1
|
Sato T, Dunderdale GJ, Hozumi A. Threshold of Surface Initiator Concentration for Polymer Brush Growth by Surface-Initiated Atom Transfer Radical Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:480-488. [PMID: 38127729 DOI: 10.1021/acs.langmuir.3c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The surface modification of various materials by grafting functional molecules has attracted much attention from fundamental research to practical applications because of its ability to impart various physical and chemical properties to the surfaces. One promising approach is the use of polymer brushes synthesized by atom transfer radical polymerization (ATRP) from surface-tethered initiators (SIs). In this study, for the purpose of controlling the grafting amounts/densities of polymer brushes, we developed a facile method to precisely regulate SI concentrations of SI layers (SILs) by serial dilution based on a sol-gel method. By simply mixing organosilanes terminated with and without an initiator group ((p-chloromethyl) phenyltrimethoxysilane (CMPTMS) and phenyltrimethoxysilane (PTMS), respectively) with tetraethoxysilane (TEOS), SI concentrations of SILs could be arbitrarily tuned precisely by varying dilution factors of (CMPTMS + PTMS)/CMPTMS (DFs, 1-107). The resulting SILs prepared at different DFs were highly smooth and transparent. X-ray photoelectron spectroscopy (XPS) also confirmed that the SIs were homogeneously distributed at the topmost surface of the SILs and their concentrations were proven to be accurately and precisely controlled from high to extremely low, comparable to theoretical values. Subsequent SI-ATRP in air ("paint-on" SI-ATRP) of two different types of monomers (hydrophobic/nonionic (2,3,4,5,6-pentafluorostyrene) and hydrophilic/ionic (sodium 4-styrenesulfonate)) demonstrated that polymer brushes with different grafting amounts/densities were successfully grafted only from SILs with DFs of 1-104 (theoretical SI concentrations: 3.9 × 10-4 ∼ 3.5 units/nm2), while at DFs of 105 and above (theoretical SI concentrations: <3.9 × 10-5 units/nm2), no sign of polymer brush growth was confirmed by thickness, XPS, and water contact angle data. Therefore, we are the first to gather evidence that the approximate threshold of SI concentration required for "paint-on" SI-ATRP might be on the order of 10-4 ∼ 10-5 units/nm2.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
2
|
Ehtiati K, Z. Moghaddam S, Daugaard AE, Thormann E. Crucial Nonelectrostatic Effects on Polyelectrolyte Brush Behavior. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koosha Ehtiati
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Saeed Z. Moghaddam
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Anders E. Daugaard
- Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
3
|
Thiele S, Andersson J, Dahlin A, Hailes RLN. Tuning the Thermoresponsive Behavior of Surface-Attached PNIPAM Networks: Varying the Crosslinker Content in SI-ATRP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3391-3398. [PMID: 33719454 PMCID: PMC8041372 DOI: 10.1021/acs.langmuir.0c03545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The synthesis and thermoresponsive properties of surface-attached poly(N-isopropylacrylamide)-co-N,N'-methylene bisacrylamide (PNIPAM-co-MBAM) networks are investigated. The networks are formed via SI-ARGET-ATRP ("grafting-from") on thiol-based initiator-functionalized gold films. This method is reliable, well controlled, fast, and applicable to patterned surfaces (e.g., nanopores) for networks with dry thicknesses >20 nm. Surface-attached PNIPAM-co-MBAM gels are swollen below their volume phase transition temperature but above collapse without complete expulsion of water (retain ∼50 vol %). The swelling/collapse transition is studied using complementary SPR and QCMD techniques. The ratio between swollen and collapsed heights characterizes the thermoresponsive behavior and is shown to not depend on network height but to vary with MBAM content. The higher the proportion of the crosslinker, the lower the magnitude of the phase transition, until all responsiveness is lost at 5 mol % MBAM. The temperature range of the transition is broadened for more crosslinked PNIPAM-co-MBAM gels but remains centered around 32 °C. Upon reswelling, less crosslinked networks display sharp transitions, while for those containing ≥3 mol % MBAM, transitions remain broad. This tunable behavior persists for gels on nanostructured gold surfaces. Investigating PNIPAM-co-MBAM networks on gold plasmonic nanowell arrays is a starting point for expanding their scope as thermo-controlled nanoactuators.
Collapse
|
4
|
Daumann K, Frost S, Ulbricht M. Tunable and switchable nanoparticle separation with thermo-responsive track-etched membranes prepared by controlled surface-initiated polymerization of poly( N-isopropylacrylamide). RSC Adv 2020; 10:21028-21038. [PMID: 35518763 PMCID: PMC9054401 DOI: 10.1039/d0ra03418e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022] Open
Abstract
This work describes how the control of grafting density and grafted chain length of a thermo-responsive polymer in membrane pores can be utilized to tune the pore size and the switchability of size-based selectivity in the ultrafiltration range. Using a previously established methodology for controlled synthesis, surface-initiated atom transfer polymerization (ATRP) of poly(N-isopropylacrylamide) (PNIPAAm) to the pore walls of poly(ethylene terephthalate) track-etched membranes with experimentally determined pore diameters of 35 nm (PET30) and 110 nm (PET80) is performed. Characterization in this study is mainly done with filtration experiments, making use of the well-defined pore structure of the base membranes. It is demonstrated that both the gravimetrically determined degree of functionalization and the effective pore size determined from water permeability are a linear function of ATRP time. For the grafted PET30 membranes, it is shown that the rejection of lysozyme (diameter ∼ 4 nm) can be switched between 99% at 23 °C and 65% at 45 °C for the membrane with the highest degree of functionalization. For the grafted PET80 membranes, it is found that two different types of membranes can be obtained. Membranes with long grafted chains at low grafting density show very large changes of water permeability as a function of temperature (effective pore size switching ratio of up to 10) and, for example, rejection for 20 nm silica particles of 95% and 23% at 23 °C and 45 °C, respectively. Membranes with PNIPAAm at high grafting density show much lower switching ratios (as low as 1.4, for long enough grafted chains). Effective pore size and thermo-responsive change of pore size can therefore be tuned by the combination of both synthesis parameters, initiator density and ATRP time. The switchable thermo-responsive separation of two colloids with a tailored membrane is demonstrated for mixtures of bovine serum albumin (BSA; ∼7 nm) and silica nanoparticles (20 nm); at 23 °C silica is completely rejected and only BSA is in the permeate; at 40 °C both colloids permeate through the membrane. This work describes how the control of grafting density and grafted chain length of a thermo-responsive polymer in membrane pores can be utilized to tune the pore size and the switchability of size-based selectivity in the ultrafiltration range.![]()
Collapse
Affiliation(s)
- Kevin Daumann
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen Universitätsstr. 7 45141 Essen Germany .,Center for Nanointegration Duisburg-Essen (CENIDE) 47057 Duisburg Germany
| | - Sven Frost
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen Universitätsstr. 7 45141 Essen Germany .,Center for Nanointegration Duisburg-Essen (CENIDE) 47057 Duisburg Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen Universitätsstr. 7 45141 Essen Germany .,Center for Nanointegration Duisburg-Essen (CENIDE) 47057 Duisburg Germany
| |
Collapse
|
5
|
|
6
|
Heggestad JT, Fontes CM, Joh DY, Hucknall AM, Chilkoti A. In Pursuit of Zero 2.0: Recent Developments in Nonfouling Polymer Brushes for Immunoassays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903285. [PMID: 31782843 PMCID: PMC6986790 DOI: 10.1002/adma.201903285] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/17/2019] [Indexed: 05/11/2023]
Abstract
"Nonfouling" polymer brush surfaces can greatly improve the performance of in vitro diagnostic (IVD) assays due to the reduction of nonspecific protein adsorption and consequent improvement of signal-to-noise ratios. The development of synthetic polymer brush architectures that suppress adventitious protein adsorption is reviewed, and their integration into surface plasmon resonance and fluorescent sandwich immunoassay formats is discussed. Also, highlighted is a novel, self-contained immunoassay platform (the D4 assay) that transforms time-consuming laboratory-based assays into a user-friendly and point-of-care format with a sensitivity and specificity comparable or better than standard enzyme-linked immunosorbent assay (ELISA) directly from unprocessed samples. These advancements clearly demonstrate the utility of nonfouling polymer brushes as a substrate for ultrasensitive and robust diagnostic assays that may be suitable for clinical testing, in field and laboratory settings.
Collapse
Affiliation(s)
- Jacob T Heggestad
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cassio M Fontes
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel Y Joh
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Angus M Hucknall
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
7
|
Zeng Y, Xie L, Chi F, Liu D, Wu H, Pan N, Sun G. Controlled Growth of Ultra‐Thick Polymer Brushes via Surface‐Initiated Atom Transfer Radical Polymerization with Active Polymers as Initiators. Macromol Rapid Commun 2019; 40:e1900078. [DOI: 10.1002/marc.201900078] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/30/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Yiyang Zeng
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Lei Xie
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| | - Fangting Chi
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Dejian Liu
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Haoyan Wu
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Ning Pan
- Fundamental Science on Nuclear Wastes and Environmental Safety LaboratorySouthwest University of Science and Technology Mianyang 621010 China
| | - Guangai Sun
- Institute of Nuclear Physics and ChemistryChina Academy of Engineering Physics Mianyang 621900 China
| |
Collapse
|
8
|
Buhl K, Møller RK, Heide-Jørgensen S, Kolding AN, Kongsfelt M, Budzik MK, Hinge M, Pedersen SU, Daasbjerg K. Highly Efficient Rubber-to-Stainless Steel Bonding by Nanometer-Thin Cross-linked Polymer Brushes. ACS OMEGA 2018; 3:17511-17519. [PMID: 31458355 PMCID: PMC6643628 DOI: 10.1021/acsomega.8b02312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/23/2018] [Indexed: 06/10/2023]
Abstract
Stainless steel (SS) surfaces were grafted with poly(glycidyl methacrylate) (PGMA) brushes that were post-modified using allylamine, diallylamine, and propylamine as reagents. Likewise, poly[2-(diethylamino)ethyl methacrylate] brushes were synthesized. All samples were compression molded with uncured ethylene-propylene-diene M-class rubber and dicumyl peroxide and vulcanized for 12 min at 170 °C. The efficiency of the novel bonding solution was evaluated through peel experiments. Two parameters, the fracture toughness () and the cohesive-to-adhesive fracture ratio (A r), were calculated to evaluate the strength and the performance of the coupling, respectively. For the nanometer-thin PGMA films modified with allylamine, in particular, full cohesive fracture was obtained. The obtained values of (15.4 ± 1.1 N mm-1) and A r (1.00 ± 0.01) matched those obtained for a micrometer-thick commercial bonding agent. Cross-linking of polymer brushes by intermolecular reactions by the primary amines proved to have a significant impact on the type of fracture (cohesive/adhesive) and the performance of the adhesives.
Collapse
Affiliation(s)
- Kristian
Birk Buhl
- Interdisciplinary
Nanoscience Center (iNANO) and Carbon Dioxide Activation Center
(CADIAC), Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark
| | - Rasmus Krag Møller
- Department
of Engineering, Aarhus University, Hangøvej 2, Aarhus N DK-8200, Denmark
| | - Simon Heide-Jørgensen
- Department
of Engineering, Aarhus University, Inge Lehmanns Gade 10, Aarhus DK-8000, Denmark
| | | | | | - Michal Kazimierz Budzik
- Department
of Engineering, Aarhus University, Inge Lehmanns Gade 10, Aarhus DK-8000, Denmark
| | - Mogens Hinge
- Department
of Engineering, Aarhus University, Hangøvej 2, Aarhus N DK-8200, Denmark
| | - Steen Uttrup Pedersen
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| | - Kim Daasbjerg
- Interdisciplinary
Nanoscience Center (iNANO) and Carbon Dioxide Activation Center
(CADIAC), Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark
- Department
of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C DK-8000, Denmark
| |
Collapse
|
9
|
Wu S, Du W, Duan Y, Zhang D, Liu Y, Wu B, Zou X, Ouyang H, Gao C. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Acta Biomater 2018; 75:75-92. [PMID: 29857130 DOI: 10.1016/j.actbio.2018.05.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
The gradient localization of biological cues is of paramount importance to guide directional migration of cells. In this study, poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate)-block- poly(2-hydroxyethyl methacrylate) (P(HEMA-co-GMA)-b-PHEMA) brushes with a uniform underneath P(HEMA-co-GMA) layer and a gradient thickness of PHEMA blocks were prepared by using surface-initiated atom-transfer radical polymerization and a dynamically controlled polymerization process. The polymer chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups, and their structures and properties were characterized by X-ray photoelectron spectrometry (XPS), quartz crystal microbalance with dissipation (QCM-D) and air contact angle. Adhesion and migration processes of smooth muscle cells (SMCs) were then studied. Compared with those on the sufficiently exposed RGD surface, the cell adhesion and mobility were well maintained when the RGD peptides were localized at 18.9 nm depth, whereas the adhesion, spreading and migration rate of SMCs were significantly impaired when the RGD peptides were localized at a depth of 38.4 nm. On the RGD depth gradient surface, the SMCs exhibited preferential orientation and enhanced directional migration toward the direction of reduced thickness of the second PHEMA brushes. Half of the cells were oriented within ± 30° to the x-axis direction, and 72% of the cells moved directionally at the optimal conditions. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion-related proteins were studied to corroborate the mechanisms, demonstrating that the cell mobility is regulated by the complex and synergetic intracellular signals resulted from the difference in surface properties. STATEMENT OF SIGNIFICANCE Cell migration is of paramount importance for the processes of tissue repair and regeneration. So far, the gradient localization of biological cues perpendicular to the substrate, which is the usual case for the biological signaling molecules to locate in ECM in vivo, has been scarcely studied, and has not been used to guide the directional migration of cells. In this study, we prepare a depth gradient of RGD peptides along the polymer chains, which is used to guide the directional migration of SMCs after a second hydrophilic bock is prepared in a gradient manner. For the first time the directional migration of SMCs is achieved under the guidance of a depth gradient of RGD ligands. The mechanisms of different cell migration abilities are further discussed based on the results of cell adhesion, cell adhesion force, cytoskeleton alignment and expression of relative proteins and genes. This work paves a new strategy by fabricating a gradient polymer brushes with immobilized bioactive molecules to dominate the directional cell migration, and elucidates the mechanisms underlining the biased migration along RGD depth localization gradients, shedding a light for the design of novel biomaterials to control and guide cell migration and invasion.
Collapse
Affiliation(s)
- Sai Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wang Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yixiao Liu
- Centre for Stem-cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Bingbing Wu
- Centre for Stem-cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Zou
- Centre for Stem-cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Ouyang
- Centre for Stem-cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Xue YH, Quan W, Liu XL, Han C, Li H, Liu H. Dependence of Grafted Polymer Property on the Initiator Site Distribution in Surface-Initiated Polymerization: A Computer Simulation Study. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yao-Hong Xue
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Wei Quan
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Xiao-Li Liu
- Ophthalmic Center of the Second Hospital, Jilin University, Ziqiang Street 218, Changchun 130000, China
| | - Cheng Han
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Hua Li
- School of Computer
Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Hong Liu
- State Key Laboratory
of Supramolecular Structure and Materials, Institute of Theoretical
Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
11
|
Zuo B, Zhang S, Niu C, Zhou H, Sun S, Wang X. Grafting density dominant glass transition of dry polystyrene brushes. SOFT MATTER 2017; 13:2426-2436. [PMID: 28150841 DOI: 10.1039/c6sm02790c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The effects of the grafting densities (σp), molecular weights (Mn) and thicknesses of dry polystyrene (PS) brushes on their glass transition temperature (T) were investigated by ellipsometry. The results show that T strongly depends on the grafting density of the PS brushes. The T of the PS brushes with σp > 0.30 increases with decreasing Mn (or brush thickness) and is mainly dominated by entropic effects, in which the grafted chains are highly extended along the film thickness direction resulting in a sharp reduction in configurational entropy. The T of PS brushes with σp < 0.30 decreases with decreasing Mn (or brush thickness) which is mainly dominated by surface effects. For intermediate-density brushes (σp = 0.30), T becomes independent of Mn or brush thickness. The reason for this grafting density dependence of T is attributed to the transition of the PS brush conformation from mushroom-to-brush.
Collapse
Affiliation(s)
- Biao Zuo
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shasha Zhang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Chen Niu
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Hao Zhou
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shuzheng Sun
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Xinping Wang
- Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Al-Jaf O, Alswieleh A, Armes SP, Leggett GJ. Nanotribological properties of nanostructured poly(cysteine methacrylate) brushes. SOFT MATTER 2017; 13:2075-2084. [PMID: 28217790 DOI: 10.1039/c7sm00013h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The nanomechanical properties of zwitterionic poly(cysteine methacrylate) (PCysMA) brushes grown from planar surfaces by atom transfer radical polymerisation have been characterised by friction force microscopy (FFM). FFM provides quantitative insights into polymer structure-property relationships and in particular illuminates the dependence of brush swelling on chain packing in nanostructured materials. In ethanol, which is a poor solvent for PCysMA, a linear friction-load relationship is observed, indicating that energy dissipation occurs primarily through ploughing. In contrast, in a good solvent for PCysMA such as water, a non-linear friction-load relationship is observed that can be fitted by Derjaguin-Muller-Toporov (DMT) mechanics, suggesting that the relatively small modulus of the swollen polymer leads to a large contact area and consequently a significant shear contribution to energy dissipation. The brush grafting density was varied by using UV photolysis of C-Br bonds at 244 nm to dehalogenate the surface in a controlled fashion. The surface shear strength increases initially as the brush grafting density is reduced, but then decreases for UV doses greater than 0.5 J cm-2, reaching a limiting value when the brush thickness is ca. 50% that of a brush monolayer. Below this critical grafting density, a collapsed brush layer is obtained. For nm-scale gradient brush structures formed via interferometric lithography, the mean width increases as the period is increased, and the lateral mobility of brushes in these regions is reduced, leading to an increase in brush height as the grafted chains become progressively more extended. For a width of 260 nm, the mean brush height in water and ethanol is close to the thickness of a dense unpatterned brush monolayer synthesised under identical conditions. Both the surface shear stress measured for PCysMA brushes under water and the coefficient of friction measured in ethanol are closely correlated to the feature height, and hence to the chain conformation.
Collapse
Affiliation(s)
- Omed Al-Jaf
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | | | - Steven P Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
13
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials 2016; 106:24-45. [DOI: 10.1016/j.biomaterials.2016.08.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
|
15
|
Schwellenbach J, Kosiol P, Sölter B, Taft F, Villain L, Strube J. Controlling the polymer-nanolayer architecture on anion-exchange membrane adsorbers via surface-initiated atom transfer radical polymerization. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Desseaux S, Hinestrosa JP, Schüwer N, Lokitz BS, Ankner JF, Kilbey SM, Voitchovsky K, Klok HA. Swelling Behavior and Nanomechanical Properties of (Peptide-Modified) Poly(2-hydroxyethyl methacrylate) and Poly(poly(ethylene glycol) methacrylate) Brushes. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00881] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Solenne Desseaux
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Juan Pablo Hinestrosa
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Nicolas Schüwer
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | | | | | - S. Michael Kilbey
- Departments of Chemistry and Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Kislon Voitchovsky
- Department
of Physics, Durham University, South Road, Durham DH1 3LE, U.K
| | - Harm-Anton Klok
- Institut
des Matériaux et Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Styan KE, Easton CD, Weaver LG, Meagher L. One-Reactant Photografting of ATRP Initiators for Surface-Initiated Polymerization. Macromol Rapid Commun 2016; 37:1079-86. [PMID: 27145108 DOI: 10.1002/marc.201600059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/14/2016] [Indexed: 01/26/2023]
Abstract
Self-initiated photografting polymerization is used to couple the polymerizable initiator monomer 2-(2-chloropropanoyloxy)ethyl acrylate to a range of polymeric substrates. The technique requires only UV light to couple the initiator to surfaces. The initiator surface density can be varied by inclusion of a diluent monomer or via selection of initiator and irradiation parameters. The functionality of the initiator surface is demonstrated by subsequent surface-initiated atom transfer radical polymerization. Surfaces are characterized by x-ray photoelectron spectroscopy (XPS), ellipsometry, and atomic force microscopy (AFM), and UV-induced changes to the initiator are assessed by (1) H NMR and gel permeation chromatography (GPC). This is the first time this one-reactant one-step technique has been demonstrated for creating an initiator surface of variable density.
Collapse
Affiliation(s)
- Katie E Styan
- CSIRO Manufacturing, Bayview Ave, Clayton, VIC, 3168, Australia.,Cooperative Research Centre for Polymers, Notting Hill, VIC, 3168, Australia
| | | | - Lucy G Weaver
- CSIRO Food and Nutrition, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Laurence Meagher
- Monash Institute of Medical Engineering and the Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
18
|
Preparation and characterization of high capacity, strong cation-exchange fiber based adsorbents. J Chromatogr A 2016; 1447:92-106. [DOI: 10.1016/j.chroma.2016.04.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
|
19
|
Lilge I, Schönherr H. Control of Cell Attachment and Spreading on Poly(acrylamide) Brushes with Varied Grafting Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:838-847. [PMID: 26771447 DOI: 10.1021/acs.langmuir.5b04168] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To achieve spatial control of fibroblast cell attachment and spreading on a biocompatible polymer coating, the effect of poly(acrylamide) (PAAm) brushes with varied grafting density was investigated. The synthesis of the brushes was performed by surface-initiated atom transfer radical polymerization (SI-ATRP). Gold substrates were modified with binary self-assembled monolayers (SAMs) of an initiator and 16-mercaptohexadecanoic acid (MHDA) as an "inert" thiol to initiate the ATRP of AAm. By using different mixtures for the binary SAMs, a series of polymer brushes with varied grafting densities were prepared. The fractional coverage of surface bound initiator was determined by grazing incidence Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and contact angle measurements. A linear relationship between the Br/S ratio determined by XPS and ToF-SIMS versus the fraction of initiator on the surface determined by water contact angle measurements was observed. The varied initiation concentration on the gold substrates yielded PAAm brushes with different thicknesses, indicating a transition from mushroom to brush regimes with increasing grafting density. Thereby we achieved exquisite control of the degree of cell adhesion. Cell attachment experiments with NIH 3T3 fibroblast cells revealed cell spreading on PAAm brushes with low grafting densities (initiator fractional coverage <0.2) as well as a complete passivation by polymer brushes with higher grafting densities.
Collapse
Affiliation(s)
- Inga Lilge
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| | - Holger Schönherr
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering (Cμ), University of Siegen , Adolf-Reichwein-Strasse 2, 57076 Siegen, Germany
| |
Collapse
|
20
|
Dong J, Bruening ML. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:81-100. [PMID: 26001953 DOI: 10.1146/annurev-anchem-071114-040255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.
Collapse
Affiliation(s)
- Jinlan Dong
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824;
| | | |
Collapse
|
21
|
Murugan P, Krishnamurthy M, Jaisankar SN, Samanta D, Mandal AB. Controlled decoration of the surface with macromolecules: polymerization on a self-assembled monolayer (SAM). Chem Soc Rev 2015; 44:3212-43. [PMID: 25839067 DOI: 10.1039/c4cs00378k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Polymer functionalized surfaces are important components of various sensors, solar cells and molecular electronic devices. In this context, the use of self-assembled monolayer (SAM) formation and subsequent reactions on the surface have attracted a lot of interest due to its stability, reliability and excellent control over orientation of functional groups. The chemical reactions to be employed on a SAM must ensure an effective functional group conversion while the reaction conditions must be mild enough to retain the structural integrity. This synthetic constraint has no universal solution; specific strategies such as "graft from", "graft to", "graft through" or "direct" immobilization approaches are employed depending on the nature of the substrate, polymer and its area of applications. We have reviewed current developments in the methodology of immobilization of a polymer in the first part of the article. Special emphasis has been given to the merits and demerits of certain methods. Another issue concerns the utility - demonstrated or perceived - of conjugated or non-conjugated macromolecules anchored on a functionally decorated SAM in the areas of material science and biotechnology. In the last part of the review article, we looked at the collective research efforts towards SAM-based polymer devices and identified major pointers of progress (236 references).
Collapse
Affiliation(s)
- P Murugan
- Polymer Division, Council of Scientific and Industrial Research (CSIR)-CLRI, Adyar, Chennai-600020, India.
| | | | | | | | | |
Collapse
|
22
|
Fibroblast adhesion on ECM-derived peptide modified poly(2-hydroxyethyl methacrylate) brushes: ligand co-presentation and 3D-localization. Biomaterials 2015; 44:24-35. [PMID: 25617123 DOI: 10.1016/j.biomaterials.2014.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 11/23/2022]
Abstract
Polymer brushes prepared via surface-initiated polymerization of 2-hydroxyethyl methacrylate are powerful platforms for the fabrication of model biointerfaces to study cell-substrate interactions. In this manuscript, the versatility of surface-initiated polymerization and the poly(2-hydroxyethyl methacrylate) (PHEMA) polymer brush platform are used to address two fundamental questions, viz. the effects of ligand co-presentation and of the 3D localization of biochemical cues on cell behavior. Using a series of PHEMA brushes that present RGD and PHSRN ligands in various relative surface concentrations, the present study unequivocally demonstrates that: (i) co-presentation of PHSRN cues on an RGD functionalized substrate enhances cell adhesion and (ii) this synergetic effect is highest when the two ligands are presented at equal surface concentrations. In the second part of this study, adhesion of 3T3 fibroblasts on a series of PHEMA brushes that present the RGD ligand at a distance of 12, 23 or 42 nm away from the cell substrate interface is investigated. While cells were found to adhere to surfaces that presented the cell adhesive peptides at distances up to 23 nm from the interface, polymer brushes that contained the RGD ligands 42 nm away from the interface did not support cell adhesion.
Collapse
|
23
|
Mastan E, Xi L, Zhu S. What Limits the Chain Growth from Flat Surfaces in Surface-Initiated ATRP: Propagation, Termination or Both? MACROMOL THEOR SIMUL 2015. [DOI: 10.1002/mats.201400085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Erlita Mastan
- Department of Chemical Engineering; McMaster University Hamilton; Ontario L8S 4L7 Canada
| | | | - Shiping Zhu
- Department of Chemical Engineering; McMaster University Hamilton; Ontario L8S 4L7 Canada
| |
Collapse
|
24
|
Wang L, Chen X, Cao X, Xu J, Zuo B, Zhang L, Wang X, Yang J, Yao Y. Fabrication of polymer brush surfaces with highly-ordered perfluoroalkyl side groups at the brush end and their antibiofouling properties. J Mater Chem B 2015; 3:4388-4400. [DOI: 10.1039/c5tb00210a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The protein-resistant performance was enhanced greatly by constructing a polymer brush surface with perfectly close-packed perfluoroalkyl groups.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xiang Chen
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xinyu Cao
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Jianquan Xu
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Biao Zuo
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Li Zhang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xinping Wang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Juping Yang
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yanqing Yao
- Department of Chemistry
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
25
|
Khabibullin A, Mastan E, Matyjaszewski K, Zhu S. Surface-Initiated Atom Transfer Radical Polymerization. CONTROLLED RADICAL POLYMERIZATION AT AND FROM SOLID SURFACES 2015. [DOI: 10.1007/12_2015_311] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Shimizu K, Malmos K, Holm AH, Pedersen SU, Daasbjerg K, Hinge M. Improved adhesion between PMMA and stainless steel modified with PMMA brushes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21308-21315. [PMID: 25348044 DOI: 10.1021/am5062823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this work, various lengths and densities of poly(methyl methacrylate) (PMMA) brushes were synthesized on stainless steel (SS) surfaces via surface initiated atom transfer radical polymerization. Subsequently, the joints between the bulk PMMA and the PMMA brushed stainless steel were obtained by injection molding, and for these the degree of adhesion was assessed by tensile testing. Several conditions are required to facilitate the mixing between the brushes and the bulk polymer and to reduce the residual stress at the interface: preheating of the SS samples before the injection molding; a long packing time; and a mold temperature above the glass transition temperature (Tg) of PMMA during the injection molding. This treatment leads to a cohesive failure in the bulk PMMA. It was observed that the stress concentrated at the rim, due to contraction of bulk PMMA during cooling, results in a weak adhesion at the rim of the joint. A combination of high density and long brush length of PMMA film provides better adhesion. The large number of PMMA brush chains apparently promotes good penetration into the bulk PMMA chains and ultimately results in high adhesion strength.
Collapse
Affiliation(s)
- Kyoko Shimizu
- Department of Chemistry, ‡Interdisciplinary Nanoscience Center (iNANO), Department of Physics and Astronomy, and §Department of Engineering, Aarhus University , Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
27
|
Coad BR, Styan KE, Meagher L. One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7782-7789. [PMID: 24783968 DOI: 10.1021/am501052d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A method is described that allows potentially any surface to be functionalized covalently with atom transfer radical polymerization (ATRP) initiators derived from ethyl-2-bromoisobutyrl bromide in a single step. In addition, the initiator surface density was variable and tunable such that the thickness of polymer chain grafted from the surface varied greatly on the surfaces providing examples, across the surface of a substrate, of increased chain stretching due to the entropic nature of crowded polymer chains leading toward polymer brushes. An initiator gradient of increasing surface density was deposited by plasma copolymerization of an ATRP initiator (ethyl 2-bromoisobutyrate) and a non-ATRP reactive diluent molecule (ethanol). The deposited plasma polymer retained its chemical ability to surface-initiate polymerization reactions as exemplified by N,N'-dimethyl acrylamide and poly(ethylene glycol) methyl ether methacrylate polymerizations, illustrating linear and bottle-brush-like chains, respectively. A large variation in graft thickness was observed from the low to high chain-density side suggesting that chains were forced to stretch away from the surface interface--a consequence of entropic effects resulting from increased surface crowding. The tert-butyl bromide group of ethyl 2-bromoisobutyrate is a commonly used initiator in ATRP, so a method for covalent linkage to any substrate in a single step desirably simplifies the multistep surface activation procedures currently used.
Collapse
Affiliation(s)
- Bryan R Coad
- Mawson Institute, University of South Australia , Mawson Lakes SA 5095, Australia
| | | | | |
Collapse
|
28
|
Frost S, Ulbricht M. Thermoresponsive ultrafiltration membranes for the switchable permeation and fractionation of nanoparticles. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.07.036] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Yin D, Ulbricht M. Antibody-Imprinted Membrane Adsorber via Two-Step Surface Grafting. Biomacromolecules 2013; 14:4489-96. [DOI: 10.1021/bm401444y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Dongxu Yin
- Lehrstuhl für Technische
Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische
Chemie II, Universität Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
30
|
Yuan W, Zhao H, Hu H, Wang S, Baker GL. Synthesis and characterization of the hole-conducting silica/polymer nanocomposites and application in solid-state dye-sensitized solar cell. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4155-4161. [PMID: 23607405 DOI: 10.1021/am4001858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hole-conducting silica/polymer nanocomposites exhibit interesting physical and chemical properties with important applications in the field of energy storage and hybrid solar cells. Although the conventional strategy of grafting hole-conducting polymer onto the surface of silica nanoparticles is to use in situ oxidative polymerization, a promising alternative of using surface-initiated controlled living radical polymerization has arisen to anchor the polymer on the silica. The resulting silica/polymer nanocomposites from the latter method are more chemically and thermally stable because of the strong covalent bonding compared to the electrostatic interaction from in situ polymerization. The use of these nanocomposites mixed with spiro-MeOTAD (2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene) as a new hole conductor in the application of solid-state dye-sensitized solar cell (ss-DSSC) is reported here. The power conversion efficiency of this ss-DSSC is higher than the full spiro-MeOTAD ss-DSSC. Notably, the short circuit current improves by 26%. It is explained by large size silica/polymer nanocomposites forming an additional light scattering layer on the top of photoanode. This is the first time a conductive light scattering layer is introduced into ss-DSSC to enhance cell performance.
Collapse
Affiliation(s)
- Wen Yuan
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.
| | | | | | | | | |
Collapse
|
31
|
Yin D, Ulbricht M. Protein-selective adsorbers by molecular imprinting via a novel two-step surface grafting method. J Mater Chem B 2013; 1:3209-3219. [DOI: 10.1039/c3tb20333f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Xiang P, Petrie K, Kontopoulou M, Ye Z, Subramanian R. Tuning structural parameters of polyethylene brushes on silicananoparticles in surface-initiated ethylene “living” polymerization and effects on silica dispersion in a polyolefin matrix. Polym Chem 2013. [DOI: 10.1039/c2py20722b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Chernyy S, Iruthayaraj J, Ceccato M, Hinge M, Pedersen SU, Daasbjerg K. Elucidation of the mechanism of surface-initiated atom transfer radical polymerization from a diazonium-based initiator layer. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.26253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Coad BR, Lu Y, Glattauer V, Meagher L. Substrate-independent method for growing and modulating the density of polymer brushes from surfaces by ATRP. ACS APPLIED MATERIALS & INTERFACES 2012; 4:2811-2823. [PMID: 22512463 DOI: 10.1021/am300463q] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We describe a method for grafting PEG-based polymer chains of variable surface density using a substrate independent approach, allowing grafting from virtually any material substrate. The approach relies upon initial coupling of a macroinitiator to plasma polymer treated surfaces. The macroinitiator is a novel random terpolymer containing ATRP initiator residues, strongly negatively charged groups, and carboxylic acid moieties that facilitate covalent surface anchoring. Surface-initiated ATRP (SI-ATRP) using polyethylene glycol methyl ether methacrylate (PEGMA) at different concentrations led to grafted surfaces of controlled thickness in either the "brush" or "mushroom" morphology, which was controlled by the abundance of initiator residues in the macroinitiator. Grafted polymer layer structure was investigated via direct interaction force measurements using colloid probe atomic force microscopy (AFM). Equilibrium, hydrated graft layer thicknesses inferred from the highly repulsive AFM force data suggest that the polymer brush graft layer contained polymer chains which were fully stretched. Since the degree of stretching resulted in layer thicknesses approaching the polymer contour length, the polymer brushes studied must be very close to maximum graft density. Grafted layers where the polymer molecules were in the mushroom regime resulted in much thinner layers but the chains had greater chain entropic freedom as indicated by strongly attractive bridging interactions between tethered chains and the silica colloid probe. Use of this experimental methodology would be suitable for preparing grafted polymer layers of a preferred density free from substrate-specific linking chemistries.
Collapse
Affiliation(s)
- Bryan R Coad
- CSIRO Materials Science and Engineering, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
35
|
Lau KA, Ren C, Park SH, Szleifer I, Messersmith PB. An experimental-theoretical analysis of protein adsorption on peptidomimetic polymer brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2288-98. [PMID: 22107438 PMCID: PMC3269508 DOI: 10.1021/la203905g] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Surface-grafted water-soluble polymer brushes are being intensely investigated for preventing protein adsorption to improve biomedical device function, prevent marine fouling, and enable applications in biosensing and tissue engineering. In this contribution, we present an experimental-theoretical analysis of a peptidomimetic polymer brush system with regard to the critical brush density required for preventing protein adsorption at varying chain lengths. A mussel adhesive-inspired DOPA-Lys (DOPA = 3,4-dihydroxy-phenylalanine; Lys = lysine) pentapeptide surface grafting motif enabled aqueous deposition of our peptidomimetic polypeptoid brushes over a wide range of chain densities. Critical densities of 0.88 nm(-2) for a relatively short polypeptoid 10-mer to 0.42 nm(-2) for a 50-mer were identified from measurements of protein adsorption. The experiments were also compared with the protein adsorption isotherms predicted by a molecular theory. Excellent agreements in terms of both the polymer brush structure and the critical chain density were obtained. Furthermore, atomic force microscopy (AFM) imaging is shown to be useful in verifying the critical brush density for preventing protein adsorption. The present coanalysis of experimental and theoretical results demonstrates the significance of characterizing the critical brush density in evaluating the performance of an antifouling polymer brush system. The high fidelity of the agreement between the experiments and molecular theory also indicate that the theoretical approach presented can aid in the practical design of antifouling polymer brush systems.
Collapse
Affiliation(s)
- K.H. Aaron Lau
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Chunlai Ren
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Sung Hyun Park
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, USA
| | - Phillip B. Messersmith
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, USA
- Institute for Bionanotechnology in Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
36
|
Zhou D, Gao X, Wang WJ, Zhu S. Termination of Surface Radicals and Kinetic Modeling of ATRP Grafting from Flat Surfaces by Addition of Deactivator. Macromolecules 2012. [DOI: 10.1021/ma202640x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dapeng Zhou
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S
4L7
- Department of Biochemistry
and
Chemical Engineering, Jiaxing University, Jiaxing, P.R. China 314001
| | - Xiang Gao
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S
4L7
- Department of Chemical and Biological
Engineering, Zhejiang University, Hangzhou,
P.R. China 310027
| | - Wen-jun Wang
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S
4L7
- Department of Chemical and Biological
Engineering, Zhejiang University, Hangzhou,
P.R. China 310027
| | - Shiping Zhu
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S
4L7
| |
Collapse
|
37
|
Sweet MJ, Chessher A, Singleton I. Review: metal-based nanoparticles; size, function, and areas for advancement in applied microbiology. ADVANCES IN APPLIED MICROBIOLOGY 2012; 80:113-42. [PMID: 22794146 DOI: 10.1016/b978-0-12-394381-1.00005-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nanoparticles (NPs) are attracting increased attention in commerce and applied microbiology due to their antimicrobial activity, high electrical conductivity, and optical properties. For example, silver NPs have broad spectrum antimicrobial properties against a wide range of bacteria and fungi, making them ideal for minimizing biofouling. By controlling the size, shape, surface, and agglomeration state of the NPs, specific ion release profiles can be developed for any given application. Currently, NPs are formed in a wide variety of different shapes and sizes including spheres, plates, and wires. This review looks at both commercially and naturally produced NPs with a focus on silver NPs and addresses how these are formed. Furthermore, potential areas for improving these techniques will be highlighted, focusing on advancing shape and structure formation using modern applications. Finally, the review evaluates the feasibility of bioengineering microorganisms to synthesize particles of defined shape and size, by examining genes associated with NP production.
Collapse
|
38
|
Worthley CH, Constantopoulos KT, Ginic-Markovic M, Pillar RJ, Matisons JG, Clarke S. Surface modification of commercial cellulose acetate membranes using surface-initiated polymerization of 2-hydroxyethyl methacrylate to improve membrane surface biofouling resistance. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.09.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
39
|
Saha S, Bruening ML, Baker GL. Facile synthesis of thick films of poly(methyl methacrylate), poly(styrene), and poly(vinyl pyridine) from Au surfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3042-8. [PMID: 21728374 PMCID: PMC3193157 DOI: 10.1021/am200560g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Atom transfer radical polymerization (ATRP) is commonly used to grow polymer brushes from Au surfaces, but the resulting film thicknesses are usually significantly less than with ATRP from SiO(2) substrates. On Au, growth of poly(methyl methacrylate) (PMMA) blocks from poly(tert-butyl acrylate) brushes occurs more rapidly than growth of PMMA from initiator monolayers, suggesting that the disparity between growth rates from Au and SiO(2) stems from the Au surface. Radical quenching by electron transfer from Au is probably not the termination mechanism because polymerization from thin, cross-linked initiators gives film thicknesses that are essentially the same as the thicknesses of films grown from SiO(2) under the same polymerization conditions. However, this result is consistent with termination through desorption of thiols from noncross-linked films, and reaction of these thiols with growing polymer chains. The enhanced stability of cross-linked initiators allows ATRP at temperatures up to ∼100 °C and enables the growth of thick films of PMMA (350 nm), polystyrene (120 nm) and poly(vinyl pyridine) (200 nm) from Au surfaces in 1 h. At temperatures >100 °C, the polymer brush layers delaminate as large area films.
Collapse
|
40
|
Stimuli–responsive track-etched membranes via surface-initiated controlled radical polymerization: Influence of grafting density and pore size. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.04.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Bhut BV, Weaver J, Carter AR, Wickramasinghe SR, Husson SM. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations. Biotechnol Bioeng 2011; 108:2645-53. [DOI: 10.1002/bit.23221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 04/19/2011] [Accepted: 05/12/2011] [Indexed: 11/10/2022]
|
42
|
Estillore NC, Advincula RC. Free-Standing Films of Semifluorinated Block Copolymer Brushes from Layer-by-Layer Polyelectrolyte Macroinitiators. MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Estillore NC, Advincula RC. Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5997-6008. [PMID: 21513321 DOI: 10.1021/la200089x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report a facile approach to preparing binary mixed polymer brushes and free-standing films by combining the layer-by-layer and surface-initiated polymerization (LbL-SIP) techniques. Specifically, the grafting of mixed polymer brushes of poly(n-isopropylacrylamide) and polystyrene (pNIPAM-pSt) onto LbL-macroinitiator-modified planar substrates is described. Atom transfer radical polymerization (ATRP) and free radical polymerization (FRP) techniques were employed for the syntheses of pNIPAM and pSt, respectively, yielding pNIPAM-pSt mixed polymer brushes. The composition of the two polymers was controlled by varying the number of macroinitiator layers deposited on the substrate (i.e., LbL layers = 4, 8, 12, 16, and 20); consequently, mixed brushes of different thicknesses and composition ratios were obtained. Moreover, the switching behavior of the LbL-mixed brush films as a function of solvent and temperature was demonstrated and evaluated by water contact angle and atomic force microscopy (AFM) experiments. It was found that both the solvent and temperature stimuli responses were a function of the mixed brush composition and thickness ratio where the dominant component played a larger role in the response behavior. Furthermore, the ability to obtain free-standing films was exploited. The LbL technique provided the macroinitiator density variation necessary for the preparation of stable free-standing mixed brush films. Specifically, the free-standing films exhibited the rigidity to withstand changes in the solvent and temperature environment and at the same time were flexible enough to respond accordingly to external stimuli.
Collapse
Affiliation(s)
- Nicel C Estillore
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | | |
Collapse
|
44
|
Himstedt HH, Yang Q, Dasi LP, Qian X, Wickramasinghe SR, Ulbricht M. Magnetically activated micromixers for separation membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5574-5581. [PMID: 21462955 DOI: 10.1021/la200223g] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Presented here is a radically novel approach to reduce concentration polarization and, potentially, also fouling by colloids present in aqueous feeds: magnetically responsive micromixing membranes. Hydrophilic polymer chains, poly(2-hydroxyethyl methacrylate) (PHEMA), were grafted via controlled surface-initiated atom transfer radical polymerization (SI-ATRP) on the surface of polyamide composite nanofiltration (NF) membranes and then end-capped with superparamagnetic iron oxide magnetite (Fe(3)O(4)) nanoparticles. The results of all functionalization steps, that is, bromide ATRP initiator immobilization, SI-ATRP, conversion of PHEMA end groups from bromide to amine, and carboxyl-functional Fe(3)O(4) nanoparticle immobilization via peptide coupling, have been confirmed by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FESEM). These nanoparticles experience a magnetic force as well as a torque under an oscillating external magnetic field. It has been shown, using particle image velocimetry (PIV), that the resulting movement of the polymer brushes at certain magnetic field frequencies induces mixing directly above the membrane surface. Furthermore, it was demonstrated that with such membranes the NF performance could significantly be improved (increase of flux and salt rejection) by an oscillating magnetic field, which can be explained by a reduced concentration polarization in the boundary layer. However, the proof-of-concept presented here for the active alteration of macroscopic flow via surface-anchored micromixers based on polymer-nanoparticle conjugates has much broader implications.
Collapse
Affiliation(s)
- Heath H Himstedt
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80521, United States
| | | | | | | | | | | |
Collapse
|
45
|
Rodriguez-Emmenegger C, Kylián O, Houska M, Brynda E, Artemenko A, Kousal J, Alles AB, Biederman H. Substrate-Independent Approach for the Generation of Functional Protein Resistant Surfaces. Biomacromolecules 2011; 12:1058-66. [DOI: 10.1021/bm101406m] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cesar Rodriguez-Emmenegger
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Czech Republic
- College of Engineering, Universidad de la Republica, Uruguay
| | - Ondřej Kylián
- Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
| | - Milan Houska
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Czech Republic
| | - Eduard Brynda
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Czech Republic
| | - Anna Artemenko
- Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
| | - Jaroslav Kousal
- Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
| | | | - Hynek Biederman
- Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
| |
Collapse
|
46
|
Sui X, Zapotoczny S, Benetti EM, Memesa M, Hempenius MA, Vancso GJ. Grafting mixed responsive brushes of poly(N-isopropylacrylamide) and poly(methacrylic acid) from gold by selective initiation. Polym Chem 2011. [DOI: 10.1039/c0py00393j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Santonicola MG, de Groot GW, Memesa M, Meszyńska A, Vancso GJ. Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17513-17519. [PMID: 20932041 DOI: 10.1021/la1029273] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Responsive polymeric brushes of poly(methacrylic acid) (PMAA) were grafted from silicon surfaces using controlled surface-initiated atom-transfer radical polymerization (SI-ATRP). The growth kinetics of PMAA was investigated with respect to the composition of the ATRP medium by grafting the polymer in mixtures of water and methanol with different ratios. The dissociation behavior of the polymer layers was characterized by FTIR titration after incubating the polymer-grafted substrates in PBS buffer solutions with different pH values. PMAA layers show a strong pH-dependent behavior with an effective pK(a) of the bulk polymer brush of 6.5 ± 0.2, which is independent of the polymer brush thickness and methanol content of the ATRP grafting medium. The pH-induced swelling and collapse of the grafted polymer layers were quantified in real time by in situ ellipsometry in liquid environment. Switching between polymer conformations at pH values of 4 and 8 is rapid and reversible, and it is characterized by swelling factors (maximum thickness/minimum thickness) that increase with decreasing the methanol content of the SI-ATRP medium.
Collapse
Affiliation(s)
- M Gabriella Santonicola
- Materials Science and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | |
Collapse
|
48
|
Suzuki H, Nurul HM, Seki T, Kawamoto T, Haga H, Kawabata K, Takeoka Y. Precise Synthesis and Physicochemical Properties of High-Density Polymer Brushes designed with Poly(N-isopropylacrylamide). Macromolecules 2010. [DOI: 10.1021/ma101439f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiromasa Suzuki
- Department of Molecular Design & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Huda Muhammad Nurul
- Department of Molecular Design & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular Design & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Taisuke Kawamoto
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Haga
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazushige Kawabata
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yukikazu Takeoka
- Department of Molecular Design & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
49
|
Estillore NC, Park JY, Advincula RC. Langmuir−Schaefer (LS) Macroinitiator Film Control on the Grafting of a Thermosensitive Polymer Brush via Surface Initiated-ATRP. Macromolecules 2010. [DOI: 10.1021/ma100726z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicel C. Estillore
- Department of Chemistry and Department of Chemical Engineering, University of Houston, Houston, Texas 77204-5003
| | - Jin Young Park
- Department of Chemistry and Department of Chemical Engineering, University of Houston, Houston, Texas 77204-5003
| | - Rigoberto C. Advincula
- Department of Chemistry and Department of Chemical Engineering, University of Houston, Houston, Texas 77204-5003
| |
Collapse
|
50
|
Sunday D, Curras-Medina S, Green DL. Impact of Initiator Spacer Length on Grafting Polystyrene from Silica Nanoparticles. Macromolecules 2010. [DOI: 10.1021/ma1004259] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Sunday
- Department of Chemical Engineering, University of Virginia, 102 Engineers Way, Charlottesville, Virginia 22904
| | - Sara Curras-Medina
- Department of Chemical Engineering, University of Virginia, 102 Engineers Way, Charlottesville, Virginia 22904
| | - David L. Green
- Department of Chemical Engineering, University of Virginia, 102 Engineers Way, Charlottesville, Virginia 22904
| |
Collapse
|