1
|
Carfagno A, Lin SC, Chafran L, Akhrymuk I, Callahan V, Po M, Zhu Y, Altalhi A, Durkin DP, Russo P, Vliet KA, Webb-Robertson BJ, Kehn-Hall K, Bishop B. Bioprospecting the American Alligator Peptidome for antiviral peptides against Venezuelan equine encephalitis virus. Proteomics 2023; 23:e2200237. [PMID: 36480152 DOI: 10.1002/pmic.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The innate immune protection provided by cationic antimicrobial peptides (CAMPs) has been shown to extend to antiviral activity, with putative mechanisms of action including direct interaction with host cells or pathogen membranes. The lack of therapeutics available for the treatment of viruses such as Venezuelan equine encephalitis virus (VEEV) underscores the urgency of novel strategies for antiviral discovery. American alligator plasma has been shown to exhibit strong in vitro antibacterial activity, and functionalized hydrogel particles have been successfully employed for the identification of specific CAMPs from alligator plasma. Here, a novel bait strategy in which particles were encapsulated in membranes from either healthy or VEEV-infected cells was implemented to identify peptides preferentially targeting infected cells for subsequent evaluation of antiviral activity. Statistical analysis of peptide identification results was used to select five candidate peptides for testing, of which one exhibited a dose-dependent inhibition of VEEV and also significantly inhibited infectious titers. Results suggest our bioprospecting strategy provides a versatile platform that may be adapted for antiviral peptide identification from complex biological samples.
Collapse
Affiliation(s)
- Amy Carfagno
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Shih-Chao Lin
- School of Systems Biology, George Mason University, Manassas, Virginia, USA.,National Taiwan Ocean University, Keelung City, Taiwan
| | - Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Ivan Akhrymuk
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Victoria Callahan
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Marynet Po
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Yaling Zhu
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - Amaal Altalhi
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| | - David P Durkin
- Chemistry Department, U.S. Naval Academy, Annapolis, Maryland, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, USA
| | - Kent A Vliet
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | | | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, USA
| |
Collapse
|
2
|
Kumar D, Dua K, Tiwari S. Localized Delivery of Bioactives using Structured Liposomal Gels. Curr Pharm Des 2023; 29:3206-3220. [PMID: 37974442 DOI: 10.2174/0113816128263001231102053654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
Liposomes have gained a lot of interest for drug delivery applications, and some of these preparations have been commercialized. These are formulated with biocompatible components and can be used for delivering a wide range of payloads differing in aqueous solubility and molecular weight. Liposome-based delivery approaches are limited mainly by two factors: (a) poor dispersion stability, and (b) pre-mature leakage of payloads. In this review, we have discussed the stabilization of liposomal vesicles by their entrapment in hydrogels. Studies reveal that such hydrogels can maintain the structural integrity of liposomes. Release of liposomes from the hydrogel network can be modulated through careful screening of matrix former and degree of its cross-linking. Accordingly, we have reviewed the approaches of stabilizing liposomal vesicles through entrapment in hydrogels. Application of liposome-embedded hydrogels has been reviewed in context of localized drug delivery. Our discussion is focussed on the delivery of bioactives to the skin. Such an approach appears alluring from the standpoint of minimizing the undesirable distribution of payload(s) the systemic circulation and off-target sites.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, New South Wales 2007, Australia
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| |
Collapse
|
3
|
Electrostatic complexes between thermosensitive cationic microgels and anionic liposomes: Formation and triggered release of encapsulated enzyme. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Ivashkov OV, Yakimova TM, Evtushenko EG, Gelissen AP, Plamper FA, Richtering W, Yaroslavov AA. On the mechanism of payload release from liposomes bound to temperature-sensitive microgel particles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Raza F, Zafar H, You X, Khan A, Wu J, Ge L. Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers. J Mater Chem B 2019; 7:7639-7655. [DOI: 10.1039/c9tb01842e] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The applications of nanoparticulate drug delivery have received abundant interest in the field of cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Faisal Raza
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
| | - Hajra Zafar
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xinru You
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Asifullah Khan
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong, Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Liang Ge
- State Key Laboratory of Natural Medicines and Department of Pharmaceutics
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
6
|
York-Duran MJ, Ek PK, Godoy-Gallardo M, Hosta-Rigau L. Shear stress regulated uptake of liposome-decorated microgels coated with a poly(dopamine) shell. Colloids Surf B Biointerfaces 2018; 171:427-436. [PMID: 30075418 DOI: 10.1016/j.colsurfb.2018.07.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
Abstract
Advanced multicompartment drug delivery platforms ensure the co-localization of several drugs within the same carrier, thus making it possible to achieve a more effective and safe therapeutic outcome. Herein, we report a novel multicompartment architecture by combining two intrinsically different systems, i.e., polymeric microgels and liposomes, with the aim to achieve different release kinetics for model compounds. We assemble poly(N-isopropylacrylamide-co-acrylic acid) microgels decorated with liposomes which are subsequently coated with a protective poly(dopamine) shell and a poly(ethylene glycol) (PEG) layer. Since any intravenous administered drug delivery vehicle will get in contact with the dynamics of the blood flow, we evaluate the stealth properties of this novel multicompartment carrier towards protein adsorption and cellular uptake by three relevant cell lines (macrophages, endothelial and cancer cells) under physiological shear stress conditions. Our results demonstrate less protein adsorption for the PEGylated carriers and differences in the extent of internalized carriers depending on the presence of a PEG coating, the studied cell line and the intensity of the applied shear stress. Additionally, we demonstrate that, for all three tested cell lines, shear stress results in the activation of different cell entry pathways as compared to static conditions. All in all, we report a thorough study about the effect of shear stress on the cell association/uptake with a novel multicompartment carrier.
Collapse
Affiliation(s)
- Maria Jose York-Duran
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark
| | - Pramod Kumar Ek
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark
| | - Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech, Technical University of Denmark, Building 423, 2800, Lyngby, Denmark.
| |
Collapse
|
7
|
Triggering Mechanisms of Thermosensitive Nanoparticles Under Hyperthermia Condition. J Pharm Sci 2015; 104:2414-28. [DOI: 10.1002/jps.24536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 12/11/2022]
|
8
|
Saleem Q, Zhang Z, Petretic A, Gradinaru CC, Macdonald PM. Single lipid bilayer deposition on polymer surfaces using bicelles. Biomacromolecules 2015; 16:1032-9. [PMID: 25665160 DOI: 10.1021/acs.biomac.5b00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A lipid bilayer was deposited on a 3 μm diameter polystyrene (PS) bead via hydrophobic anchoring of bicelles containing oxyamine-bearing cholesteric moieties reacting with the aldehyde functionalized bead surface. Discoidal bicelles were formed by mixing dimyristoylphosphatidylcholine (DMPC), dihexanoylphosphatidylcholine (DHPC), dimyristoyltrimethylammonium propane (DMTAP), and the oxyamine-terminated cholesterol derivative, cholest-5-en-3β-oxy-oct-3,6-oxa-an-8-oxyamine (CHOLOA), in the molar ratio DMPC/DHCP/DMTAP/CHOLOA (1/0.5/0.01/0.05) in water. Upon exposure to aldehyde-bearing PS beads, a stable single lipid bilayer coating rapidly formed at the bead surface. Fluorescence recovery after photobleaching demonstrated that the deposited lipids fused into an encapsulating lipid bilayer. Electrospray ionization mass spectrometry showed that the short chain lipid DHPC was entirely absent from the PS adherent lipid coating. Fluorescence quenching measurements proved that the coating was a single lipid bilayer. The bicelle coating method is thus simple and robust, can be modified to include membrane-associated species, and can be adapted to coat any number of different surfaces.
Collapse
Affiliation(s)
- Qasim Saleem
- Departments of †Chemistry, ∥Physics, and ‡Chemical and Physical Sciences, University of Toronto Mississauga , 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | | | | | | | | |
Collapse
|
9
|
Grossutti M, Seenath R, Conlon S, Leitch JJ, Li J, Lipkowski J. Spectroscopic and permeation studies of phospholipid bilayers supported by a soft hydrogel scaffold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10862-10870. [PMID: 25147944 DOI: 10.1021/la502925p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polarized attenuated total reflection infrared (ATR-IR) spectroscopy, fluorescence microscopy, and fluorescence spectroscopy were used to characterize a lipid coating composed of 70 mol % 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 30 mol % cholesterol, supported on a spherical hydrogel scaffold. The fluorescence microscopy images show an association between the lipid coating and the hydrogel scaffold. Fluorescence permeability measurements revealed that the phospholipid coating acts as a permeability barrier, exhibiting characteristics of a lamellar bilayer coating structure. Variable evanescent wave penetration depth ATR-IR spectroscopy studies validated the determination of quantitative molecular orientation information for a lipid coating supported on a spherical scaffold. These polarized ATR-IR studies measured an average DMPC acyl chain tilt angle of ∼21-25°, with respect to the surface normal.
Collapse
Affiliation(s)
- Michael Grossutti
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Eid KAM, Azzazy HME. Sustained broad-spectrum antibacterial effects of nanoliposomes loaded with silver nanoparticles. Nanomedicine (Lond) 2014; 9:1301-10. [DOI: 10.2217/nnm.13.89] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: The emergence of microbial resistance to antibiotics warrants the search for effective broad-spectrum antibacterial agents. Silver nanoparticles (AgNPs) have been used as antimicrobial agents. AgNPs encapsulated in nanolipososmes have been developed as effective antimicrobial agents. Materials & methods: Nanoliposomes (<50 nm) were prepared using a modified reverse-phase evaporation method, and spherical, dextrose-capped AgNPs were synthesized. The prepared liposome AgNPs (LAgNPs) were characterized, and tested for their antibacterial effects. Results: The size of LAgNPs is 25–80 nm. The release of AgNPs from nanoliposomes was sustained over 10 h. Complete growth inhibition of Eschericia coli, Salmonella enterica, Pseudomonas aeruginosa and Staphylococcus aureus was achieved using 180, 200, 160 and 120 µM, respectively, of LAgNPs. LAgNPs exhibited sustained broad-spectrum antibacterial effects compared with free AgNPs. Conclusion: Nanoliposomes loaded with AgNPs are potentially effective broad-spectrum antimicrobial agents. This new formula, which can be further fortified by encapsulation of additional established antibacterial agents, may be effective against antibiotic-resistant bacteria and also promote wound healing. Original submitted 30 May 2012; Revised submitted 3 April 2013
Collapse
Affiliation(s)
- Kamel AM Eid
- Novel Diagnostics & Therapeutics, YJ-Science & Technology Research Center, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE #1184, PO Box 74, New Cairo, 11835, Egypt
| | - Hassan ME Azzazy
- Novel Diagnostics & Therapeutics, YJ-Science & Technology Research Center, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE #1184, PO Box 74, New Cairo, 11835, Egypt
| |
Collapse
|
11
|
Jalani G, Jung CW, Lee JS, Lim DW. Fabrication and characterization of anisotropic nanofiber scaffolds for advanced drug delivery systems. Int J Nanomedicine 2014; 9 Suppl 1:33-49. [PMID: 24872702 PMCID: PMC4024975 DOI: 10.2147/ijn.s51842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide) poly(NIPAM) copolymers, and poly(NIPAM-co-stearyl acrylate) poly(NIPAM-co-SA), while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA) or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA) compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA). Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be useful for advanced nanofiber scaffolds with two or more drugs released with different kinetics in response to environmental stimuli.
Collapse
Affiliation(s)
- Ghulam Jalani
- Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, Education Research Industry Cluster at Ansan Campus, Ansan, South Korea
| | - Chan Woo Jung
- Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, Education Research Industry Cluster at Ansan Campus, Ansan, South Korea
| | - Jae Sang Lee
- Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, Education Research Industry Cluster at Ansan Campus, Ansan, South Korea
| | - Dong Woo Lim
- Department of Bionano Engineering, College of Engineering Sciences, Hanyang University, Education Research Industry Cluster at Ansan Campus, Ansan, South Korea
| |
Collapse
|
12
|
Saleem Q, Zhang Z, Gradinaru CC, Macdonald PM. Liposome-coated hydrogel spheres: delivery vehicles with tandem release from distinct compartments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:14603-14612. [PMID: 24156402 DOI: 10.1021/la402796k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We have fabricated unilamellar lipid bilayer VESicle-COated hydrogel spheres (VESCOgels) by carbodiimide-mediated coupling of liposomes bearing surface amines to core-shell hydrogel spheres bearing surface carboxyls. The amine-containing moiety, 3-O (2-aminoethoxyethyloxyethyl)carbamyl cholesterol (AECHO), was incorporated into large unilamellar vesicles (LUVs), diameter ∼100 nm, composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). The hydrogel, diameter ∼ 1 μm, consisted of a core of poly(N-isopropyl acrylamide) (pNIPAM) and a shell of p(NIPAM-co-acrylic acid (AA)). Activation of these surface-displayed carboxyls with N-hydroxysuccinimidyl (NHS) esters permitted amine coupling upon addition of AECHO-containing POPC LUVs. Bilayer integrity of the hydrogel-bound LUVs was maintained, and fusion of LUVs did not occur. Fluorescence assays of the release of cobalt-calcein trapped within hydrogel-bound LUVs and of sodium fluorescein trapped within the hydrogel itself showed that each compartment retained its distinct release attributes: fast release from the microgel and slow release from the LUVs. It is envisioned that VESCOgels will be useful, therefore, in applications requiring temporally controlled delivery of distinct drugs.
Collapse
Affiliation(s)
- Qasim Saleem
- Department of Chemistry and ‡Department of Physics, University of Toronto , Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Dayani Y, Malmstadt N. Liposomes with double-stranded DNA anchoring the bilayer to a hydrogel core. Biomacromolecules 2013; 14:3380-5. [PMID: 24083513 PMCID: PMC3874235 DOI: 10.1021/bm401155a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Liposomes are important biomolecular nanostructures for handling membrane-associated molecules in the lab and delivering drugs in the clinic. In addition to their biomedical applications, they have been widely used as model cell membranes in biophysical studies. Here we present a liposome-based model membrane that mimics the attachment of membrane-resident molecules to the cytoskeleton. To facilitate this attachment, we have developed a lipid-based hybrid nanostructure in which the liposome bilayer membrane is covalently anchored to a biocompatible poly(ethylene) glycol (PEG) hydrogel core using short double-stranded DNA (dsDNA) linkers. The dsDNA linkers connect cholesterol groups that reside in the bilayer to vinyl groups that are incorporated in the cross-linked hydrogel backbone. Size exclusion chromatography (SEC) of intact and surfactant-treated nanoparticles confirms the formation of anchored hydrogel structures. Transmission electron microscopy (TEM) shows ~100 nm nanoparticles even after removal of unanchored phospholipids. The location of dsDNA groups at the hydrogel-bilayer interface is confirmed with a fluorescence assay. Using DNA as a linker between the bilayer and a hydrogel core allows for temperature-dependent release of the anchoring interaction, produces polymer nanogels with addressible hybridization sites on their surface, and provides a prototype structure for potential future oligonucleotide drug delivery applications.
Collapse
Affiliation(s)
- Yasaman Dayani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
14
|
Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 2013; 43:444-72. [PMID: 24100581 DOI: 10.1039/c3cs60299k] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of nanotechnology has revolutionized drug delivery in terms of improving drug efficacy and safety. Both polymer-based and lipid-based drug-loaded nanocarriers have demonstrated clinical benefit to date. However, to address the multifaceted drug delivery challenges ahead and further expand the spectrum of therapeutic applications, hybrid lipid-polymer nanocomposites have been designed to merge the beneficial features of both polymeric drug delivery systems and liposomes in a single nanocarrier. This review focuses on different classes of nanohybrids characterized by a drug-loaded polymeric matrix core enclosed in a lipid shell. Various nanoengineering approaches to obtain lipid-polymer nanocomposites with a core-shell nanoarchitecture will be discussed as well as their predominant applications in drug delivery.
Collapse
Affiliation(s)
- Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
15
|
Tran NTD, Jia Z, Truong NP, Cooper MA, Monteiro MJ. Fine Tuning the Disassembly Time of Thermoresponsive Polymer Nanoparticles. Biomacromolecules 2013; 14:3463-71. [DOI: 10.1021/bm4007858] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Nguyen T. D. Tran
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Zhongfan Jia
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Nghia P. Truong
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Matthew A. Cooper
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Michael J. Monteiro
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
16
|
Tran NTD, Truong NP, Gu W, Jia Z, Cooper MA, Monteiro MJ. Timed-Release Polymer Nanoparticles. Biomacromolecules 2013; 14:495-502. [DOI: 10.1021/bm301721k] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Nguyen T. D. Tran
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane
QLD 4072, Australia
| | - Nghia P. Truong
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane
QLD 4072, Australia
| | - Wenyi Gu
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane
QLD 4072, Australia
| | - Zhongfan Jia
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane
QLD 4072, Australia
| | - Matthew A Cooper
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane
QLD 4072, Australia
| | - Michael J. Monteiro
- Australian
Institute for Bioengineering and Nanotechnology and ‡Institute for Molecular Biosciences, The University of Queensland, Brisbane
QLD 4072, Australia
| |
Collapse
|
17
|
Sultana S, Khan MR, Kumar M, Kumar S, Ali M. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J Drug Target 2012; 21:107-25. [PMID: 22873288 DOI: 10.3109/1061186x.2012.712130] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer has become the leading cause of death among different populations of the world. The treatment is limited to chemotherapy, radiation, and surgery. Selective targeting to the tumor cells is possible by nanoparticles-based drug delivery system. It maximizes the drug concentration at the desired target and protects the surrounding healthy tissues at the same time. To improve the targeting potential of the anticancer drugs, nanoparticles were optimized for the size and surface characteristics to enhance their circulation time and targeting efficiency. Passive targeting involves surface modification with polyethylene glycol to avoid its elimination by natural body defense mechanism. Active targeting involves chemical interaction with certain antigen, receptors, and genes which are over expressed during progression of disease. In addition, the article highlights recent developments in "smart"-stimulus-responsive-drug carriers designed to enhance the localization and efficacy of therapeutic payloads as compared with free drug. Enhanced targeting potential, imaging, and controlled release of drugs or therapeutic molecules could be possible through multi-functional nanocarrier. Such multi-faceted, versatile nanocarriers and drug delivery systems promise a substantial increase in the efficacy of diagnostic and therapeutic applications in pharmaceutical sciences.
Collapse
|
18
|
Saleem Q, Liu B, Gradinaru CC, Macdonald PM. Lipogels: Single-Lipid-Bilayer-Enclosed Hydrogel Spheres. Biomacromolecules 2011; 12:2364-74. [DOI: 10.1021/bm200266z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Qasim Saleem
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | - Baoxu Liu
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | - Claudiu C. Gradinaru
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| | - Peter M. Macdonald
- Department of Chemistry and ‡Department of Physics, University of Toronto, and §Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
19
|
|
20
|
Liu B, Mazouchi A, Gradinaru CC. Trapping single molecules in liposomes: surface interactions and freeze-thaw effects. J Phys Chem B 2010; 114:15191-8. [PMID: 20979387 DOI: 10.1021/jp104614d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on an improved method to encapsulate proteins and other macromolecules inside surface-tethered liposomes to reduce or eliminate environmental interference for single-molecule investigations. These lipid vesicles are large enough for the molecule to experience free diffusion but sufficiently small so that the molecule appears effectively immobile under the fluorescence microscope. Single-molecule fluorescence experiments were used to characterize this anchoring method relative to direct immobilization via biotin-streptavidin linkers. Multidimensional histograms of intensity, polarization, and lifetime revealed that molecules trapped in liposomes display a narrow distribution around a single peak, while the molecules directly immobilized on surface show highly dispersed values for all parameters. By hydrating the lipid film at low volumes, high encapsulation efficiencies can be achieved with ~10 times less biological material than previous protocols. We measured vesicle size distributions and found no significant advantage for using freeze-thaw cycles during vesicle preparation. On the contrary, the temperature jump can induce irreversible damage of fluorophores and it reduces significantly the functionality of proteins, as demonstrated on single-molecule binding experiments on STAT3. Our improved and biologically gentle molecule encapsulation protocol has a great potential for widespread applications in single-molecule fluorescence spectroscopy.
Collapse
Affiliation(s)
- Baoxu Liu
- Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 1A7
| | | | | |
Collapse
|