1
|
Degirmenci A, Yeter Bas G, Sanyal R, Sanyal A. “Clickable” Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing. Bioconjug Chem 2022; 33:1672-1684. [PMID: 36128725 PMCID: PMC9501913 DOI: 10.1021/acs.bioconjchem.2c00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Facile and effective functionalization of the interface
of polymer-coated
surfaces allows one to dictate the interaction of the underlying material
with the chemical and biological analytes in its environment. Herein,
we outline a modular approach that would enable installing a variety
of “clickable” handles onto the surface of polymer brushes,
enabling facile conjugation of various ligands to obtain functional
interfaces. To this end, hydrophilic anti-biofouling poly(ethylene
glycol)-based polymer brushes are fabricated on glass-like silicon
oxide surfaces using reversible addition–fragmentation chain
transfer (RAFT) polymerization. The dithioester group at the chain-end
of the polymer brushes enabled the installation of azide, maleimide,
and terminal alkene functional groups, using a post-polymerization
radical exchange reaction with appropriately functionalized azo-containing
molecules. Thus, modified polymer brushes underwent facile conjugation
of alkyne or thiol-containing dyes and ligands using alkyne–azide
cycloaddition, Michael addition, and radical thiol–ene conjugation,
respectively. Moreover, we demonstrate that the radical exchange approach
also enables the installation of multivalent motifs using dendritic
azo-containing molecules. Terminal alkene groups containing dendrons
amenable to functionalization with thiol-containing molecules using
the radical thiol–ene reaction were installed at the interface
and subsequently functionalized with mannose ligands to enable sensing
of the Concanavalin A lectin.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Gizem Yeter Bas
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
2
|
Karpov ON, Bondarenko DS, Derikov YI, Finko AV, Shandryuk GA, Talroze RV. Possible Approaches to the Synthesis of Nanocomposites from a Liquid-Crystalline Polymer and CdSe/ZnS Quantum Dots. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422700154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Yin L, Liu L, Zhang N. Brush-like polymers: design, synthesis and applications. Chem Commun (Camb) 2021; 57:10484-10499. [PMID: 34550120 DOI: 10.1039/d1cc03940g] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the development of controlled polymerisation, almost all polymerisation strategies have been successfully transplanted to surface-initiated polymerisation. The resulting polymer brushes have emerged as an effective tool for surface functionalization and modulation of the surface properties of materials. To meet various demands it is possible to tailor a material surface with polymer brushes that have diverse dimensionalities, morphologies and compositions. The crowded environment within polymer brushes as well as the stretched conformation of polymer chains sometimes provide unique physicochemical properties, which lead to the delicate creation of inorganic-organic hybridised nanostructures, anti-fouling coatings, biomedical carriers, and materials for use in lubrication, photonics and energy storage. So far, challenges remain in the high-precision synthesis and topological control needed to realize extended applications of polymer brushes. In this Feature Article, we highlight the topology, potential application prospects and various synthetic protocols, particularly for recently established methods, for the efficient synthesis of polymer brushes, as well as their benefits and limitations.
Collapse
Affiliation(s)
- Liying Yin
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Lin Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| | - Ning Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China.
| |
Collapse
|
4
|
Li W, Zhang X, Xue Z, Mi Y, Ma P, Fan D. Ginsenoside CK production by commercial snailase immobilized onto carboxylated chitosan-coated magnetic nanoparticles. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Beyou E, Bourgeat-Lami E. Organic–inorganic hybrid functional materials by nitroxide-mediated polymerization. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Vergnat V, Heinrich B, Rawiso M, Muller R, Pourroy G, Masson P. Iron Oxide/Polymer Core-Shell Nanomaterials with Star-like Behavior. NANOMATERIALS 2021; 11:nano11092453. [PMID: 34578768 PMCID: PMC8471951 DOI: 10.3390/nano11092453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/05/2022]
Abstract
Embedding nanoparticles (NPs) with organic shells is a way to control their aggregation behavior. Using polymers allows reaching relatively high shell thicknesses but suffers from the difficulty of obtaining regular hybrid objects at gram scale. Here, we describe a three-step synthesis in which multi-gram NP batches are first obtained by thermal decomposition, prior to their covalent grafting by an atom transfer radical polymerization (ATRP) initiator and to the controlled growing of the polymer shell. Specifically, non-aggregated iron oxide NPs with a core principally composed of γ-Fe2O3 (maghemite) and either polystyrene (PS) or polymethyl methacrylate (PMMA) shell were elaborated. The oxide cores of about 13 nm diameter were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). After the polymerization, the overall diameter reached 60 nm, as shown by small-angle neutron scattering (SANS). The behavior in solution as well as rheological properties in the molten state of the polymeric shell resemble those of star polymers. Strategies to further improve the screening of NP cores with the polymer shells are discussed.
Collapse
Affiliation(s)
- Virginie Vergnat
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR7504, 23 Rue du Lœss, BP 43, 67034 Strasbourg, France; (V.V.); (G.P.)
| | - Benoît Heinrich
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR7504, 23 Rue du Lœss, BP 43, 67034 Strasbourg, France; (V.V.); (G.P.)
- Correspondence: (B.H.); (P.M.)
| | - Michel Rawiso
- Institut Charles Sadron (ICS), CNRS, Université de Strasbourg, UPR 22, 23 Rue du Lœss, BP 84047, 67034 Strasbourg, France; (M.R.); (R.M.)
| | - René Muller
- Institut Charles Sadron (ICS), CNRS, Université de Strasbourg, UPR 22, 23 Rue du Lœss, BP 84047, 67034 Strasbourg, France; (M.R.); (R.M.)
| | - Geneviève Pourroy
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR7504, 23 Rue du Lœss, BP 43, 67034 Strasbourg, France; (V.V.); (G.P.)
| | - Patrick Masson
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS, Université de Strasbourg, UMR7504, 23 Rue du Lœss, BP 43, 67034 Strasbourg, France; (V.V.); (G.P.)
- Correspondence: (B.H.); (P.M.)
| |
Collapse
|
7
|
Arraez FJ, Van Steenberge PHM, Sobieski J, Matyjaszewski K, D’hooge DR. Conformational Variations for Surface-Initiated Reversible Deactivation Radical Polymerization: From Flat to Curved Nanoparticle Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00855] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francisco J. Arraez
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
| | | | - Julian Sobieski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Dagmar R. D’hooge
- Laboratory for Chemical Technology, Technologiepark 125, Zwijnaarde, Ghent 9052, Belgium
- Centre for Textile Science and Engineering, Ghent University, Technologiepark 70A, Zwijnaarde, Ghent 9052, Belgium
| |
Collapse
|
8
|
Khankari S, Badoei-Dalfard A, Karami Z. Cross-linked Enzyme Aggregates of Fibrinolytic Protease BC1 Immobilized on Magnetic Chitosan Nanoparticles (CLEAs-Fib-mChi): Synthesis, Purification, and Characterization. Appl Biochem Biotechnol 2021; 193:2004-2027. [PMID: 33538961 DOI: 10.1007/s12010-021-03494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
Bacterial fibrinolytic proteases achieved more attention in the prevention and treatment of cardiovascular diseases, so purification, characterization, and activity enhancement are of prime importance. In this study, a fibrinolytic serine metalloprotease was purified from the culture supernatant from Bacillus sp. BC1. It was purified to homogeneity by a two-step procedure with a 24-fold increase in specific activity and a 33.1% yield. It showed 28 kDa molecular weight, while its optimal pH and temperature were obtained 8 and 50-60 °C. The cross-link enzyme aggregates of this fibrinolytic BC1 successfully immobilized on magnetic chitosan nanoparticles. A 52% activity enhancement was obtained by immobilized enzyme at pH 6.0, compared to free protease. Km values of the free and immobilized proteases were obtained about 0.638 and 0.61 mg/ml, respectively. The free and immobilized enzymes did not show any activity concerning transferrin, γ-globulins, and hemoglobin, as blood plasma proteins. The in vitro blood clot lysis test of the free and immobilized proteases showed a maximum of 42 and 50% clot lysis, which was comparatively higher than that revealed by streptokinase and heparin at the same condition. These results indicated that the free and immobilized proteases have the potential to be effective fibrinolytic agents.
Collapse
Affiliation(s)
- Shima Khankari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Zahra Karami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
9
|
Nguyen LT, Pham HQ, Nguyen DAS, Nguyen LT, Huynh KPH, Le Tran H, Mai PT, Nguyen HT, Nguyen LTT, Truong TT. 10-(pyren-1-yl)-10h-phenothiazine and pyrene as organic catalysts for photoinitiated ATRP of 4-vinylpyridine. POLIMEROS 2021. [DOI: 10.1590/0104-1428.08120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Ha Tran Nguyen
- Vietnam National University, Vietnam; Vietnam National University, Vietnam
| | - Le-Thu Thi Nguyen
- Vietnam National University, Vietnam; Vietnam National University, Vietnam
| | - Thuy Thu Truong
- Vietnam National University, Vietnam; Vietnam National University, Vietnam
| |
Collapse
|
10
|
Bindu V, Mohanan P. Thermal deactivation of α-amylase immobilized magnetic chitosan and its modified forms: A kinetic and thermodynamic study. Carbohydr Res 2020; 498:108185. [DOI: 10.1016/j.carres.2020.108185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023]
|
11
|
Synthesis of hyaluronated poly(exo-7-oxabicyclo[2.2.1]hept-5-en-2,3-dicarboxylic anhydride) brushes via a combination of surface-initiated ring-opening metathesis polymerization and thiol-ene click reaction. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Joseph JE, Mary PR, Haritha KV, Panwar D, Kapoor M. Soluble and Cross-Linked Aggregated Forms of α-Galactosidase from Vigna mungo Immobilized on Magnetic Nanocomposites: Improved Stability and Reusability. Appl Biochem Biotechnol 2020; 193:238-256. [PMID: 32894388 DOI: 10.1007/s12010-020-03408-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/12/2020] [Indexed: 01/17/2023]
Abstract
α-Galactosidases hold immense potential due to their biotechnological applications in various industrial and functional food sectors. In the present study, soluble and covalently cross-linked aggregated forms of a low molecular weight, thermo-labile α-galactosidase from Vigna mungo (VM-αGal) seeds were immobilized onto chitosan-coated magnetic nanoparticles for improved stability and repeated usage by magnetic separation. Parameters like precipitants (type, amount, and ratio), glutaraldehyde concentration, and enzyme load were optimized for the preparation of chitosan-coated magnetic nanocomposites of cross-linked VM-αGal (VM-αGal-MC) and VM-αGal (VM-αGal-M) resulted in 100% immobilization efficiency. Size and morphology of VM-αGal-M were studied through dynamic light scattering (DLS) and scanning electron microscopy (SEM), while Fourier transform infrared spectroscopy (FTIR) was used to study the chemical composition of VM-αGal-MC and VM-αGal-M. VM-αGal-MC and VM-αGal-M were found more active in a broad range of pH (3-8) and displayed optimal temperatures up to 25 °C higher than VM-αGal. Addition of non-ionic detergents (except Tween-40) improved VM-αGal-MC activity by up to 44% but negatively affected VM-αGal-M activity. Both VM-αGal-MC (15% residual activity after 21 min at 85 °C, Ed 92.42 kcal/mol) and VM-αGal-M (69.0% residual activity after 10 min at 75 °C, Ed 39.87 kcal/mol) showed remarkable thermal stability and repeatedly hydrolyzed the substrate for 10 cycles.
Collapse
Affiliation(s)
- Juby Elsa Joseph
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India
| | - Priyanka Rose Mary
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP, 201 002, India
| | - K V Haritha
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India
| | - Deepesh Panwar
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP, 201 002, India
| | - Mukesh Kapoor
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570 020, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre (CSIR-HRDC) Campus, Ghaziabad, UP, 201 002, India.
| |
Collapse
|
13
|
Magnetic dispersive solid-phase microextraction for determination of two organophosphorus pesticides in cucumber and orange samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2020; 12:polym12061409. [PMID: 32586068 PMCID: PMC7361790 DOI: 10.3390/polym12061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022] Open
Abstract
One of the challenges for brush synthesis for advanced bioinspired applications using surface-initiated reversible deactivation radical polymerization (SI-RDRP) is the understanding of the relevance of confinement on the reaction probabilities and specifically the role of termination reactions. The present work puts forward a new matrix-based kinetic Monte Carlo platform with an implicit reaction scheme capable of evaluating the growth pattern of individual free and tethered chains in three-dimensional format during SI-RDRP. For illustration purposes, emphasis is on normal SI-atom transfer radical polymerization, introducing concepts such as the apparent livingness and the molecular height distribution (MHD). The former is determined based on the combination of the disturbing impact of termination (related to conventional livingness) and shielding of deactivated species (additional correction due to hindrance), and the latter allows structure-property relationships to be identified, starting at the molecular level in view of future brush characterization. It is shown that under well-defined SI-RDRP conditions the contribution of (shorter) hindered dormant chains is relevant and more pronounced for higher average initiator coverages, despite the fraction of dead chains being less. A dominance of surface-solution termination is also put forward, considering two extreme diffusion modes, i.e., translational and segmental. With the translational mode termination is largely suppressed and the living limit is mimicked, whereas with the segmental mode termination occurs more and the termination front moves upward alongside the polymer layer growth. In any case, bimodalities are established for the tethered chains both on the level of the chain length distribution and the MHD.
Collapse
|
15
|
Prince E, Narayanan P, Chekini M, Pace-Tonna C, Roberts MG, Zhulina E, Kumacheva E. Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Elisabeth Prince
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Pournima Narayanan
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mahshid Chekini
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Carleigh Pace-Tonna
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Megan G. Roberts
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Ekaterina Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 4 Taddle Creek Road, Toronto, Ontario M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
16
|
Saedi S, Rhim JW. Synthesis of Fe3O4@SiO2@PAMAM dendrimer@AgNP hybrid nanoparticles for the preparation of carrageenan-based functional nanocomposite film. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Recent Progress in Charged Polymer Chains Grafted by Radiation-Induced Graft Polymerization; Adsorption of Proteins and Immobilization of Inorganic Precipitates. QUANTUM BEAM SCIENCE 2020. [DOI: 10.3390/qubs4020020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Radiation-induced graft polymerization provides industrially superior functionalization schemes by selection of existing polymer substrates and design of graft chains. In this review, by a pre-irradiation method of the radiation-induced graft polymerization and subsequent chemical modifications, charged polymer chains grafted onto various components and shapes of the polymer substrates are described. The charged graft chains immobilized onto a porous hollow-fiber membrane captured proteins in multilayers via multipoint binding. A membrane onto which positively charged graft chains are immobilized, i.e., an anion-exchange porous hollow-fiber membrane, was commercialized in 2011 for the removal of undesirable proteins in the purification of pharmaceuticals. On the other hand, a membrane onto which negatively charged graft chains are immobilized, i.e., a cation-exchange porous hollow-fiber membrane, exhibited a low permeation flux for pure water; however, the prepermeation of an aqueous solution of magnesium chloride through the membrane restored the permeation flux because of ionic crosslinking of graft chains with magnesium ions. The charged graft chains provide a precipitation field for inorganic compounds such as insoluble cobalt ferrocyanide. The graft chains entangle or penetrate a precipitate owing to electrostatic interactions with the surface charge on the precipitate. Braids and wound filters composed of insoluble-cobalt-ferrocyanide-impregnated fibers are used for the removal of radiocesium from contaminated water at Tokyo Electric Power Co. (TEPCO) Fukushima Daiichi Nuclear Power Plant.
Collapse
|
18
|
Understanding bisphenol-A adsorption in magnetic modified covalent organic frameworks: Experiments coupled with DFT calculations. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112431] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Afzal HA, Ghorpade RV, Thorve AK, Nagaraja S, Al-Dhubiab BE, Meravanige G, Rasool ST, Roopashree TS. Epoxy functionalized polymer grafted magnetic nanoparticles by facile surface initiated polymerization for immobilization studies of Candida Antarctica lipase B. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Ranjous Y, Regdon G, Pintye-Hódi K, Sovány T. Standpoint on the priority of TNTs and CNTs as targeted drug delivery systems. Drug Discov Today 2019; 24:1704-1709. [PMID: 31158513 DOI: 10.1016/j.drudis.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/05/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
|
22
|
Shimamoto H, Cheng CH, Kamitani K, Kojio K, Higaki Y, Takahara A. Nanocomposite Elastomers Composed of Silica Nanoparticles Grafted with a Comb-Shaped Copolymer Brush. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00927] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | - Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | | |
Collapse
|
23
|
Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z. TEMPO in Chemical Transformations: From Homogeneous to Heterogeneous. ACS Catal 2019. [DOI: 10.1021/acscatal.8b05001] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hazi Ahmad Beejapur
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Zhang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kecheng Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Li Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhibin Ye
- Department of Chemical and Materials Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada
| |
Collapse
|
24
|
Machida H, Abiko Y, Hirayama S, Meng Q, Akasaka S, Fujimori A. Correlation between nanodispersion of organo-modified nanodiamond in solvent and condensed behavior of their organized particle films. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Ozyilmaz E, Etci K, Sezgin M. Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters. Prep Biochem Biotechnol 2018; 48:887-897. [DOI: 10.1080/10826068.2018.1514516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Elif Ozyilmaz
- Faculty of Science, Department of Biochemistry, Selcuk University, Konya, Turkey
| | - Kubra Etci
- Faculty of Science, Department of Chemistry, Selcuk University, Konya, Turkey
| | - Mehmet Sezgin
- Faculty of Science, Department of Chemistry, Selcuk University, Konya, Turkey
| |
Collapse
|
26
|
Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 2018; 114:1134-1143. [DOI: 10.1016/j.ijbiomac.2018.03.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/15/2018] [Indexed: 11/17/2022]
|
27
|
Megiel E. Surface modification using TEMPO and its derivatives. Adv Colloid Interface Sci 2017; 250:158-184. [PMID: 28950986 DOI: 10.1016/j.cis.2017.08.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023]
Abstract
This article provides an overview of the methods for surface modification based on the use of stable radicals: 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its derivatives. Two approaches are discussed. The first relies on the immobilization of TEMPO moieties on the surface of various materials including silicon wafers, silica particles, organic polymers as well as diverse nanomaterials. Applications of such materials with spin labeled surface/interface, in (electro)catalysis, synthesis of novel hybrid nanostructures and nanocomposites as well as in designing of organic magnets and novel energy storage devices are also included in the discussion. The second approach utilizes TEMPO and its derivatives for the grafting of polymer chains and polymer brushes formation on flat and nanostructure surfaces via Nitroxide Mediated Radical Polymerization (NMRP). The influence of such polymer modification on surface/interface physicochemical properties is also presented.
Collapse
Affiliation(s)
- Elżbieta Megiel
- University of Warsaw, Faculty of Chemistry, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
28
|
Wang L, Wen S, Li Z. Synthesis of amphiphilic ABA triblock oligomer via ATRP and its surface properties. CAN J CHEM 2017. [DOI: 10.1139/cjc-2016-0591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of novel amphiphilic ABA-type poly(tridecafluorooctylacrylate)-poly(ethylene glycol)-poly(tridecafluorooctylacrylate) (henceforth referred to as p-TDFA-PEG-p-TDFA) triblock oligomers were successfully synthesized via atom transfer radical polymerization (ATRP) using well-defined Br-PEG-Br as macroinitiator and copper as catalyst. The block oligomers were characterized by Fourier transform infrared (FTIR) spectroscopy and 1H and 19F nuclear magnetic resonances (NMR). Gel permeation chromatography (GPC) showed that the block oligomers have been obtained with narrow molecular weight distributions of 1.22–1.33. X-ray photoelectron spectroscopy (XPS) was carried out to confirm the attachment of p-TDFA-PEG-p-TDFA onto the silicon substrate, together with the chemical compositions of p-TDFA-PEG-p-TDFA. The wetabilities of the oligomer films were measured by water contact angles (CAs). Water CAs of p-TDFA-PEG-p-TDFA film were measured and their morphologies were tested by atomic force microscopy (AFM). The result showed that the CAs of the oligomer films, which possess fluoroalkyl groups assembled on the outer surface, increase after heating due to the migration of fluoroalkyl groups and the resulted microphase separation of the p-TDFA-PEG-p-TDFA.
Collapse
Affiliation(s)
- Lei Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| | - Shaoqing Wen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| | - Zhanxiong Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China
- National Engineering Laboratory for Modern Silk, Suzhou 215123, China
| |
Collapse
|
29
|
Yuksekdag YN, Gevrek TN, Sanyal A. Diels-Alder "Clickable" Polymer Brushes: A Versatile Catalyst-Free Conjugation Platform. ACS Macro Lett 2017; 6:415-420. [PMID: 35610862 DOI: 10.1021/acsmacrolett.7b00041] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymeric brushes provide an attractive functional interface for a variety of applications in materials and biomedical sciences. Facile access to functionalized brushes can be realized through effective postpolymerization functionalization of reactive brushes. Over the past decade, efficient chemical transformations based on various "click" reactions have been employed for functionalization of polymeric brushes. This paper reports the first example of utilization of the Diels-Alder cycloaddition reaction based functionalization strategy that allows efficient conjugation of maleimide-containing molecules onto furan-containing polymer brushes under mild and reagent-free conditions. Polymers incorporating furan groups as side chains are "grafted from" silicon oxide surfaces and investigated toward their functionalization. Brushes are fabricated using atom transfer radical polymerization with varying amounts of furfuryl methacrylate to enable control over extent of functionalization, along with a poly(ethylene glycol) chain containing methacrylate as a comonomer to impart hydrophilic and antibiofouling characteristics. Functionalization of these reactive brushes were investigated through the immobilization of a model compound N-ethylmaleimide, a fluorescent dye BODIPY-maleimide, and a maleimide-containing biotin based ligand to direct the immobilization of streptavidin-coated quantum dots.
Collapse
Affiliation(s)
- Yasemin Nursel Yuksekdag
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Tugce Nihal Gevrek
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry and ‡Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul 34342, Turkey
| |
Collapse
|
30
|
Long J, Li X, Zhan X, Xu X, Tian Y, Xie Z, Jin Z. Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4–chitosan) nanoparticles improves thermal and operational stability. Bioprocess Biosyst Eng 2017; 40:821-831. [DOI: 10.1007/s00449-017-1747-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/30/2017] [Indexed: 11/28/2022]
|
31
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Chu CW, Higaki Y, Cheng CH, Cheng MH, Chang CW, Chen JT, Takahara A. Zwitterionic polymer brush grafting on anodic aluminum oxide membranes by surface-initiated atom transfer radical polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00045f] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A feasible processing of zwitterionic polymer-grafted anodic aluminum oxide (AAO) membranes by surface-initiated atom transfer radical polymerization (SI-ATRP) and the geometric effect were investigated.
Collapse
Affiliation(s)
- Chien-Wei Chu
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yuji Higaki
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
- Graduate School of Engineering
| | - Chao-Hung Cheng
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Ming-Hsiang Cheng
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Chun-Wei Chang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
- Graduate School of Engineering
| |
Collapse
|
33
|
Hirai T, Kobayashi M, Takahara A. Control of the primary and secondary structure of polymer brushes by surface-initiated living/controlled polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00956a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, we summarize current research regarding the precise synthesis of polymer brushes and characterization methods for their molecular aggregate structure using neutron and/or synchrotron facilities.
Collapse
Affiliation(s)
- Tomoyasu Hirai
- Institute for Materials Chemistry and Engineering
- Fukuoka
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
- Kyushu University
| | - Motoyasu Kobayashi
- Institute for Materials Chemistry and Engineering
- Fukuoka
- Japan
- Japan Science and Technology Agency
- ERATO
| | - Atsushi Takahara
- Institute for Materials Chemistry and Engineering
- Fukuoka
- Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER)
- Kyushu University
| |
Collapse
|
34
|
Billing M, Gräfe C, Saal A, Biehl P, Clement JH, Dutz S, Weidner S, Schacher FH. Zwitterionic Iron Oxide (γ-Fe2O3) Nanoparticles Based on P(2VP-grad-AA) Copolymers. Macromol Rapid Commun 2016; 38. [DOI: 10.1002/marc.201600637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/09/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Billing
- Laboratory of Organic and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstraße 10 D-07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; Philosophenweg 7 D-07743 Jena Germany
| | - Christine Gräfe
- Klinik für Innere Medizin II; Abteilung Hämatologie und Internistische Onkologie; Universitätsklinikum Jena; Am Klinikum 1 D.07747 Jena Germany
| | - Adrian Saal
- Laboratory of Organic and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstraße 10 D-07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; Philosophenweg 7 D-07743 Jena Germany
| | - Philip Biehl
- Laboratory of Organic and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstraße 10 D-07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; Philosophenweg 7 D-07743 Jena Germany
| | - Joachim H. Clement
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; Philosophenweg 7 D-07743 Jena Germany
- Klinik für Innere Medizin II; Abteilung Hämatologie und Internistische Onkologie; Universitätsklinikum Jena; Am Klinikum 1 D.07747 Jena Germany
| | - Silvio Dutz
- Institute of Biomedical Engineering and Informatics; Technische Universität Ilmenau; Gustav-Kirchhoff-Str. 2 D.98693 Ilmenau Germany
| | - Steffen Weidner
- Bundesanstalt für Materialforschung und -prüfung (BAM); Richard-Willstätter-Str. 11 D-12489 Berlin Germany
| | - Felix H. Schacher
- Laboratory of Organic and Macromolecular Chemistry; Friedrich-Schiller-University Jena; Humboldtstraße 10 D-07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich-Schiller-University Jena; Philosophenweg 7 D-07743 Jena Germany
| |
Collapse
|
35
|
Cao E, Prouzet E, Héroguez V. Harnessing the power of latex solutions based on titania particles − using si-ATRP towards larger surface modification for applications in gas separation membranes. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.04.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Takahara A, Higaki Y. Design and Physicochemical Characterization of Novel Organic–Inorganic Hybrids from Natural Aluminosilicate Nanotubes. FUNCTIONAL POLYMER COMPOSITES WITH NANOCLAYS 2016. [DOI: 10.1039/9781782626725-00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Surface functionalization of tubular nano-clays of imogolite and halloysite using the selective binding of organophosphonic acids and organosilane compounds, and the use of the surface modified nanotubes in polymer hybrids were studied. Surface modification of imogolite with alkyl phosphonic acid salt through the specific interaction of phosphonic acid and the exterior alumina sites of imogolite was presented. SI-ATRP was performed with the selectively adsorbed phosphonic acid functionalized ATRP-initiator to prepare polymer brushes on the imogolite surface. Selective modification of halloysite nanotube exterior and inner surfaces was demonstrated. Aqueous phosphonic acid binds to alumina sites at the tube lumen to make the lumen hydrophobic. Subsequent modification with organosilane affords bifunctionalized halloysites with both the lumen and exterior surface modified. Loading of hydrophobic organic compound to the modified lumen was confirmed. SI-ATRP was performed through the selectively adsorbed DOPA-functionalized ATRP-initiator to prepare polymer brushes on the nanotube lumen. Also, surface modified halloysite was applied for preparation of novel intelligent polyurethane nanocomposites with improved thermal stability and mechanical properties.
Collapse
Affiliation(s)
- A. Takahara
- Institute for Materials Chemistry and Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Y. Higaki
- Institute for Materials Chemistry and Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
37
|
Shan S, Chen X, Xi Z, Yu X, Qu X, Zhang Q. The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin. HIGH PERFORM POLYM 2016. [DOI: 10.1177/0954008316631593] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Resorcinol-based phthalonitrile (R-CN)/nano-aluminum oxide (Al2O3) nanocomposites were prepared via a two-step approach. Firstly, Al2O3 was functionalized with nitrile groups on the surface of Al2O3 nanoparticles, which was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy (SEM). The effect of nano-Al2O3 particles on thermomechanical and flexural properties has been evaluated for different weight ratios ranging between 0% and 5%. Compared with pure nano-Al2O3, nitrile-functionalized Al2O3 (CN-Al2O3) particles showed a more significant enhancement effect on the properties of R-CN resin. The storage modulus of nanocomposite with 5 wt% CN-Al2O3 reaches 2679 MPa at 25°C, which is much higher than that of the pure R-CN resin. For 3 wt% CN-Al2O3-reinforced R-CN composites, it showed an increase of 54.84% in flexural strength and 21.48% in flexural modulus. SEM was employed to explore the fracture surface of composites. Micrographs of fracture surface analysis confirmed that the toughness of R-CN resin can be improved significantly by incorporating CN-Al2O3 nanoparticles.
Collapse
Affiliation(s)
- Shuyan Shan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Xinggang Chen
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Zhenjie Xi
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Xiaoyan Yu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Xiongwei Qu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Qingxin Zhang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- Key Lab for Micro- and Nano-Scale Boron Nitride Materials in Hebei Province, Hebei University of Technology, Tianjin, China
| |
Collapse
|
38
|
Synthesis of Monodisperse Silica Particles Grafted with Concentrated Ionic Liquid-Type Polymer Brushes by Surface-Initiated Atom Transfer Radical Polymerization for Use as a Solid State Polymer Electrolyte. Polymers (Basel) 2016; 8:polym8040146. [PMID: 30979240 PMCID: PMC6432431 DOI: 10.3390/polym8040146] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/27/2016] [Accepted: 04/11/2016] [Indexed: 11/30/2022] Open
Abstract
A polymerizable ionic liquid, N,N-diethyl-N-(2-methacryloylethyl)-N-methylammonium bis(trifluoromethylsulfonyl)imide (DEMM-TFSI), was polymerized via copper-mediated atom transfer radical polymerization (ATRP). The polymerization proceeded in a living manner producing well-defined poly(DEMM-TFSI) of target molecular weight up to about 400 K (including a polycation and an counter anion). The accurate molecular weight as determined by a GPC analysis combined with a light scattering measurement, and the molecular weight values obtained exhibited good agreement with the theoretical values calculated from the initial molar ratio of DEMM-TFSI and the monomer conversion. Surface-initiated ATRP on the surface of monodisperse silica particles (SiPs) with various diameters was successfully performed, producing SiPs grafted with well-defined poly(DEMM-TFSI) with a graft density as high as 0.15 chains/nm2. Since the composite film made from the silica-particle-decorated polymer brush and ionic liquid shows a relatively high ionic conductivity, we have evaluated the relationship between the grafted brush chain length and the ionic conductivity.
Collapse
|
39
|
Mane S, Badiger M, Rajan C, Ponrathnam S, Chavan N. Role of aliphatic hydrocarbon content in non-solvating porogens toward porosity of cross-linked microbeads. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Lessard BH, Marić M. Thiophene decorated block copolymers templated from poly(styrene-alt-maleic anhydride)-block-poly(styrene) one-shot block copolymer: effect of thiophene inclusion on morphology. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-0931-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Yu Q, Ista LK, Gu R, Zauscher S, López GP. Nanopatterned polymer brushes: conformation, fabrication and applications. NANOSCALE 2016; 8:680-700. [PMID: 26648412 DOI: 10.1039/c5nr07107k] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Surfaces with end-grafted, nanopatterned polymer brushes that exhibit well-defined feature dimensions and controlled chemical and physical properties provide versatile platforms not only for investigation of nanoscale phenomena at biointerfaces, but also for the development of advanced devices relevant to biotechnology and electronics applications. In this review, we first give a brief introduction of scaling behavior of nanopatterned polymer brushes and then summarize recent progress in fabrication and application of nanopatterned polymer brushes. Specifically, we highlight applications of nanopatterned stimuli-responsive polymer brushes in the areas of biomedicine and biotechnology.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Linnea K Ista
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Renpeng Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA and NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, USA
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA and NSF Research Triangle Materials Research Science & Engineering Center, Duke University, Durham, NC 27708, USA
| | - Gabriel P López
- Center for Biomedical Engineering and Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM 87131, USA and Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
42
|
Cao E, Pichavant L, Prouzet E, Héroguez V. The formation and study of poly(ethylene oxide)-poly(norbornene) block-copolymers on the surface of titanium-dioxide particles: a novel approach towards application of si-ROMP to larger surface modification. Polym Chem 2016. [DOI: 10.1039/c5py02039e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work highlights the potential of si-ROMP through use of easier to functionalize titania particles that form hybrid titania-copolymers applied to larger scale coatings.
Collapse
Affiliation(s)
- Edgar Cao
- Laboratoire de Chimie des Polymères Organiques – Ecole Nationale Supérieure de Chimie
- de Biologie et de Physique
- UMR CNRS 5629
- Université de Bordeaux
- F-33607 Pessac Cedex
| | - Loïc Pichavant
- Laboratoire de Chimie des Polymères Organiques – Ecole Nationale Supérieure de Chimie
- de Biologie et de Physique
- UMR CNRS 5629
- Université de Bordeaux
- F-33607 Pessac Cedex
| | - Eric Prouzet
- Department of Chemical Engineering and the Waterloo Institute for Nanotechnology (WIN)
- University of Waterloo
- Chemistry
- 200 University Av. W
- Waterloo N2L 3G1
| | - Valérie Héroguez
- Laboratoire de Chimie des Polymères Organiques – Ecole Nationale Supérieure de Chimie
- de Biologie et de Physique
- UMR CNRS 5629
- Université de Bordeaux
- F-33607 Pessac Cedex
| |
Collapse
|
43
|
Imogolite Polymer Nanocomposites. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-08-100293-3.00024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem Rev 2015; 115:9745-800. [PMID: 26313922 DOI: 10.1021/cr500625k] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Per B Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Stuart C Thickett
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales , Sydney, NSW 2052, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick , Coventry CV4 7AL, U.K.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University , Melbourne, VIC 3052, Australia
| | - Elodie Bourgeat-Lami
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Muriel Lansalot
- Laboratory of Chemistry, Catalysis, Polymers and Processes (C2P2), LCPP group, Université de Lyon, Université Lyon 1, CPE Lyon, CNRS, UMR 5265, 43, Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
45
|
Unexpected in-situ Free Radical Generation and Catalysis to Ag/Polymer Nanocomposite. Sci Rep 2015; 5:11993. [PMID: 26160118 PMCID: PMC4498183 DOI: 10.1038/srep11993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/15/2015] [Indexed: 11/18/2022] Open
Abstract
In this study, we discover unexpectedly that simple reaction of AgNO3 with oleic acid (OA) without solvent and surfactant could generate alkyl free radical which can catalyze double-bond polymerization of OA to form 1D polymeric oleic acid (POA) chain. In certain conditions, these POA chains circumvolute tightly each other to form microspheres and micro-plates in which monodisperse 4-5 nm Ag nanoparticles (NPs) were absorbed. It has been revealed that alkyl free radical generated during the redox reaction of carboxyl group of OA with Ag+ at relative low temperature. Then, the alkyl free radical catalyzed the double-bond polymerization of OA when the reaction temperature was further increased. Different from commonly-seen hydrophobic nanoparticles prepared in oleic acid-based microemulsion system, the nanocomposites cannot dispersed in n-hexane and could dispersed in ethanol and THF. The unusual dispersion behavior has been explained in terms of their structure and polarity of POA chain. The method combines the nucleation of Ag nanoparticles and the polymerization of monomer in a facile one-pot reaction, which provides a novel way for metal-polymer microsphere nanocomposite with low-cost, easy-operation and high-yield.
Collapse
|
46
|
Ilgach DM, Meleshko TK, Yakimansky AV. Methods of controlled radical polymerization for the synthesis of polymer brushes. POLYMER SCIENCE SERIES C 2015. [DOI: 10.1134/s181123821501004x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Liu H, Zhong G. Preparation of Core–Shell Magnetic Nanoparticles with a High Content of Carboxy Groups by Polarity-regulating Molecular Self-assembly. CHEM LETT 2015. [DOI: 10.1246/cl.150278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hongbing Liu
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University
| | - Guolun Zhong
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University
| |
Collapse
|
48
|
Immobilization of pullulanase onto activated magnetic chitosan/Fe3O4 nanoparticles prepared by in situ mineralization and effect of surface functional groups on the stability. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.02.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Wang XY, Jiang XP, Li Y, Zeng S, Zhang YW. Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int J Biol Macromol 2015; 75:44-50. [DOI: 10.1016/j.ijbiomac.2015.01.020] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/25/2022]
|
50
|
Liu J, Detrembleur C, Mornet S, Jérôme C, Duguet E. Design of hybrid nanovehicles for remotely triggered drug release: an overview. J Mater Chem B 2015; 3:6117-6147. [DOI: 10.1039/c5tb00664c] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review addresses the advantages of remote triggers, e.g. ultrasounds, near infrared light and alternating magnetic fields, the fabrication of the hybrid nanovehicles, the release mechanisms and the next challenges.
Collapse
Affiliation(s)
- Ji Liu
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | - Christophe Detrembleur
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | | | - Christine Jérôme
- Centre for Education and Research on Macromolecules (CERM)
- University of Liege
- Chemistry Department
- B-4000 Liège
- Belgium
| | | |
Collapse
|