence of hydrophobic guests. For assemblies containing a hydrophobic polymer, their size can be simply adjusted by simply changing the content of hydrophobic component. By serving as a guest molecule, hydrophobic drugs can also be loaded accompanying the formation of nanoparticles, and the drug payload is releasable. Therefore, the copolymer synthesized herein can be employed as a carrier for drug delivery.
Collapse
Affiliation(s)
- Jianxiang Zhang
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA, Fax: +1 734 647 2110. Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Kristin Ellsworth
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA, Fax: +1 734 647 2110
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA, Fax: +1 734 647 2110. Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA. Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109, USA. Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
25
|
Zhang J, Coulston RJ, Jones ST, Geng J, Scherman OA, Abell C. One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets. Science 2012; 335:690-4. [DOI: 10.1126/science.1215416] [Citation(s) in RCA: 379] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Rana S, Yu X, Patra D, Moyano DF, Miranda OR, Hussain I, Rotello VM. Control of surface tension at liquid-liquid interfaces using nanoparticles and nanoparticle-protein complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2023-2027. [PMID: 22166076 DOI: 10.1021/la204017z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Subtle changes in the monolayer structure of nanoparticles (NPs) influence the interfacial behavior of both NPs and NP-protein conjugates. In this study, we use a series of monolayer-protected gold NPs to explore the role of particle hydrophobicity on their dynamic behavior at the toluene-water interface. Using dynamic surface tension measurements, we observed a linear decrease in the meso-equilibrium surface tension (γ) and faster dynamics as the hydrophobicity of the ligands increases. Further modulation of γ is observed for the corresponding NP-protein complexes at the charge-neutralization point.
Collapse
Affiliation(s)
- Subinoy Rana
- Department of Chemistry, University of Massachusetts at Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Katsuhiko Ariga
- a World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), and JST, CREST , 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Keita Sakakibara
- a World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), and JST, CREST , 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Gary J. Richards
- a World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), and JST, CREST , 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Jonathan P. Hill
- a World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), and JST, CREST , 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
28
|
Niu Z, He J, Russell TP, Wang Q. Synthese von Nano-/Mikrostrukturen an fluiden Grenzflächen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001623] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Niu Z, He J, Russell TP, Wang Q. Synthesis of Nano/Microstructures at Fluid Interfaces. Angew Chem Int Ed Engl 2010; 49:10052-66. [DOI: 10.1002/anie.201001623] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
30
|
Patra D, Sanyal A, Rotello VM. Colloidal Microcapsules: Self-Assembly of Nanoparticles at the Liquid-Liquid Interface. Chem Asian J 2010; 5:2442-53. [DOI: 10.1002/asia.201000301] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Patra D, Malvankar N, Chin E, Tuominen M, Gu Z, Rotello VM. Fabrication of conductive microcapsules via self-assembly and crosslinking of gold nanowires at liquid-liquid interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:1402-1405. [PMID: 20461726 DOI: 10.1002/smll.200902380] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Debabrata Patra
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|