1
|
Filice S, Scuderi V, Scalese S. Sulfonated Pentablock Copolymer (Nexar TM) for Water Remediation and Other Applications. Polymers (Basel) 2024; 16:2009. [PMID: 39065326 PMCID: PMC11280590 DOI: 10.3390/polym16142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This review focuses on the use of a sulfonated pentablock copolymer commercialized as NexarTM in water purification applications. The properties and the use of sulfonated copolymers, in general, and of NexarTM, in particular, are described within a brief reference focusing on the problem of different water contaminants, purification technologies, and the use of nanomaterials and nanocomposites for water treatment. In addition to desalination and pervaporation processes, adsorption and photocatalytic processes are also considered here. The reported results confirm the possibility of using NexarTM as a matrix for embedded nanoparticles, exploiting their performance in adsorption and photocatalytic processes and preventing their dispersion in the environment. Furthermore, the reported antimicrobial and antibiofouling properties of NexarTM make it a promising material for achieving active coatings that are able to enhance commercial filter lifetime and performance. The coated filters show selective and efficient removal of cationic contaminants in filtration processes, which is not observed with a bare commercial filter. The UV surface treatment and/or the addition of nanostructures such as graphene oxide (GO) flakes confer NexarTM with coating additional functionalities and activity. Finally, other application fields of this polymer are reported, i.e., energy and/or gas separation, suggesting its possible use as an efficient and economical alternative to the more well-known Nafion polymer.
Collapse
Affiliation(s)
- Simona Filice
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| | | | - Silvia Scalese
- Consiglio Nazionale delle Ricerche, Istituto per la Microelettronica e Microsistemi (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy;
| |
Collapse
|
2
|
Hosseinzadeh M, Abbasian M, Ghodsi L, Karaj‐Abad SG, Acar MH, Mahmoodzadeh F, Jaymand M. Modification of High‐Density Polyethylene through the Grafting of Methyl Methacrylate Using RAFT Technique and Preparation of Its Polymer/Clay Nanocomposites**. ChemistrySelect 2022. [DOI: 10.1002/slct.202104228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mehdi Hosseinzadeh
- Marand Faculty of Technical and Engineering University of Tabriz Tabriz Iran
| | - Mojtaba Abbasian
- Department of Chemistry Payame Noor University, P.O. Box 19395-3697 Tehran Iran
| | - Leila Ghodsi
- Department of Chemistry Payame Noor University, P.O. Box 19395-3697 Tehran Iran
| | | | - Metin Hayri Acar
- Macromolecular Engineering Research Laboratory Chemistry Department Istanbul Technical University Maslak 34469 Istanbul Turkey
| | | | - Mehdi Jaymand
- Nano Drug Delivery Research Center Health Technology Institute Kermanshah University of Medical Sciences Kermanshah Iran
| |
Collapse
|
3
|
Pradhan SS, Saha S. Advances in design and applications of polymer brush modified anisotropic particles. Adv Colloid Interface Sci 2022; 300:102580. [PMID: 34922246 DOI: 10.1016/j.cis.2021.102580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022]
Abstract
Current advancements in the creation of anisotropy in particles and their surface modification with polymer brushes have established a new class of hybrid materials termed polymer brush modified anisotropic particles (PBMAP). PBMAPs display unique property combinations, e.g., multi-functionality in multiple directions along with smart behavior, which is not easily achievable in traditional hybrid materials. Typically, anisotropic particles can be categorized based on three different factors, such as shape anisotropy (geometry driven), compositional anisotropy (functionality driven), and surface anisotropy (spatio-selective surface modification driven). In this review, we have particularly focused on the synthetic strategies to construct the various type of PBMAPs based on inorganic or organic core which may or may not be isotropic in nature, and their applications in various fields ranging from drug delivery to catalysis. In addition, superior performances and fascinating properties of PBMAPs over their isotropic analogues are also highlighted. A brief overview of their future developments and associated challenges have been discussed at the end.
Collapse
Affiliation(s)
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
4
|
Eskandari P, Abousalman-Rezvani Z, Roghani-Mamaqani H, Salami-Kalajahi M. Polymer-functionalization of carbon nanotube by in situ conventional and controlled radical polymerizations. Adv Colloid Interface Sci 2021; 294:102471. [PMID: 34214841 DOI: 10.1016/j.cis.2021.102471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Functionalization of carbon nanotube (CNT) with polymers has drawn much attention due to its wide range of applications. Polymer-functionalized CNT could exhibit variety of properties, such as responsivity to environmental stimuli, ability of complexation with metal ions, increased dispersibility in different solvents, higher compatibility with polymer matrix, etc. Chemical and physical methods have been developed for the preparation of polymer-functionalized CNT. Polymer chains are chemically bonded to the CNT edge or surface in the chemical methods, which results in highly stable CNT/polymer composites. "Grafting to", "grafting from", and "grafting through" methods are the most common chemical methods for polymer-functionalization of CNT. In "grafting to" method, pre-fabricated polymer chains are coupled with the either functionalized or non-functionalized CNT. In "grafting from" and "grafting through" methods, CNT is functionalized by polymers simultaneously synthesized by in situ polymerization methods. Conventional free radical polymerization (FRP) and also controlled radical polymerization (CRP) are the most promising methods for in situ tethering of polymer brushes onto the surface of CNT due to their control over the grafting density, thickness, and functionality of the polymer brushes. The main focus of this review is on the synthesis of polymer-functionalized CNT via both the "grafting from" and "grafting through" methods on the basis of FRP and CRP routs, which is commonly known as in situ polymerizations. Finally, the most important challenges and applications of the in situ polymer grafting methods are discussed, which could be interesting for the future works.
Collapse
|
5
|
Cavallaro G, Chiappisi L, Gradzielski M, Lazzara G. Effect of the supramolecular interactions on the nanostructure of halloysite/biopolymer hybrids: a comprehensive study by SANS, fluorescence correlation spectroscopy and electric birefringence. Phys Chem Chem Phys 2020; 22:8193-8202. [PMID: 32249883 DOI: 10.1039/d0cp01076f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural properties of halloysite/biopolymer aqueous mixtures were firstly investigated by means of combining different techniques, including small-angle neutron scattering (SANS), electric birefringence (EBR) and fluorescence correlation spectroscopy (FCS). Among the biopolymers, non-ionic hydroxypropylcellulose and polyelectrolytes (anionic alginate and cationic chitosan) were selected. On this basis, the specific supramolecular interactions were correlated to the structural behavior of the halloysite/biopolymer mixtures. SANS data were analyzed in order to investigate the influence of the biopolymer adsorption on the halloysite gyration radius. In addition, a morphological description of the biopolymer-coated halloysite nanotubes (HNTs) was obtained by the simulation of SANS curves. EBR experiments evidenced that the orientation dynamics of the nanotubes in the electric field is influenced by the specific interactions with the polymers. Namely, both variations of the polymer charge and/or wrapping mechanisms strongly affected the HNT alignment process and, consequently, the rotational mobility of the nanotubes. FCS measurements with fluorescently labeled biopolymers allowed us to study the aqueous dynamic behavior of ionic biopolymers after their adsorption onto the HNT surfaces. The combination of EBR and FCS results revealed that the adsorption process reduces the mobility in water of both components. These effects are strongly enhanced by HNT/polyelectrolyte electrostatic interactions and wrapping processes occurring in the halloysite/chitosan mixture. The attained findings can be useful for designing halloysite/polymer hybrids with controlled structural properties.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy. and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy and Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, 10623 Berlin, Germany
| | - Leonardo Chiappisi
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, 10623 Berlin, Germany and LSS Group, Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, F-38042 Grenoble, Cedex 9, France
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, 10623 Berlin, Germany
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy. and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
6
|
Basheer BV, George JJ, Siengchin S, Parameswaranpillai J. Polymer grafted carbon nanotubes—Synthesis, properties, and applications: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100429] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Facile fabrication of glycosylated and PEGylated carbon nanotubes through the combination of mussel inspired chemistry and surface-initiated ATRP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110157. [DOI: 10.1016/j.msec.2019.110157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/26/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022]
|
8
|
Giussi JM, Cortez ML, Marmisollé WA, Azzaroni O. Practical use of polymer brushes in sustainable energy applications: interfacial nanoarchitectonics for high-efficiency devices. Chem Soc Rev 2019; 48:814-849. [PMID: 30543263 DOI: 10.1039/c8cs00705e] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The discovery and development of novel approaches, materials and manufacturing processes in the field of energy are compelling increasing recognition as a major challenge for contemporary societies. The performance and lifetime of energy devices are critically dependent on nanoscale interfacial phenomena. From the viewpoint of materials design, the improvement of current technologies inevitably relies on gaining control over the complex interface between dissimilar materials. In this sense, interfacial nanoarchitectonics with polymer brushes has seen growing interest due to its potential to overcome many of the limitations of energy storage and conversion devices. Polymer brushes offer a broad variety of resources to manipulate interfacial properties and gain molecular control over the synergistic combination of materials. Many recent examples show that the rational integration of polymer brushes in hybrid nanoarchitectures greatly improves the performance of energy devices in terms of power density, lifetime and stability. Seen in this light, polymer brushes provide a new perspective from which to consider the development of hybrid materials and devices with improved functionalities. The aim of this review is therefore to focus on what polymer brush-based solutions can offer and to show how the practical use of surface-grafted polymer layers can improve the performance and efficiency of fuel cells, lithium-ion batteries, organic radical batteries, supercapacitors, photoelectrochemical cells and photovoltaic devices.
Collapse
Affiliation(s)
- Juan M Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, Diagonal 113 y 64 (1900), La Plata, Argentina.
| | | | | | | |
Collapse
|
9
|
Jiang X, Deng Y, Liu W, Li Y, Huang X. Preparation of graphene/poly(2-acryloxyethyl ferrocenecarboxylate) nanocompositeviaa “grafting-onto” strategy. Polym Chem 2018. [DOI: 10.1039/c7py01932g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article reports the construction of GS-PAEFC nanohybrids with excellent dispersibility and redox-responsibilityviaATNRC chemistry.
Collapse
Affiliation(s)
- Xue Jiang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Yan Deng
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Wenbin Liu
- Shanghai Key Laboratory of Crime Scene Evidence
- Shanghai Research Institute of Criminal Science and Technology
- Shanghai 200083
- People's Republic of China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- People's Republic of China
| |
Collapse
|
10
|
He G, Xu M, Li Z, Wang S, Jiang S, He X, Zhao J, Li Z, Wu X, Huang T, Chang C, Yang X, Wu H, Jiang Z. Highly Hydroxide-Conductive Nanostructured Solid Electrolyte via Predesigned Ionic Nanoaggregates. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28346-28354. [PMID: 28789517 DOI: 10.1021/acsami.7b05400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The creation of interconnected ionic nanoaggregates within solid electrolytes is a crucial yet challenging task for fabricating high-performance alkaline fuel cells. Herein, we present a facile and generic approach to embedding ionic nanoaggregates via predesigned hybrid core-shell nanoarchitecture within nonionic polymer membranes as follows: (i) synthesizing core-shell nanoparticles composed of SiO2/densely quaternary ammonium-functionalized polystyrene. Because of the spatial confinement effect of the SiO2 "core", the abundant hydroxide-conducting groups are locally aggregated in the functionalized polystyrene "shell", forming ionic nanoaggregates bearing intrinsic continuous ion channels; (ii) embedding these ionic nanoaggregates (20-70 wt %) into the polysulfone matrix to construct interconnected hydroxide-conducting channels. The chemical composition, physical morphology, amount, and distribution of the ionic nanoaggregates are facilely regulated, leading to highly connected ion channels with high effective ion mobility comparable to that of the state-of-the-art Nafion. The resulting membranes display strikingly high hydroxide conductivity (188.1 mS cm-1 at 80 °C), which is one of the highest results to date. The membranes also exhibit good mechanical properties. The independent manipulation of the conduction function and nonconduction function by the ionic nanoaggregates and nonionic polymer matrix, respectively, opens a new avenue, free of microphase separation, for designing high-performance solid electrolytes for diverse application realms.
Collapse
Affiliation(s)
- Guangwei He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Mingzhao Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Zongyu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Shaofei Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Shentao Jiang
- School of Civil & Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Xueyi He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Jing Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Zhen Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Xingyu Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Tong Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Chaoyi Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
| | - Xinlin Yang
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| |
Collapse
|
11
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 607] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Ye Z, Li Y, An Z, Wu P. Exploration of Doubly Thermal Phase Transition Process of PDEGA-b-PDMA-b-PVCL in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6691-6700. [PMID: 27299984 DOI: 10.1021/acs.langmuir.6b01785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Understanding of phase transition mechanism of thermoresponsive polymers is the basis for the rational design of smart materials with predictable properties. Linear ABC triblock terpolymer poly(di(ethylene glycol)ethyl ether acrylate)-b-poly(N,N-dimethylacrylamide)-b-poly(N-vinylcaprolactam) (PDEGA-b-PDMA-b-PVCL) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The doubly thermal phase transition of PDEGA-b-PDMA-b-PVCL in aqueous solution was investigated by a combination of nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), turbidimetry, and dynamic light scattering (DLS). The terpolymer self-assembles into micelles with PDEGA being the core-forming block during the first lower critical solution temperature (LCST) transition corresponding to PDEGA, which is followed by a second LCST transition corresponding to PVCL, resulting in the formation of micellar aggregates. The PDMA middle segment plays an important role as an isolation zone to prevent cooperative dehydration of the PDEGA and PVCL segments, and therefore, two independent LCST transitions corresponding to PDEGA and PVCL were observed. Furthermore, FT-IR with perturbation correlation moving window (PCMW) and two-dimensional spectroscopy (2DCOS) was applied to elucidate the two-step phase transition mechanism of this terpolymer. It was observed that the CH, ester carbonyl, and ether groups of PDEGA change prior to the CH and amide carbonyl groups of PVCL, further supporting that the two phase transitions corresponding to PDEGA and PVCL indeed occur without mutual interferences.
Collapse
Affiliation(s)
- Zhangxin Ye
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| | - Youcheng Li
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444, China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| |
Collapse
|
13
|
Etika KC, Liu L, Cox MA, Grunlan JC. Clay-mediated carbon nanotube dispersion in poly(N-Isopropylacrylamide). Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
15
|
Preparation of poly(N-isopropylacrylamide)-terminated carbon nanotubes and determining their aggregation properties in response to infrared light and heating. Polym J 2015. [DOI: 10.1038/pj.2015.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
İlboğa S, Coşkun M. Synthesis, characterization and thermo-responsive behavior of end-functionalized poly(N-isopropylacrylamide). POLYMER SCIENCE SERIES B 2014. [DOI: 10.1134/s1560090415010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Roghani-Mamaqani H, Haddadi-Asl V, Ghaderi-Ghahfarrokhi M, Sobhkhiz Z. Reverse atom transfer radical polymerization of methyl methacrylate in the presence of Azo-functionalized carbon nanotubes: a grafting from approach. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3349-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Jaisankar SN, Haridharan N, Murali A, Sergii P, Špírková M, Mandal AB, Matějka L. Single-electron transfer living radical copolymerization of SWCNT-g-PMMA via graft from approach. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.04.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Water-Soluble Carbon Nanotubes from Bitumen Waste: Synthesis, Functionalisation and Derivatisation for its Use as Superabsorbent. J Inorg Organomet Polym Mater 2013. [DOI: 10.1007/s10904-013-9899-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Sakellariou G, Priftis D, Baskaran D. Surface-initiated polymerization from carbon nanotubes: strategies and perspectives. Chem Soc Rev 2013; 42:677-704. [PMID: 23111366 DOI: 10.1039/c2cs35226e] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbon nanotubes (CNTs) represent one of the most promising materials in nanoscience today, with their unique electronic, chemical and mechanical properties. Strong van der Waals interactions and poor solubility greatly affect their potential for applications in various fields. In the past decade, great efforts have been undertaken to modify CNTs into organophilic material via covalent and non-covalent grafting strategies. This review focuses on advances in various strategies used for the surface initiated polymerization and provides perspectives on grafting polymers covalently from CNTs.
Collapse
Affiliation(s)
- Georgios Sakellariou
- Department of Chemistry, University of Athens, 15771 Panepistimiopolis Zografou, Athens, Greece.
| | | | | |
Collapse
|
21
|
Zydziak N, Hübner C, Bruns M, Vogt AP, Barner-Kowollik C. Modular ambient temperature functionalization of carbon nanotubes with stimuli-responsive polymer strands. Polym Chem 2013. [DOI: 10.1039/c2py20928d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
22
|
Alonzi M, Lanari D, Marrocchi A, Petrucci C, Vaccaro L. Synthesis of polymeric semiconductors by a surface-initiated approach. RSC Adv 2013. [DOI: 10.1039/c3ra43680b] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Wang H, Li J, Zhang X, Ouyang Z, Li Q, Su Z, Wei G. Synthesis, characterization and drug release application of carbon nanotube-polymer nanosphere composites. RSC Adv 2013. [DOI: 10.1039/c3ra40997j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Nguyen D, Such CH, Hawkett BS. Polymer coating of carboxylic acid functionalized multiwalled carbon nanotubes via reversible addition-fragmentation chain transfer mediated emulsion polymerization. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26389] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Gao G, Dallmeyer JI, Kadla JF. Synthesis of Lignin Nanofibers with Ionic-Responsive Shells: Water-Expandable Lignin-Based Nanofibrous Mats. Biomacromolecules 2012; 13:3602-10. [DOI: 10.1021/bm301039f] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Guangzheng Gao
- Advanced
Biomaterials Chemistry Lab, Faculty
of Forestry, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - James Ian Dallmeyer
- Advanced
Biomaterials Chemistry Lab, Faculty
of Forestry, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - John F. Kadla
- Advanced
Biomaterials Chemistry Lab, Faculty
of Forestry, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
26
|
Shieh YT, Chen YA, Lin RH, Wang TL, Yang CH. Temperature effects on the electrocatalytic activities of carbon nanotube/poly(N-isopropylacrylamide) composites. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.05.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
|
28
|
Azzaroni O. Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26119] [Citation(s) in RCA: 306] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Roghani-Mamaqani H, Haddadi-Asl V, Salami-Kalajahi M. In Situ Controlled Radical Polymerization: A Review on Synthesis of Well-defined Nanocomposites. POLYM REV 2012. [DOI: 10.1080/15583724.2012.668153] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Anbarasan R, Peng CA. Effect of multiwall carbon nanotube and au nanoparticle on the structure-property relationship of poly(N-isopropyl acrylamide). J Appl Polym Sci 2011. [DOI: 10.1002/app.34219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Deng Y, Li Y, Dai J, Lang M, Huang X. An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24579] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Li C, Adamcik J, Zhang A, Mezzenga R. Twofold pH and temperature stimuli-responsive behaviour in block copolypeptide-decorated single wall carbon nanotubes. Chem Commun (Camb) 2011; 47:262-4. [DOI: 10.1039/c0cc01606c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Lan YF, Hsieh BZ, Lin HC, Su YA, Chan YN, Lin JJ. Poly(N-isopropylacrylamide)-tethered silicate platelets for colloidal dispersion of conjugated polymers with thermoresponsive and photoluminescence properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:10572-10577. [PMID: 20302288 DOI: 10.1021/la100616d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Poly(N-isopropylacrylamide)-tethered nanosilicate platelets (NSP-PNiPAAm) have been synthesized by covalently bonding the polymer onto the surfaces of silicate platelets of nanometer dimension, and this class of nanohybrids has proved to be effective for dispersing water-insoluble conjugated polymers (CPs). Simple pulverization of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with NSP-PNiPAAm rendered the powder material dispersible in water, whereupon it displayed thermoresponsive properties at 37.5 degrees C and CP particle size variation between ca. 50 and 100 nm by SEM observation. The same dispersion had a maximum UV-vis absorption at 524 nm and PL emission at 605 nm. The PL emission was significantly higher at 4 degrees C than at 45 degrees C. Being coated as a film, it showed an orange emission under an ultraviolet lamp, consistent with the PL measurement. The water-borne process of dispersing the CP in aqueous media by the presence of NSP-PNiPAAm and followed by film formation to demonstrate a unique method of manipulating hydrophobic conjugated polymers in a facile manner.
Collapse
Affiliation(s)
- Yi-Fen Lan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
OUYANG KL, SUN YP, GONG BL. Preparation of New Polymeric Monodisperse Thermosensitive Chromatographic Stationary Phase and Its Application in Separation of Biopolymers. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1016/s1872-2040(09)60050-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Munirasu S, Albuerne J, Boschetti-de-Fierro A, Abetz V. Functionalization of Carbon Materials using the Diels-Alder Reaction. Macromol Rapid Commun 2010; 31:574-9. [DOI: 10.1002/marc.200900751] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/24/2009] [Indexed: 11/10/2022]
|
36
|
|
37
|
|
38
|
Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok HA. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev 2010; 109:5437-527. [PMID: 19845393 DOI: 10.1021/cr900045a] [Citation(s) in RCA: 1227] [Impact Index Per Article: 87.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raphaël Barbey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Zhang Y, He H, Gao C, Wu J. Covalent layer-by-layer functionalization of multiwalled carbon nanotubes by click chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:5814-5824. [PMID: 19374339 DOI: 10.1021/la803906s] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The covalent functionalization of multiwalled carbon nanotubes (MWNTs) by layer-by-layer (LbL) click chemistry is reported. The clickable polymers of poly(2-azidoethyl methacrylate) and poly(propargyl methacrylate) were synthesized at first by atom transfer radical polymerization (ATRP) of 2-azidoethyl methacrylate and reverse addition-fragmentation chain transfer (RAFT) polymerization of propargyl methacrylate, respectively. The two polymers were then alternately coated on alkyne-modified multiwalled carbon nanotubes using Cu(I)-catalyzed click reaction of Huisgen 1,3-dipolar cycloaddition between azides and alkynes. Thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) measurements confirm that the quantity and thickness of the clicked polymer shell on MWNTs can be well controlled by adjusting the cycles or numbers of click reaction and the polymer shell is uniform and even. X-ray photoelectron spectroscopy (XPS) and Fourier tranform infrared (FTIR) measurements showed that there were still a great amount of residual azido groups on the surfaces of the functionalized MWNTs after clicking three layers of polymers. Furthermore, alkyne-modified rhodamine B and monoalkyne-terminated polystyrene were subsequently used to functionalize the clickable polymer grafted MWNTs, giving rise to fluorescent carbon nanotubes (CNTs) and CNT-based polystyrene brushes, respectively. It demonstrates that the residual azido groups on the surfaces of MWNTs are available for further click reaction with various functional molecules.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Polymer Science and Engineering, and Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, 38 Zheda Road, Hangzhou 310027, PR China
| | | | | | | |
Collapse
|
41
|
Zou Y, Kizhakkedathu JN, Brooks DE. Surface Modification of Polyvinyl Chloride Sheets via Growth of Hydrophilic Polymer Brushes. Macromolecules 2009. [DOI: 10.1021/ma8025699] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuquan Zou
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine and Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C., V6T 1Z3, Canada
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine and Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C., V6T 1Z3, Canada
| | - Donald E. Brooks
- Centre for Blood Research and Department of Pathology and Laboratory of Medicine and Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C., V6T 1Z3, Canada
| |
Collapse
|
42
|
Stefopoulos AA, Pefkianakis EK, Papagelis K, Andreopoulou AK, Kallitsis JK. Carbon nanotubes decorated with terpyridine-ruthenium complexes. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Ryu J, Ramaraj B, Yoon KR. Surface functionalization of multi-walled carbon nanotubes through surface-initiated atom transfer radical polymerization of glycidyl methacrylate. SURF INTERFACE ANAL 2009. [DOI: 10.1002/sia.3021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Narumi A, Chen Y, Sone M, Fuchise K, Sakai R, Satoh T, Duan Q, Kawaguchi S, Kakuchi T. Poly(N-hydroxyethylacrylamide) Prepared by Atom Transfer Radical Polymerization as a Nonionic, Water-Soluble, and Hydrolysis-Resistant Polymer and/or Segment of Block Copolymer with a Well-Defined Molecular Weight. MACROMOL CHEM PHYS 2009. [DOI: 10.1002/macp.200800509] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
THE GRAFTING OF THERMOSENSITIVE POLYMER ONTO SUPERFINE SILICA SURFACE BY ATOM TRANSFER RADICAL POLYMERIZATION. ACTA POLYM SIN 2009. [DOI: 10.3724/sp.j.1105.2008.00899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Wei Q, Zhou W, Ji J, Shen J. Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization. NANOSCALE RESEARCH LETTERS 2009; 4:84-89. [PMID: 20592960 PMCID: PMC2893766 DOI: 10.1007/s11671-008-9206-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/30/2008] [Indexed: 05/29/2023]
Abstract
Thermosensitive nanocables consisting of Au nanowire cores and poly(N-isopropylacrylamide) sheaths (denoted as Au/PNIPAAm) were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP). The formation of PNIPAAm sheath was verified by Fourier transform infrared (FTIR) and hydrogen nuclear magnetic resonance ((1)H NMR) spectroscopy. Transmission electron microscope (TEM) results confirmed the core/shell structure of nanohybrids. The thickness and density of PNIPAAm sheaths can be adjusted by controlling the amount of cross-linker during the polymerization. Signature temperature response was observed from Au/cross-linked-PNIPAAm nanocables. Such smart nanocables show immense potentials as building blocks for novel thermosensitive nanodevices in future.
Collapse
Affiliation(s)
- Qingshan Wei
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Wenbo Zhou
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Jian Ji
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| | - Jiacong Shen
- Department of Polymer Science and Engineering, Key Laboratory of Macromolecule Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou, 310027, People’s Republic of China
| |
Collapse
|
47
|
Zhou L, Gao C, Xu W. Amphibious polymer-functionalized CdTe quantum dots: Synthesis, thermo-responsive self-assembly, and photoluminescent properties. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b905966k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Yang LP, Zou P, Pan CY. Preparation of hierarchical worm-like silica nanotubes. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b814617a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Hou J, Zhou X. Grafting of Polystyrene-b-Poly(2-hydroxyethyl methacrylate) onto Carbon Fiber. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2008. [DOI: 10.1080/10601320802453864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Xu G, Xia R, Wang H, Meng X, Zhu Q. Grafting of thermoresponsive polymer from the surface of functionalized multiwalled carbon nanotubes via atom transfer radical polymerization. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0317-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|