1
|
Yan L, Xu L. Fluorescent nano‐particles prepared by
eATRP
combined with self‐assembly imprinting technology. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Liu Yan
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| |
Collapse
|
2
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
3
|
Regasa MB, Soreta TR, Femi OE, Ramamurthy PC, Subbiahraj S. Novel multifunctional molecular recognition elements based on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film for melamine electrochemical detection. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2019.100318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
4
|
Zhang H. Molecularly Imprinted Nanoparticles for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806328. [PMID: 31090976 DOI: 10.1002/adma.201806328] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Indexed: 06/09/2023]
Abstract
Molecularly imprinted polymers (MIPs) are synthetic receptors with tailor-made recognition sites for target molecules. Their high affinity and selectivity, excellent stability, easy preparation, and low cost make them promising substitutes to biological receptors in many applications where molecular recognition is important. In particular, spherical MIP nanoparticles (or nanoMIPs) with diameters typically below 200 nm have drawn great attention because of their high surface-area-to-volume ratio, easy removal of templates, rapid binding kinetics, good dispersion and handling ability, undemanding functionalization and surface modification, and their high compatibility with various nanodevices and in vivo biomedical applications. Recent years have witnessed significant progress made in the preparation of advanced functional nanoMIPs, which has eventually led to the rapid expansion of the MIP applications from the traditional separation and catalysis fields to the burgeoning biomedical areas. Here, a comprehensive overview of key recent advances made in the preparation of nanoMIPs and their important biomedical applications (including immunoassays, drug delivery, bioimaging, and biomimetic nanomedicine) is presented. The pros and cons of each synthetic strategy for nanoMIPs and their biomedical applications are discussed and the present challenges and future perspectives of the biomedical applications of nanoMIPs are also highlighted.
Collapse
Affiliation(s)
- Huiqi Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
5
|
Asadujjaman A, Ahmadi V, Michel Claude Franc A, Bertin A. 2,6‐Diaminopyridine and Acrylamide‐Based Copolymers with Upper Critical Solution Temperature‐type Behavior in Aqueous Solution. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Asad Asadujjaman
- Bundesanstalt für Materialforschung und –prüfung (BAM), Unter den Eichen 87 12205 Berlin Germany
- Technische Universität München, WACKER‐Lehrstuhl für Makromolekulare Chemie, Lichtenbergstraße 4 85747 Garching bei München Germany
| | - Vahid Ahmadi
- Bundesanstalt für Materialforschung und –prüfung (BAM), Unter den Eichen 87 12205 Berlin Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry–Organic Chemistry, Takustr. 3 14195 Berlin Germany
| | | | - Annabelle Bertin
- Bundesanstalt für Materialforschung und –prüfung (BAM), Unter den Eichen 87 12205 Berlin Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry–Organic Chemistry, Takustr. 3 14195 Berlin Germany
| |
Collapse
|
6
|
Zhang S, Zhao Y. Tuning surface-cross-linking of molecularly imprinted cross-linked micelles for molecular recognition in water. J Mol Recognit 2018; 32:e2769. [PMID: 30419606 DOI: 10.1002/jmr.2769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
Molecular recognition in water is an important challenge in supramolecular chemistry. Surface-core double cross-linking of template-containing surfactant micelles by the click reaction and free radical polymerization yields molecularly imprinted nanoparticles (MINPs) with guest-complementary binding sites. An important property of MINP-based receptors is the surface-cross-linking between the propargyl groups of the surfactants and a diazide cross-linker. Decreasing the number of carbons in between the two azides enhanced the binding affinity of the MINPs, possibly by keeping the imprinted binding site more open prior to the guest binding. The depth of the binding pocket can be controlled by the distribution of the hydrophilic/hydrophobic groups of the template and was found to influence the binding in addition to electrostatic interactions between oppositely charged MINPs and guests. Cross-linkers with an alkoxyamine group enabled two-stage double surface-cross-linking that strengthened the binding constants by an order of magnitude, possibly by expanding the binding pocket of the MINP into the polar region. The binding selectivity among very similar isomeric structures also improved.
Collapse
Affiliation(s)
- Shize Zhang
- Department of Chemistry, Iowa State University, Ames, IA, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Tan K, Ma Q, Luo J, Xu S, Zhu Y, Wei W, Liu X, Gu Y. Water-dispersible molecularly imprinted nanohybrids via co-assembly of carbon nanotubes with amphiphilic copolymer and photocrosslinking for highly sensitive and selective paracetamol detection. Biosens Bioelectron 2018; 117:713-719. [DOI: 10.1016/j.bios.2018.07.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/18/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
|
8
|
Arifuzzaman MD, Zhao W, Zhao Y. Surface Ligands in the Imprinting and Binding of Molecularly Imprinted Cross-Linked Micelles. Supramol Chem 2018; 30:929-939. [PMID: 31223222 PMCID: PMC6585997 DOI: 10.1080/10610278.2018.1489540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
Molecular recognition in water is challenging but water-soluble molecularly imprinted nanoparticle (MINP) receptors were produced readily by double cross-linking of surfactant micelles in the presence of suitable template molecules. When the micellar surface was decorated with different polyhydroxylated ligands, significant interactions could be introduced between the surface ligands and the template. Flexible surface ligands worked better than rigid ones to interact with the polar moiety of the template, especially for those template molecules whose water-exposed surface is not properly solvated by water. The importance of these hydrophilic interactions was examined in the context of different substrates, density of the surface ligands, and surface-cross-linking density of the MINP. Together with the hydrophobic interactions in the core, the surface hydrophilic interactions can be used to enhance the binding of guest molecules in water.
Collapse
Affiliation(s)
- M D Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA, Tel: +1-515-294-5845
| | - Wei Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA, Tel: +1-515-294-5845
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA, Tel: +1-515-294-5845
| |
Collapse
|
9
|
Duan L, Zhao Y. Selective Binding of Folic Acid and Derivatives by Imprinted Nanoparticle Receptors in Water. Bioconjug Chem 2018. [PMID: 29513991 DOI: 10.1021/acs.bioconjchem.8b00121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Folate receptors are overexpressed on cancer cells and frequently used for targeted delivery. Creation of synthetic receptors to bind folic acid and its analogues in water, however, is challenging because of its complex hydrogen-bonding patterns and competition for hydrogen bonds from the solvent. Micellar imprinting within cross-linkable surfactants circumvented these problems because the nonpolar micellar environment strengthened the hydrogen bonds between the amide group in the surfactant and the template molecule. Incorporation of polymerizable thiouronium functional monomers further enhanced the binding through hydrogen-bond-reinforced ion pairs with the glutamate moiety of the template. The resulting imprinted micelles were able to bind folate and their analogues with submicromolar affinity and distinguish small changes in the hydrogen-bonding patterns as well as the number/position of carboxylic acids. The binding constant obtained was 2-3 orders of magnitude higher than those reported for small-molecule synthetic receptors. Our binding study also revealed interesting details in the binding. For example, the relative contributions of different segments of the molecule to the binding followed the order of carboxylates > pyrimidine ring > pyrazine ring.
Collapse
Affiliation(s)
- Likun Duan
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| | - Yan Zhao
- Department of Chemistry , Iowa State University , Ames , Iowa 50011-3111 , United States
| |
Collapse
|
10
|
Zhang R, Zhu Y, Huang J, Xu S, Luo J, Liu X. Electrochemical Sensor Coating Based on Electrophoretic Deposition of Au-Doped Self-Assembled Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5926-5932. [PMID: 29363948 DOI: 10.1021/acsami.7b13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The electrophoretic deposition (EPD) of self-assembled nanoparticles (NPs) on the surface of an electrode is a new strategy for preparing sensor coating. By simply changing the deposition conditions, the electrochemical response for an analyte of deposited NPs-based coating can be controlled. This advantage can decrease the difference between different batches of sensor coating and ensure the reproducibility of each sensor. This work investigated the effects of deposition conditions (including deposition voltage, pH value of suspension, and deposition time) on the structure and the electrochemical response for l-tryptophan of sensor coating formed from Au-doped poly(sodium γ-glutamate) with pendant dopamine units nanohybrids (Au/γ-PGA-DA NBs) via the EPD method. The structure and thickness of the deposited sensor coating were measured by atomic force microscopy, which demonstrated that the structure and thickness of coating can be affected by the deposition voltage, the pH value of the suspension, and the deposition time. The responsive current for l-tryptophan of the deposited sensor coating were measured by differential pulse voltammetry, which showed that the responsive current value was affected by the structure and thickness of the deposited coating. These arguments suggested that a rich design-space for tuning the electrochemical response for analyte and a source of variability in the structure of sensor coating can be provided by the deposition conditions. When Au/γ-PGA-DA NBs were deposited on the electrode surface and formed a continuous coating with particle morphology and thinner thickness, the deposited sensor coating exhibited optimal electrochemical response for l-tryptophan.
Collapse
Affiliation(s)
- Rongli Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
- School of Biological and Chemical Engineering, Anhui Polytechnic University , Wuhu 241000, China
| | - Ye Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Jing Huang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Sheng Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Jing Luo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University , Wuxi 214122, China
| |
Collapse
|
11
|
Hu L, Zhao Y. Cross‐Linked Micelles with Enzyme‐Like Active Sites for Biomimetic Hydrolysis of Activated Esters. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lan Hu
- Department of Chemistry Iowa State University Ames Iowa 50011‐3111 USA
| | - Yan Zhao
- Department of Chemistry Iowa State University Ames Iowa 50011‐3111 USA
| |
Collapse
|
12
|
Awino JK, Zhao Y. Imprinted micelles for chiral recognition in water: shape, depth, and number of recognition sites. Org Biomol Chem 2017; 15:4851-4858. [PMID: 28537295 PMCID: PMC5902669 DOI: 10.1039/c7ob00764g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chiral molecular recognition is important to biology, separation, and asymmetric catalysis. Because there is no direct correlation between the chiralities of the host and the guest, it is difficult to design a molecular receptor for a chiral guest in a rational manner. By cross-linking surfactant micelles containing chiral template molecules, we obtained chiral nanoparticle receptors for a number of 4-hydroxyproline derivatives. Molecular imprinting allowed us to transfer the chiral information directly from the guest to host, making the molecular recognition between the two highly predictable. Hydrophobic interactions between the host and the guest contributed strongly to the enantio- and diastereoselective differentiation of these compounds in water, whereas ion-pair interactions, which happened near the surface of the micelle, were less discriminating. The chiral recognition could be modulated by tuning the size and shape of the binding pockets.
Collapse
Affiliation(s)
- Joseph K Awino
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | | |
Collapse
|
13
|
Gunasekara RW, Zhao Y. A General Method for Selective Recognition of Monosaccharides and Oligosaccharides in Water. J Am Chem Soc 2017; 139:829-835. [PMID: 27983819 PMCID: PMC5243169 DOI: 10.1021/jacs.6b10773] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Molecular recognition of carbohydrates plays vital roles in biology but has been difficult to achieve with synthetic receptors. Through covalent imprinting of carbohydrates in boroxole-functionalized cross-linked micelles, we prepared nanoparticle receptors for a wide variety of mono- and oligosaccharides. The boroxole functional monomer bound the sugar templates through cis-1,2-diol, cis-3,4-diol, and trans-4,6-diol. The protein-sized nanoparticles showed excellent selectivity for d-aldohexoses in water with submillimolar binding affinities and completely distinguished the three biologically important hexoses (glucose, mannose, and galactose). Glycosides with nonpolar aglycon showed stronger binding due to enhanced hydrophobic interactions. Oligosaccharides were distinguished on the basis of their monosaccharide building blocks, glycosidic linkages, chain length, as well as additional functional groups that could interact with the nanoparticles.
Collapse
Affiliation(s)
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
14
|
Asadujjaman A, Ahmadi V, Yalcin M, ten Brummelhuis N, Bertin A. Thermoresponsive functional polymers based on 2,6-diaminopyridine motif with tunable UCST behaviour in water/alcohol mixtures. Polym Chem 2017. [DOI: 10.1039/c7py00539c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two thermoresponsive polyacrylamides based on the 2,6-diaminopyridine motif were synthesized and their UCST-type reversible thermoresponsive behaviour was studied in water/alcohol mixtures.
Collapse
Affiliation(s)
- Asad Asadujjaman
- Bundesanstalt für Materialforschung und –prüfung (BAM)
- 12205 Berlin
- Germany
| | - Vahid Ahmadi
- Bundesanstalt für Materialforschung und –prüfung (BAM)
- 12205 Berlin
- Germany
| | - Meral Yalcin
- Humboldt-Universität zu Berlin
- Department of Chemistry
- 12489 Berlin
- Germany
| | | | - Annabelle Bertin
- Bundesanstalt für Materialforschung und –prüfung (BAM)
- 12205 Berlin
- Germany
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry–Organic Chemistry
| |
Collapse
|
15
|
Arifuzzaman MD, Zhao Y. Water-Soluble Molecularly Imprinted Nanoparticle Receptors with Hydrogen-Bond-Assisted Hydrophobic Binding. J Org Chem 2016; 81:7518-26. [PMID: 27462993 PMCID: PMC5010460 DOI: 10.1021/acs.joc.6b01191] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecularly imprinted nanoparticles (MINPs) were prepared when surfactants with a tripropargylammonium headgroup and a methacrylate-functionalized hydrophobic tail were cross-linked in the micelle form on the surface and in the core in the presence of hydrophobic template molecules. With the surfactants containing an amide bond near the headgroup, the MINPs had a layer of hydrogen-bonding groups in the interior that strongly influenced their molecular recognition. Templates/guests with strong hydrogen-bonding groups in the midsection of the molecule benefited most, especially if the hydrophobe of the template could penetrate the amide layer to reach the hydrophobic core of the cross-linked micelles. The location and the orientation of the hydrophilic groups were also important, as they determined how the template interacted with the surfactant micelles and, ultimately, with the MINP receptors.
Collapse
Affiliation(s)
- MD Arifuzzaman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
16
|
Luo J, Ma Q, Wei W, Zhu Y, Liu R, Liu X. Synthesis of Water-Dispersible Molecularly Imprinted Electroactive Nanoparticles for the Sensitive and Selective Paracetamol Detection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21028-21038. [PMID: 27463123 DOI: 10.1021/acsami.6b05440] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel kind of water-dispersible molecularly imprinted electroactive nanoparticles was prepared combining macromolecular self-assembly with molecularly imprinting technique employing paracetamol (PCM) as template molecule. An amphiphilic electroactive copolymer (P(NVC-EHA-AA), PNEA) containing carbazole group was first synthesized through a one-pot free radical copolymerization. The coassembly of the electroactive copolymers with the template molecules (PCM) in aqueous solution generated nanoparticles embedded with PCM, leading to the formation of molecularly imprinted electroactive nanoparticles (MIENPs). A robust MIP film was formed on the surface of electrode by electrodeposition of MIENPs and subsequent electropolymerization of the carbazole units in MIENPs. After the extraction of PCM molecules, a MIP sensor was successfully constructed. It should be noted that electropolymerization of the electroactive units in MIENPs creates cross-conjugated polymer network, which not only locks the recognition sites but also significantly accelerates the electron transfer and thus enhances the response signal of the MIP sensor. These advantages endowed the MIP sensor with good selectivity and high sensitivity for PCM detection. The MIP sensor could recognize PCM from its possible interfering substances with good selectivity. Under the optimal conditions, two linear ranges from 1 μM to 0.1 mM and 0.1 to 10 mM with a detection limit of 0.3 μM were obtained for PCM detection. The MIP sensor also showed good stability and repeatability, which has been successfully used to analyze PCM in tablets and human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Jing Luo
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Qiang Ma
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Wei Wei
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Ye Zhu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Ren Liu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| | - Xiaoya Liu
- The Key Laboratory of Food Colloids, Biotechnology, Ministry of Education, School of Chemical, Material Engineering, Jiangnan University , Wuxi, Jiangsu, China 214122
| |
Collapse
|
17
|
Zhang R, Xu S, Zhu Y, Zhao W, Luo J, Liu X, Tang D. Molecularly imprinted nanohybrids based on dopamine-modified poly(γ-glutamic acid) for electrochemical sensing of melamine. Biosens Bioelectron 2016; 85:381-386. [PMID: 27196255 DOI: 10.1016/j.bios.2016.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/28/2016] [Accepted: 05/08/2016] [Indexed: 10/21/2022]
Abstract
A voltammetric sensor for melamine (MEL) was prepared from molecularly imprinted nanohybrids (MINBs). A dopamine modified poly-γ-glutamic acid copolymer (γ-PGA-DA) and MEL were self-assembled into MEL/γ-PGA-DA nanoparticles (NPs) in aqueous solution via weak interactions, followed by adding an aqueous AgNO3 solution into the mixture. The Ag(+) was adsorbed in the MEL/γ-PGA-DA NPs and spontaneously reduced to Ag NPs by the dopamine moieties of γ-PGA-DA, forming Ag/MEL/γ-PGA-DA MINBs, which were then cast on a gold electrode to form a MINBs film. The MEL was removed by electrolysis via catalysis of Ag NPs at a constant potential of 1.4V in phosphate buffer saline solution, to obtain a voltammetric sensor for MEL. The sensor responded linearly to MEL in the concentration range of 5×10(-18) to 5×10(-7)molL(-1). Compared to other published molecularly imprinted polymer sensors for sensing MEL, the prepared MINBs sensor had much wider detection range with lower detection limit.
Collapse
Affiliation(s)
- Rongli Zhang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; School of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Sheng Xu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ye Zhu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Wei Zhao
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Luo
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoya Liu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dingxing Tang
- School of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
18
|
Zahedi P, Ziaee M, Abdouss M, Farazin A, Mizaikoff B. Biomacromolecule template-based molecularly imprinted polymers with an emphasis on their synthesis strategies: a review. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3754] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Morteza Ziaee
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering; University of Tehran; PO Box 11155-4563 Tehran Iran
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Alireza Farazin
- Department of Chemistry, Faculty of Science; University of Tehran; Tehran Iran
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry; University of Ulm; 89081 Ulm Germany
| |
Collapse
|
19
|
Zhao P, Hao J. 2,6-Diaminopyridine-imprinted polymer and its potency to hair-dye assay using graphene/ionic liquid electrochemical sensor. Biosens Bioelectron 2015; 64:277-84. [DOI: 10.1016/j.bios.2014.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/31/2014] [Accepted: 09/04/2014] [Indexed: 02/08/2023]
|
20
|
Diltemiz SE, Uslu O. A reflectometric interferometric nanosensor for sarcosine. Biotechnol Prog 2015; 31:55-61. [DOI: 10.1002/btpr.1955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/16/2014] [Indexed: 11/06/2022]
Affiliation(s)
| | - Okan Uslu
- Dept. of Chemistry; Anadolu University; Eskişehir Turkey
| |
Collapse
|
21
|
Whitcombe MJ, Kirsch N, Nicholls IA. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J Mol Recognit 2014; 27:297-401. [PMID: 24700625 DOI: 10.1002/jmr.2347] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/28/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
Abstract
Herein, we present a survey of the literature covering the development of molecular imprinting science and technology over the years 2004-2011. In total, 3779 references to the original papers, reviews, edited volumes and monographs from this period are included, along with recently identified uncited materials from prior to 2004, which were omitted in the first instalment of this series covering the years 1930-2003. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by sections describing fundamental aspects of molecular imprinting including the development of novel polymer formats. Thereafter, literature describing efforts to apply these polymeric materials to a range of application areas is presented. Current trends and areas of rapid development are discussed.
Collapse
|
22
|
Çorman ME, Armutcu C, Uzun L, Say R, Denizli A. Self-oriented nanoparticles for site-selective immunoglobulin G recognition via epitope imprinting approach. Colloids Surf B Biointerfaces 2014; 123:831-7. [PMID: 25454659 DOI: 10.1016/j.colsurfb.2014.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/09/2014] [Accepted: 10/12/2014] [Indexed: 10/24/2022]
Abstract
Molecular imprinting is a polymerization technique that provides synthetic analogs for template molecules. Molecularly imprinted polymers (MIPs) have gained much attention due to their unique properties such as selectivity and specificity for target molecules. In this study, we focused on the development of polymeric materials with molecular recognition ability, so molecular imprinting was combined with miniemulsion polymerization to synthesize self-orienting nanoparticles through the use of an epitope imprinting approach. Thus, L-lysine imprinted nanoparticles (LMIP) were synthesized via miniemulsion polymerization technique. Immunoglobulin G (IgG) was then bound to the cavities that specifically formed for L-lysine molecules that are typically found at the C-terminus of the Fc region of antibody molecules. The resulting nanoparticles makes it possible to minimize the nonspecific interaction between monomer and template molecules. In addition, the orientation of the entire IgG molecule was controlled, and random imprinting of the IgG was prevented. The optimum conditions were determined for IgG recognition using the imprinted nanoparticles. The selectivity of the nanoparticles against IgG molecules was also evaluated using albumin and hemoglobin as competitor molecules. In order to show the self-orientation capability of imprinted nanoparticles, human serum albumin (HSA) adsorption onto both the plain nanoparticles and immobilized nanoparticles by anti-human serum albumin antibody (anti-HSA antibody) was also carried out. Due to anti-HSA antibody immobilization on the imprinted nanoparticles, the adsorption capability of nanoparticles against HSA molecules vigorously enhanced. It is proved that the oriented immobilization of antibodies was appropriately succeeded.
Collapse
Affiliation(s)
- Mehmet Emin Çorman
- Hacettepe University, Department of Chemistry, Ankara, Turkey; Sinop University, Department of Bioengineering, Sinop, Turkey
| | - Canan Armutcu
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| | - Rıdvan Say
- Anadolu University, Department of Chemistry, Eskişehir, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| |
Collapse
|
23
|
EL-Sharif HF, Stevenson D, Warriner K, Reddy SM. Hydrogel-Based Molecularly Imprinted Polymers for Biological Detection. ADVANCED SYNTHETIC MATERIALS IN DETECTION SCIENCE 2014. [DOI: 10.1039/9781849737074-00075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecularly imprinted polymers (MIPs) have become an important tool in the preparation of artificial and robust recognition materials that are capable of mimicking natural systems. MIPs have been regarded as 'antibody mimics' and have shown clear advantages over real antibodies for sensor technology. Currently, on-site diagnostic (OSD) and point-of-care (POC) biosensor development are heavily dominated by antibody-dependent immuno-sensors such as the lateral flow immuno-assay. Although antibodies exhibit a high degree of selectivity, any biological recognition element is inherently unstable with limited shelf-life, even when stored under optimum conditions. OSD and POC tests are essential for disease screening and treatment monitoring as part of emergency management. Introduced or naturally occurring pathogens can cause significant disruptions, raise panic in the population, and result in significant economic losses. Cheaper, smaller, and smarter devices for early detection of disease or environmental hazards ultimately lead to rapid containment and corrective action. To this end, there has been extensive research on detection platforms based on genetic or immune techniques. MIPs have proven to produce selective biological extractions that rival immunoaffinity-based separations, but without the tediously lengthy time-consuming process. MIPs could provide an alternative to antibodies, and ultimately lead to cheaper, smaller, and smarter biosensors.
Collapse
Affiliation(s)
- Hazim F. EL-Sharif
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Derek Stevenson
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| | - Keith Warriner
- Department of Food Science, University of Guelph Guelph ON Canada N1G 2W1
| | - Subrayal M. Reddy
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| |
Collapse
|
24
|
Molecularly imprinted photo-sensitive polyglutamic acid nanoparticles for electrochemical sensing of hemoglobin. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1315-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Wang Y, Zhong WHK, Ji J, Eyler A. Blossoming of nanosheet structures via a disturbed self-assembly. NANO LETTERS 2014; 14:3474-3480. [PMID: 24813371 DOI: 10.1021/nl501002f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanofabrication has been critical in all kinds of nanotechnology, not only for achieving various nanostructures or nanosystems but also for the application of the nanotechnology. To achieve controllable but simple nanofabrication is one of the central aspirations for many research communities; here, for the first time, we report the growth of nanosheet structures simply by introducing internal disturbances (adding nanoparticles and surface tension) or external disturbances (deformations) to the self-assembly of copolymers induced by evaporation. Nanoparticles, curved surface, and deformations by such as writing or extension have been employed to demonstrate the sensitivity of the nanosheet structures to various disturbances. Finally, a physical model has been proposed to explain how the disturbances contribute to the formation of the nanosheet structures. These significant results indicate a scalable, writable, cost-effective and environmentally friendly nanotechnology that will stimulate new nanofabrication research.
Collapse
Affiliation(s)
- Yu Wang
- School of Mechanical and Materials Engineering, Washington State University , Pullman, Washington 99163, United States
| | | | | | | |
Collapse
|
26
|
Zhang RL, Sun JD, Luo J, Xu S, Liu XY. Preparation of photo-sensitive poly(γ-glutamic acid) nanoparticles and application for immobilizing hemoglobin on electrode. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3259-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Zhang RL, Xu S, Luo J, Shi DJ, Liu C, Liu XY. One-pot green synthesis of nanohybrid structures: gold nanoparticles in poly(γ-glutamic acid) copolymer nanoparticles. RSC Adv 2014. [DOI: 10.1039/c4ra01094a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
28
|
Ince GO, Armagan E, Erdogan H, Buyukserin F, Uzun L, Demirel G. One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD). ACS APPLIED MATERIALS & INTERFACES 2013; 5:6447-6452. [PMID: 23806214 DOI: 10.1021/am401769r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Molecular imprinting is a powerful, generic, and cost-effective technique; however, challenges still remain related to the fabrication and development of these systems involving nonhomogeneous binding sites, insufficient template removing, incompatibility with aqueous media, low rebinding capacity, and slow mass transfer. The vapor-phase deposition of polymers is a unique technique because of the conformal nature of coating and offers new possibilities in a number of applications including sensors, microfluidics, coating, and bioaffinity platforms. Herein, we demonstrated a simple but versatile concept to generate one-dimensional surface-imprinted polymeric nanotubes within anodic aluminum oxide (AAO) membranes based on initiated chemical vapor deposition (iCVD) technique for biorecognition of immunoglobulin G (IgG). It is reported that the fabricated surface-imprinted nanotubes showed high binding capacity and significant specific recognition ability toward target molecules compared with the nonimprinted forms. Given its simplicity and universality, the iCVD method can offer new possibilities in the field of molecular imprinting.
Collapse
Affiliation(s)
- Gozde Ozaydin Ince
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Dual-responsive poly(styrene-alt-maleic acid)-graft-poly(N-isopropyl acrylamide) micelles as switchable emulsifiers. J Colloid Interface Sci 2012; 380:90-8. [DOI: 10.1016/j.jcis.2012.04.067] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/20/2022]
|
31
|
Chenglin Y, Yiqun Y, Ye Z, Na L, Xiaoya L, Jing L, Ming J. Self-assembly and emulsification of poly{[styrene-alt-maleic acid]-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]}. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:9211-9222. [PMID: 22639900 DOI: 10.1021/la301605a] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Self-assembled polymeric micelles can be used as efficient particulate emulsifiers. To explore the relationship between the structure and the oil-water interfacial behavior of the micelle emulsifiers, a new type of amphiphilic random copolymer, poly{(styrene-alt-maleic acid)-co-[styrene-alt-(N-3,4-dihydroxyphenylethyl-maleamic acid)]} (SMA-Dopa), was synthesized, self-assembled into micelles, and used as emulsifiers. SMA-Dopa was synthesized via an aminolysis reaction between dopamine and commercial alternating copolymer poly(styrene-alt-maleic anhydride) (SMA). Dopamine moiety facilitated the self-assembly of the SMA-Dopa in selective-solvent into stable micelles, and increased the adsorption of the SMA-Dopa at the oil-water interface. Additionally, the structural transition of the self-assembled SMA-Dopa52 micelles in response to pH and salinity changes were confirmed by means of TEM, AFM, DLS, aqueous electrophoresis techniques, potentiometric titration, and pyrene fluorescence probe methods. Micelles shrunk with increasing salinity, and flocculation of the shrunken primary micelles occurred at salt concentration exceeding 0.1 M. The micelles swelled with increasing pH, and the disassociation of the SMA-Dopa52 micelles occurred at pH above approximately 6.5. The structure of the micelles plays a crucial role in the oil-water interfacial performance. Micelles with various structures were used as emulsifiers to adsorb at the styrene-water and toluene-water interfaces. The emulsifying characteristics demonstrated that self-assembled SMA-Dopa52 micelles with moderately swollen structure (at 2 < pH < 6) combine the advantages of the solid particulate emulsifiers and polymeric surfactants, possessing excellent emulsifying efficiency and good emulsion stability. Moreover, the emulsifying performance of the SMA-Dopa52 micelles could be enhanced by the addition of salt.
Collapse
Affiliation(s)
- Yi Chenglin
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim Y, Jeon JB, Chang JY. CdSe quantum dot-encapsulated molecularly imprinted mesoporous silica particles for fluorescent sensing of bisphenol A. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34798a] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Wang H, Dong X, Yang M. Development of separation materials using controlled/living radical polymerization. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2011.07.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
34
|
Shi Y, Lv H, Lu X, Huang Y, Zhang Y, Xue W. Uniform molecularly imprinted poly(methacrylic acid) nanospheres prepared by precipitation polymerization: the control of particle features suitable for sustained release of gatifloxacin. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm15680f] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Njikang G, Liu G, Hong L. Chiral imprinting of diblock copolymer single-chain particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7176-7184. [PMID: 21528850 DOI: 10.1021/la2006887] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This Article reports the molecular imprinting of polymer single-chain particles that have a radius ∼3.7 nm. For this, the template L-phenylalanine anilide or L-ΦAA and a diblock copolymer PtBA-b-P(CEMA-r-CA) were used. Here, PtBA denotes poly(tert-butyl acrylate), and P(CEMA-r-CA) denotes a random block consisting of cinnamoyloxyethyl methacrylate (CEMA) and carboxyl-bearing (CA) units. In CHCl(3)/cyclohexane (CHX) with 64 vol % of CHX or at f(CHX) = 64%, a block-selective solvent for PtBA, PtBA-b-P(CEMA-r-CA) formed spherical micelles. The core consisted of the insoluble P(CEMA-r-CA) block and L-ΦAA, which complexed with the CA groups. Pumping slowly this micellar solution into stirred CHCl(3)/(CHX) at f(CHX) = 64% triggered micelle dissociation into single-chain micelles, which comprised presumably a solubilized PtBA tail and a collapsed P(CEMA-r-CA)/L-ΦAA head. Because the solvent reservoir was under constant UV irradiation, the photo-cross-linkable units in the P(CEMA-r-CA) head cross-linked, and the single-chain micelles were converted into cross-linked single-chain micelles or tadpoles. Synchronizing the micelle addition and photoreaction rates allowed the preparation, from this protocol, of essentially pure tadpoles at high final polymer concentrations. Imprinted tadpoles were procured after L-ΦAA was extracted from the tadpole heads. Under optimized conditions, the produced imprinted tadpoles had exceptionally high binding capacity and high selectivity for L-ΦAA. In addition, the rates of L-ΦAA release from and rebinding by the particles were high.
Collapse
Affiliation(s)
- Gabriel Njikang
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
36
|
Chen L, Xu S, Li J. Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 2011; 40:2922-42. [PMID: 21359355 DOI: 10.1039/c0cs00084a] [Citation(s) in RCA: 1147] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular imprinting technology (MIT) concerns formation of selective sites in a polymer matrix with the memory of a template. Recently, molecularly imprinted polymers (MIPs) have aroused extensive attention and been widely applied in many fields, such as solid-phase extraction, chemical sensors and artificial antibodies owing to their desired selectivity, physical robustness, thermal stability, as well as low cost and easy preparation. With the rapid development of MIT as a research hotspot, it faces a number of challenges, involving biological macromolecule imprinting, heterogeneous binding sites, template leakage, incompatibility with aqueous media, low binding capacity and slow mass transfer, which restricts its applications in various aspects. This critical review briefly reviews the current status of MIT, particular emphasis on significant progresses of novel imprinting methods, some challenges and effective strategies for MIT, and highlighted applications of MIPs. Finally, some significant attempts in further developing MIT are also proposed (236 references).
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | | | | |
Collapse
|
37
|
|
38
|
Xu S, Li J, Chen L. Molecularly imprinted core-shell nanoparticles for determination of trace atrazine by reversible addition–fragmentation chain transfer surface imprinting. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03593a] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
39
|
Liu R, Guan G, Wang S, Zhang Z. Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection ofatrazine herbicide. Analyst 2011; 136:184-90. [DOI: 10.1039/c0an00447b] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Yang Y, Yi C, Luo J, Liu R, Liu J, Jiang J, Liu X. Glucose sensors based on electrodeposition of molecularly imprinted polymeric micelles: A novel strategy for MIP sensors. Biosens Bioelectron 2011; 26:2607-12. [DOI: 10.1016/j.bios.2010.11.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/02/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022]
|
41
|
Long Y, Philip JYN, Schillén K, Liu F, Ye L. Insight into molecular imprinting in precipitation polymerization systems using solution NMR and dynamic light scattering. J Mol Recognit 2010; 24:619-30. [PMID: 21472813 DOI: 10.1002/jmr.1097] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/21/2010] [Accepted: 08/26/2010] [Indexed: 11/10/2022]
Abstract
Molecular imprinting is a powerful synthetic technique for generating template-defined binding sites in cross-linked polymers. One scientific challenge in molecular imprinting research is to understand the intermolecular interactions leading to molecular complexation and the process of binding site formation during polymerization. In this work, we present a novel method for studying the molecular imprinting process in precipitation polymerization systems. This method employs solution (1) H NMR and dynamic light scattering (DLS) to investigate the association of template molecules with colloidal particles and the dynamic process of particle growth. Under precipitation polymerization conditions, the colloidal particles formed did not interfere with NMR signals from the soluble components, allowing unreacted monomers and free template to be easily quantified. To examine the process of particle nucleation and growth, DLS was used to measure the hydrodynamic particle size at different reaction times. To corroborate the interpretation of the NMR and DLS results, imprinted nanoparticles were collected at different reaction times and their binding characteristics were evaluated using radioligand-binding analysis. Our experimental results provide new insights into the molecular imprinting process that will be useful in the development of new imprinted nanoparticles.
Collapse
Affiliation(s)
- Yuanyuan Long
- Division of Pure and Applied Biochemistry, Chemical Center, Lund University, Box 124, 22100 Lund, Sweden
| | | | | | | | | |
Collapse
|
42
|
Cao F, Liao J, Yang K, Bai P, Wei Q, Zhao C. Self-Assembly Molecularly Imprinted Nanofiber for 4-HA Recognition. ANAL LETT 2010. [DOI: 10.1080/00032711003731480] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Wu Y, Liao IC, Kennedy SJ, Du J, Wang J, Leong KW, Clark RL. Electrosprayed core-shell microspheres for protein delivery. Chem Commun (Camb) 2010; 46:4743-5. [PMID: 20485844 DOI: 10.1039/c0cc00535e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication describes a single-step electrospraying technique that generates core-shell microspheres (CSMs) with encapsulated protein as the core and an amphiphilic biodegradable polymer as the shell. The protein release profiles of the electrosprayed CSMs showed steady release kinetics over 3 weeks without a significant initial burst.
Collapse
Affiliation(s)
- Yiquan Wu
- Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Schirhagl R, Lieberzeit PA, Blaas D, Dickert FL. Chemosensors for viruses based on artificial immunoglobulin copies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:2078-2081. [PMID: 20544894 DOI: 10.1002/adma.200903517] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Romana Schirhagl
- Department of Analytical Chemistry and Food Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | | | | | | |
Collapse
|
45
|
Yang K, Berg MM, Zhao C, Ye L. One-Pot Synthesis of Hydrophilic Molecularly Imprinted Nanoparticles. Macromolecules 2009. [DOI: 10.1021/ma901761z] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kaiguang Yang
- Pure and Applied Biochemistry, Chemical Center, Lund University, Box 124, 22100 Lund, Sweden
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Martin Mingarini Berg
- Pure and Applied Biochemistry, Chemical Center, Lund University, Box 124, 22100 Lund, Sweden
| | - Changsheng Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Ye
- Pure and Applied Biochemistry, Chemical Center, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
46
|
Wang Z, Zhou Y, Sun Y, Yao Q. Optically Active Helical Polyurethane−Urea with Single-Handed Conformation for Infrared Low Emissivity. Macromolecules 2009. [DOI: 10.1021/ma900763r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiqiang Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yanqing Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Qingzhao Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
47
|
Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. SENSORS 2008; 8:8291-8320. [PMID: 27873989 PMCID: PMC3791020 DOI: 10.3390/s8128291] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/21/2008] [Accepted: 12/09/2008] [Indexed: 11/29/2022]
Abstract
Biological receptors including enzymes, antibodies and active proteins have been widely used as the detection platform in a variety of chemo/biosensors and bioassays. However, the use of artificial host materials in chemical/biological detections has become increasingly attractive, because the synthetic recognition systems such as molecularly imprinted polymers (MIPs) usually have lower costs, higher physical/chemical stability, easier preparation and better engineering possibility than biological receptors. Molecular imprinting is one of the most efficient strategies to offer a synthetic route to artificial recognition systems by a template polymerization technique, and has attracted considerable efforts due to its importance in separation, chemo/biosensors, catalysis and biomedicine. Despite the fact that MIPs have molecular recognition ability similar to that of biological receptors, traditional bulky MIP materials usually exhibit a low binding capacity and slow binding kinetics to the target species. Moreover, the MIP materials lack the signal-output response to analyte binding events when used as recognition elements in chemo/biosensors or bioassays. Recently, various explorations have demonstrated that molecular imprinting nanotechniques may provide a potential solution to these difficulties. Many successful examples of the development of MIP-based sensors have also been reported during the past several decades. This review will begin with a brief introduction to the principle of molecular imprinting nanotechnology, and then mainly summarize various synthesis methodologies and recognition properties of MIP nanomaterials and their applications in MIP-based chemosensors. Finally, the future perspectives and efforts in MIP nanomaterials and MIP-based sensors are given.
Collapse
|
48
|
Niu J, Liu Z, Fu L, Shi F, Ma H, Ozaki Y, Zhang X. Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:11988-11994. [PMID: 18788771 DOI: 10.1021/la802165f] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this article we report the introduction of the cooperativity of various specific interactions combined with photo-cross-linking of the interlayers to yield binding sites that can realize better selectivity and imprinting efficiency of a surface molecularly imprinted LbL film (SMILbL), thus providing a new approach toward fabrication of nanostructured molecularly imprinted thin films. It involves preassembly of poly(acrylic acid) (PAA) conjugated of the theophylline residue template via a disulfide bridge, denoted as PAAtheo 15, in solution, and layer-by-layer (LbL) assembly of PAAtheo 15 and a positively charged photoreactive diazo resin (DAR) to form multilayer thin film with designed architecture. After photo-cross-linking of the film and template removal, binding sites specific to 7-(beta-hydroxyethyl)theophylline (Theo-ol) molecules are introduced within the film. Binding assay demonstrates that the SMILbL has a high selectivity of SMILbL to Theo-ol over caffeine. A control experiment demonstrates that the selectivity of SMILbL derives from nanostructured recognition sites among the layers. The imprinting amount per unit mass of the film can be 1 order of magnitude larger than that of the conventional bulk molecular imprinting systems. As this concept of construction SMILbL can be easily extended to the other molecules by the following similar protocol: its applications in building many other different molecular recognition systems are greatly anticipated.
Collapse
Affiliation(s)
- Jia Niu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
Seo M, Beck BJ, Paulusse JMJ, Hawker CJ, Kim SY. Polymeric Nanoparticles via Noncovalent Cross-Linking of Linear Chains. Macromolecules 2008. [DOI: 10.1021/ma8009678] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Myungeun Seo
- Department of Chemistry and School of Molecular Science (BK21), KAIST, Daejeon 305-701, Korea, and Materials Research Laboratory and Departments of Chemistry, Biochemistry and Materials, University of California, Santa Barbara, California 93106
| | - Benjamin J. Beck
- Department of Chemistry and School of Molecular Science (BK21), KAIST, Daejeon 305-701, Korea, and Materials Research Laboratory and Departments of Chemistry, Biochemistry and Materials, University of California, Santa Barbara, California 93106
| | - Jos M. J. Paulusse
- Department of Chemistry and School of Molecular Science (BK21), KAIST, Daejeon 305-701, Korea, and Materials Research Laboratory and Departments of Chemistry, Biochemistry and Materials, University of California, Santa Barbara, California 93106
| | - Craig J. Hawker
- Department of Chemistry and School of Molecular Science (BK21), KAIST, Daejeon 305-701, Korea, and Materials Research Laboratory and Departments of Chemistry, Biochemistry and Materials, University of California, Santa Barbara, California 93106
| | - Sang Youl Kim
- Department of Chemistry and School of Molecular Science (BK21), KAIST, Daejeon 305-701, Korea, and Materials Research Laboratory and Departments of Chemistry, Biochemistry and Materials, University of California, Santa Barbara, California 93106
| |
Collapse
|
50
|
Jin G, Li W, Yu S, Peng Y, Kong J. Novel superparamagnetic core-shell molecular imprinting microspheres towards high selective sensing. Analyst 2008; 133:1367-72. [DOI: 10.1039/b802120a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|