1
|
Oliveira ON, Caseli L, Ariga K. The Past and the Future of Langmuir and Langmuir-Blodgett Films. Chem Rev 2022; 122:6459-6513. [PMID: 35113523 DOI: 10.1021/acs.chemrev.1c00754] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Langmuir-Blodgett (LB) technique, through which monolayers are transferred from the air/water interface onto a solid substrate, was the first method to allow for the controlled assembly of organic molecules. With its almost 100 year history, it has been the inspiration for most methods to functionalize surfaces and produce nanocoatings, in addition to serving to explore concepts in molecular electronics and nanoarchitectonics. This paper provides an overview of the history of Langmuir monolayers and LB films, including the potential use in devices and a discussion on why LB films are seldom considered for practical applications today. Emphasis is then given to two areas where these films offer unique opportunities, namely, in mimicking cell membrane models and exploiting nanoarchitectonics concepts to produce sensors, investigate molecular recognitions, and assemble molecular machines. The most promising topics for the short- and long-term prospects of the LB technique are also highlighted.
Collapse
Affiliation(s)
- Osvaldo N Oliveira
- São Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 Sao Carlos, SP, Brazil
| | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, 09913-030 Diadema, SP, Brazil
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 305-0044 Tsukuba, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827, Japan
| |
Collapse
|
2
|
Paudyal S, Sharma SK, da Silva RL, Mintz KJ, Liyanage PY, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Tyrosinase enzyme Langmuir monolayer: Surface chemistry and spectroscopic study. J Colloid Interface Sci 2020; 564:254-263. [DOI: 10.1016/j.jcis.2019.12.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 02/08/2023]
|
3
|
Nakahara H, Nishino A, Tanaka A, Fujita Y, Shibata O. Interfacial behavior of gemini surfactants with different spacer lengths in aqueous medium. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-018-4459-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Sharma SK, Seven ES, Micic M, Li S, Leblanc RM. Surface Chemistry and Spectroscopic Study of a Cholera Toxin B Langmuir Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2557-2564. [PMID: 29378405 DOI: 10.1021/acs.langmuir.7b04252] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article, we explored the surface chemistry properties of a cholera toxin B (CTB) monolayer at the air-subphase interface and investigated the change in interfacial properties through in situ spectroscopy. The study showed that the impact of the blue shift was negligible, suggesting that the CTB molecules were minimally affected by the subphase molecules. The stability of the CTB monolayer was studied by maintaining the constant surface pressure for a long time and also by using the compression-decompression cycle experiments. The high stability of the Langmuir monolayer of CTB clearly showed that the driving force of CTB going to the amphiphilic membrane was its amphiphilic nature. In addition, no major change was detected in the various in situ spectroscopy results (such as UV-vis, fluorescence, and IR ER) of the CTB Langmuir monolayer with the increase in surface pressure. This indicates that no aggregation occurs in the Langmuir monolayer of CTB.
Collapse
Affiliation(s)
- Shiv K Sharma
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Elif S Seven
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Miodrag Micic
- MP Biomedicals LLC, 3 Hutton Center, Santa Ana, California 92707, United States
- Department of Engineering Design Technology, Cerritos College , 11110 Alondra Boulevard, Norwalk, California 90650, United States
| | - Shanghao Li
- MP Biomedicals LLC, 3 Hutton Center, Santa Ana, California 92707, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami , 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
5
|
Kim KR, Han YD, Chun HJ, Lee KW, Hong DK, Lee KN, C Yoon H. Encapsulation-Stabilized, Europium Containing Nanoparticle as a Probe for Time-Resolved luminescence Detection of Cardiac Troponin I. BIOSENSORS 2017; 7:E48. [PMID: 29057816 PMCID: PMC5746771 DOI: 10.3390/bios7040048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 12/17/2022]
Abstract
The use of a robust optical signaling probe with a high signal-to-noise ratio is important in the development of immunoassays. Lanthanide chelates are a promising material for this purpose, which provide time-resolved luminescence (TRL) due to their large Stokes shift and long luminescence lifetime. From this, they have attracted considerable interest in the in vitro diagnostics field. However, the direct use of lanthanide chelates is limited because their luminescent signal can be easily affected by various quenchers. To overcome this drawback, strategies that rely on the entrapment of lanthanide chelates inside nanoparticles, thereby enabling the protection of the lanthanide chelate from water, have been reported. However, the poor stability of the lanthanide-entrapped nanoparticles results in a significant fluctuation in TRL signal intensity, and this still remains a challenging issue. To address this, we have developed a Lanthanide chelate-Encapsulated Silica Nano Particle (LESNP) as a new immunosensing probe. In this approach, the lanthanide chelate is covalently crosslinked within the silane monomer during the silica nanoparticle formation. The resulting LESNP is physically stable and retains TRL properties of the parent lanthanide chelate. Using the probe, a highly sensitive, sandwich-based TRL immunoassay for the cardiac troponin I was conducted, exhibiting a limit of detection of 48 pg/mL. On the basis of the features of the LESNP such as TRL signaling capability, stability, and the ease of biofunctionalization, we expect that the LESNP can be widely applied in the development of TRL-based immunosensing.
Collapse
Affiliation(s)
- Ka Ram Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Yong Duk Han
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Hyeong Jin Chun
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Kyung Won Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| | - Dong-Ki Hong
- Korea Electronics Technology Institute, Seongnam 13509, Korea.
| | - Kook-Nyung Lee
- Korea Electronics Technology Institute, Seongnam 13509, Korea.
| | - Hyun C Yoon
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Korea.
| |
Collapse
|
6
|
Waidely E, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Study of the Alpha-l-Fucosidase Langmuir Monolayer at the Air–Water Interface. J Phys Chem B 2016; 120:12843-12849. [DOI: 10.1021/acs.jpcb.6b09094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric Waidely
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| | - Abdulrahman O. Al-Youbi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Abdulaziz S. Bashammakh
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad S. El-Shahawi
- Department
of Chemistry, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Kingdom of Saudi Arabia
| | - Roger M. Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science
Center, Coral Gables, Florida 33146, United States
| |
Collapse
|
7
|
Sharma SK, Li S, Micic M, Orbulescu J, Weissbart D, Nakahara H, Shibata O, Leblanc RM. β-Galactosidase Langmuir Monolayer at Air/X-gal Subphase Interface. J Phys Chem B 2016; 120:12279-12286. [DOI: 10.1021/acs.jpcb.6b09020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shiv K. Sharma
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Shanghao Li
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Miodrag Micic
- MP Biomedicals LLC, 3 Hutton
Center, Santa Ana, California 92707, United States
- Department
of Engineering Design Technology, Cerritos College, 11110 Alondra
Boulevard, Norwalk, California 9265, United States
| | - Jhony Orbulescu
- MP Biomedicals LLC, 3 Hutton
Center, Santa Ana, California 92707, United States
| | - Daniel Weissbart
- MP Biomedicals SAS, Parc d’innovation-Rue Geiler de Kaysersberg, Illkirch-Graffenstaden 67402, France
| | - Hiromichi Nakahara
- Department
of Biophysical Chemistry, Nagasaki International University, Huis Ten
Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Osamu Shibata
- Department
of Biophysical Chemistry, Nagasaki International University, Huis Ten
Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Roger M. Leblanc
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
8
|
Nakahara H, Hagimori M, Mukai T, Shibata O. Interactions of a Tetrazine Derivative with Biomembrane Constituents: A Langmuir Monolayer Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6591-6599. [PMID: 27280946 DOI: 10.1021/acs.langmuir.6b00997] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tetrazine (Tz) is expected to be used for bioimaging and as an analytical reagent. It is known to react very fast with trans-cyclooctene under water in organic chemistry. Here, to understand the interaction between Tz and biomembrane constituents, we first investigated the interfacial behavior of a newly synthesized Tz derivative comprising a C18-saturated hydrocarbon chain (rTz-C18) using a Langmuir monolayer spread at the air-water interface. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms were measured for monolayers of rTz-C18 and biomembrane constituents such as dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl sphingomyelin (PSM), and cholesterol (Ch). The lateral interaction between rTz-C18 and the lipids was thermodynamically elucidated from the excess Gibbs free energy of mixing and two-dimensional phase diagram. The binary monolayers except for the Ch system indicated high miscibility or affinity. In particular, rTz-C18 was found to interact more strongly with DPPE, which is a major constituent of the inner surface of cell membranes. The phase behavior and morphology upon monolayer compression were investigated by using Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM). The BAM and FM images of the DPPC/rTz-C18, DPPG/rTz-C18, and PSM/rTz-C18 systems exhibited a coexistence state of two different liquid-condensed domains derived mainly from monolayers of phospholipids and phospholipids-rTz-C18. From these morphological observations, it is worthy to note that rTz-C18 is possible to interact with a limited amount of the lipids except for DPPE.
Collapse
Affiliation(s)
- Hiromichi Nakahara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Nagasaki International University , 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| | - Masayori Hagimori
- Department of Pharmaceutical Informatics, Graduate School of Biomedical Sciences, Nagasaki University , 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Takahiro Mukai
- Department of Biophysical Chemistry, Kobe Pharmaceutical University , 4-19-1 Motoyama Kitamachi, Higashinada-ku, Kobe 658-8558, Japan
| | - Osamu Shibata
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Nagasaki International University , 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
9
|
Bahadur A, Cabana-Montenegro S, Aswal VK, Lage EV, Sandez-Macho I, Concheiro A, Alvarez-Lorenzo C, Bahadur P. NaCl-triggered self-assembly of hydrophilic poloxamine block copolymers. Int J Pharm 2015; 494:453-62. [PMID: 26315124 DOI: 10.1016/j.ijpharm.2015.08.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Tetronic 1307 (T1307) is a hydrophilic poloxamine (HLB>24) with a high molecular mass owing to its long PEO and PPO blocks. In spite of good biocompatibility, its use as a component of drug delivery systems is limited by its high critical micelle concentration (CMC) and temperature (CMT). The aim of this work was to elucidate whether the addition of NaCl or the combination of salts and temperature may bring T1307 micellization and gelling features into more practically useful values. Increasing NaCl concentration in the 0.154 M (isotonic) to 2M (hypertonic) range made the copolymer more hydrophobic and more prone to self-assemble into unimodal micelles, as observed by means of π-A isotherms, (1)H NMR, dynamic light scattering (DLS), small-angle neutron scattering (SANS), and pyrene fluorescence. The decrease in CMC and CMT observed for T1307 in 0.5 M NaCl medium (tolerable hypertonic solution), compared to water, notably favored the solubility of hydrophobic drugs such as curcumin and quercetin. Moreover, phase diagram, intrinsic viscosity and sol-to-gel transition were markedly affected by NaCl concentration. Overall, the strong dependence of T1307 self-assembly features on NaCl opens interesting possibilities for tuning the performance of T1307 as a component of nanocarriers and in situ gelling systems.
Collapse
Affiliation(s)
- Anita Bahadur
- Department of Zoology, PT Sarvajanik College of Science, Surat 395001 India
| | - Sonia Cabana-Montenegro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Vinod Kumar Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Emilio V Lage
- Departamento de Química Física, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Sandez-Macho
- Departamento de Química Física, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Pratap Bahadur
- Chemistry Department, Veer Narmad South Gujarat University, Surat 395001 India.
| |
Collapse
|
10
|
Crawford NF, Leblanc RM. Serum albumin in 2D: a Langmuir monolayer approach. Adv Colloid Interface Sci 2014; 207:131-8. [PMID: 24267981 DOI: 10.1016/j.cis.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 11/24/2022]
Abstract
Understanding of protein interaction at the molecular level raises certain difficulties which is the reason a model membrane system such as the Langmuir monolayer technique was developed. Ubiquitous proteins such as serum albumin comprise 50% of human blood plasma protein content and are involved in many biological functions. The important nature of this class of protein demands that it be studied in detail while modifying the experimental conditions in two dimensions to observe it in all types of environments. While different from bulk colloidal solution work, the two dimensional approach allows for the observation of the interaction between molecules and subphase at the air-water interface. Compiled in this review are studies which highlight the characterization of this protein using various surroundings and also observing the types of interactions it would have when at the biomembrane interface. Free-energy changes between molecules, packing status of the bulk analyte at the interface as well as phase transitions as the monolayer forms a more organized or aggregated state are just some of the characteristics which are observed through the Langmuir technique. This unique methodology demonstrates the chemical behavior and physical behavior of this protein at the phase boundary throughout the compression of the monolayer.
Collapse
|
11
|
López‐Montero I, López‐Navajas P, Mingorance J, Rivas G, Vélez M, Vicente M, Monroy F. Intrinsic disorder of the bacterial cell division protein ZipA: coil‐to‐brush conformational transition. FASEB J 2013; 27:3363-75. [DOI: 10.1096/fj.12-224337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Pilar López‐Navajas
- Centro de Investigaciones Biológicas (CIB)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
| | | | - Germán Rivas
- Centro de Investigaciones Biológicas (CIB)Consejo Superior de Investigaciones Cientificas (CSIC)MadridSpain
| | - Marisela Vélez
- Instituto de Catálisis y PetroleoquímicaCSICCampus de CantoblancoMadridSpain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nanociencia)Facultad de CienciasCampus de CantoblancoMadridSpain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB)CSICCampus de CantoblancoMadridSpain
| | - Francisco Monroy
- Departamento de Química Física IUniversidad ComplutenseMadridSpain
| |
Collapse
|
12
|
Li S, Micic M, Orbulescu J, Whyte JD, Leblanc RM. Human islet amyloid polypeptide at the air-aqueous interface: a Langmuir monolayer approach. J R Soc Interface 2012; 9:3118-28. [PMID: 22787008 DOI: 10.1098/rsif.2012.0368] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human islet amyloid polypeptide (hIAPP) is the source of the major component of the amyloid deposits found in the islets of Langerhans of around 95 per cent type 2 diabetic patients. The formation of aggregates and mature fibrils is thought to be responsible for the dysfunction and death of the insulin-producing pancreatic β-cells. Investigation on the conformation, orientation and self-assembly of the hIAPP at time zero could be beneficial for our understanding of its stability and aggregation process. To obtain these insights, the hIAPP at time zero was studied at the air-aqueous interface using the Langmuir monolayer technique. The properties of the hIAPP Langmuir monolayer at the air-aqueous interface on a NaCl subphase with pH 2.0, 5.6 and 9.0 were examined by surface pressure- and potential-area isotherms, UV-Vis absorption, fluorescence spectroscopy and Brewster angle microscopy. The conformational and orientational changes of the hIAPP Langmuir monolayer under different surface pressures were characterized by p-polarized infrared-reflection absorption spectroscopy, and the results did not show any prominent changes of conformation or orientation. The predominant secondary structure of the hIAPP at the air-aqueous interface was α-helix conformation, with a parallel orientation to the interface during compression. These results showed that the hIAPP Langmuir monolayer at the air-aqueous interface was stable, and no aggregate or domain of the hIAPP at the air-aqueous interface was observed during the time of experiments.
Collapse
Affiliation(s)
- Shanghao Li
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Cox Science Center, Coral Gables, FL 33146, USA
| | | | | | | | | |
Collapse
|
13
|
Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: Possible use as a uric acid sensor. J Colloid Interface Sci 2012; 373:69-74. [DOI: 10.1016/j.jcis.2011.07.095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 11/19/2022]
|
14
|
Reyes LF, Nobre TM, Pavinatto FJ, Zaniquelli ME, Caseli L, Oliveira ON, Araújo APU. The role of the C-terminal region of pulchellin A-chain in the interaction with membrane model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:82-9. [DOI: 10.1016/j.bbamem.2011.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/29/2011] [Accepted: 10/04/2011] [Indexed: 02/02/2023]
|
15
|
A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosens Bioelectron 2011; 26:3818-24. [DOI: 10.1016/j.bios.2011.02.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/08/2011] [Accepted: 02/23/2011] [Indexed: 11/21/2022]
|
16
|
Goto TE, Lopez RF, Iost RM, Crespilho FN, Caseli L. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2667-2675. [PMID: 21314156 DOI: 10.1021/la104822r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.
Collapse
Affiliation(s)
- Thiago E Goto
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo , Diadema, São Paulo 09972-270, Brazil
| | | | | | | | | |
Collapse
|