1
|
Rashid H, Lucas H, Busse K, Kressler J, Mäder K, Trutschel ML. Development of Poly(sorbitol adipate)- g-poly(ethylene glycol) Mono Methyl Ether-Based Hydrogel Matrices for Model Drug Release. Gels 2023; 10:17. [PMID: 38247740 PMCID: PMC10815636 DOI: 10.3390/gels10010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Hydrogels were prepared by Steglich esterification and by crosslinking pre-synthesized poly(sorbitol adipate)-graft-poly(ethylene glycol) mono methyl ether (PSA-g-mPEG) using different-chain-length-based disuccinyl PEG. PSA and PSA-g-mPEG were investigated for polymer degradation as a function of time at different temperatures. PSA-g-mPEG hydrogels were then evaluated for their most crucial properties of swelling that rendered them suitable for many pharmaceutical and biomedical applications. Hydrogels were also examined for their Sol-Gel content in order to investigate the degree of cross-linking. Physical structural parameters of the hydrogels were theoretically estimated using the modified Flory-Rehner theory to obtain approximate values of polymer volume fraction, the molecular weight between two crosslinks, and the mesh size of the hydrogels. X-ray diffraction was conducted to detect the presence or absence of crystalline regions in the hydrogels. PSA-g-mPEG hydrogels were then extensively examined for higher and lower molecular weight solute release through analysis by fluorescence spectroscopy. Finally, the cytotoxicity of the hydrogels was also investigated using a resazurin reduction assay. Experimental results show that PSA-g-mPEG provides an option as a biocompatible polymer to be used for pharmaceutical applications.
Collapse
Affiliation(s)
- Haroon Rashid
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Henrike Lucas
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Karsten Busse
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Yu L, Zeng G, Xu J, Han M, Wang Z, Li T, Long M, Wang L, Huang W, Wu Y. Development of Poly(Glycerol Sebacate) and Its Derivatives: A Review of the Progress over the past Two Decades. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Liu Yu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanjie Zeng
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Mingying Han
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ting Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Glycerol-based enzymatically synthesized renewable polyesters: Control of molecular weight, degree of branching and functional endgroups. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Lang K, Quichocho HB, Black SP, Bramson MTK, Linhardt RJ, Corr DT, Gross RA. Lipase-Catalyzed Poly(glycerol-1,8-octanediol-sebacate): Biomaterial Engineering by Combining Compositional and Crosslinking Variables. Biomacromolecules 2022; 23:2150-2159. [PMID: 35468284 DOI: 10.1021/acs.biomac.2c00198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined poly(glycerol-1,8-octanediol-sebacate) (PGOS) copolymers with low-level substitution of O (1,8-octanediol) for G (glycerol) units (G/O ratios 0.5:0.5, 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09) prepared in bulk by immobilized Candida antarctica Lipase B (N435) catalysis. The central question explored was the extent that exchanging less than half of poly(glycerol sebacate) (PGS) glycerol units with 1,8-octanediol can be used as a strategy to fine-tune biomaterial properties. Synthesized copolymers having G/O ratios of 0.66:0.33, 0.75:0.25, 0.8:0.2, and 0.91:0.09 have similar molecular weights, where Mw varied from 52,800 to 63,800 g/mol, Mn varied from 5100 to 6450 g/mol, and ĐM (molecular mass dispersity, Mw/Mn) values were also similar (8.4-11.4). All of the copolymers were branched, and dendritic glycerol units reached 11% for PGOS-0.91:0.09:1.0. Analysis of DSC second heating scans revealed that copolymers with higher 1,8-octanediol contents have relatively higher Tm and ΔHf values. Over the copolymer compositional range studied herein, Tm and ΔHf values varied from 5.3 to 21.1 °C and 8.0 to 23.1 J/g, respectively. Stress-strain curves of PGOS copolymers cured at 140 °C for 48 h exhibited either a unimodal, bimodal, or trimodal response to tensile loading. Varying G/O from 10:1 to 2:1 resulted in significant increases in the peak stress (0.26-4.01 MPa), preyield modulus (0.65-62.59 MPa), failure to strain (64-110%), and failure toughness (0.1-0.56 MPa). This demonstrates that altering the G/O ratio over a narrow compositional range provides biomaterials with widely different yet tunable mechanical properties. Further investigation of PGOS-0.75:0.25:1.0 films revealed that varying the cure conditions from 120 to 160 °C for periods of 24-72 h provides access to biomaterials with a failure strain range from 15 to 224% and Young's modulus from 1.17 to 10.85 MPa. Hence, using the dual variables of compositional variation and changes in cure conditions provides an exciting platform for PGS analogues to optimize material-tissue interactions. Increased contents of 1,8-octanediol slowed in vitro degradation. Slowed degradation of PGOS relative to PGS will be valuable for use in slower healing wounds.
Collapse
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ha'Ani-Belle Quichocho
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Sarah P Black
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Michael T K Bramson
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T Corr
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
5
|
Ning Z, Lang K, Xia K, Linhardt RJ, Gross RA. Lipase-Catalyzed Synthesis and Characterization of Poly(glycerol sebacate). Biomacromolecules 2021; 23:398-408. [PMID: 34936341 DOI: 10.1021/acs.biomac.1c01351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study demonstrated that immobilized Candida antarctica lipase B (N435) catalysis in bulk leads to higher molecular weight poly(glycerol sebacate), PGS, than self-catalyzed condensation polymerization. Since the glass-transition temperature, fragility, modulus, and strength for rubbery networks are inversely dependent on the concentration of chain ends, higher molecular weight PGS prepolymers will enable the preparation of cross-linked PGS matrices with unique mechanical properties. The evolution of molecular species during the prepolymerization step conducted at 120 °C for 24 h, prior to enzyme addition, revealed regular decreases in sebacic acid and glycerol-sebacate dimer with corresponding increases in oligomers with chain lengths from 3 to 7 units such that a homogeneous liquid substrate has resulted. At 67 h, for N435-catalyzed PGS synthesis, the carboxylic acid conversion reached 82% without formation of a gel fraction, and number-average molecular weight (Mn) and weight-average molecular weight (Mw) values reached 6000 and 59 400 g/mol, respectively. In contrast, self-catalyzed PGS condensation polymerizations required termination at 55 h to avoid gelation, reached 72% conversion, and Mn and Mw values of 2600 and 13 800 g/mol, respectively. We also report the extent that solvent fractionation can enrich PGS in higher molecular weight chains. The use of methanol as a nonsolvent increased Mn and Mw by 131.7 and 18.3%, respectively, and narrower dispersity (Đ) decreased by 47.7% relative to the nonfractionated product.
Collapse
Affiliation(s)
- Zhuoyuan Ning
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Ke Xia
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States.,Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
6
|
E-Beam Effects on Poly(Xylitol Dicarboxylate-co-diol Dicarboxylate) Elastomers Tailored by Adjusting Monomer Chain Length. MATERIALS 2021; 14:ma14071765. [PMID: 33918460 PMCID: PMC8038286 DOI: 10.3390/ma14071765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Poly(xylitol dicarboxylate-co-diol dicarboxylate) elastomers can by synthesized using wide variety of monomers with different chain lengths. Obtained materials are all biodegradable, thermally stable elastomers, but their specific properties like glass transition temperature, degradation susceptibility, and mechanical moduli can be tailored for a specific application. Therefore, we synthesized eight elastomers using a combination of two dicarboxylic acids, namely suberic and sebacic acid, and four different diols, namely ethanediol, 1,3-propanediol, 1,4-buanediol, and 1,5-pentanediol. Materials were further modified by e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested using tensile tests, gel fraction determination, 1H NMR, and 13C NMR. Thermal properties were tested by Differential Scanning Calorimetry (DSC), Dynamic Thermomechanical Analysis (DMTA) and Thermogravimetric Analysis (TGA). Degradation susceptibility to both enzymatic and hydrolytic degradation was also determined.
Collapse
|
7
|
Piątek-Hnat M, Bomba K, Kowalski-Stankiewicz JP, Pęksiński J, Kozłowska A, Sośnicki JG, Idzik TJ, Schmidt B, Kowalczyk K, Walo M, Kochmańska A. Physical Effects of Radiation Modification of Biodegradable Xylitol-Based Materials Synthesized Using a Combination of Different Monomers. Polymers (Basel) 2021; 13:polym13071041. [PMID: 33810454 PMCID: PMC8037435 DOI: 10.3390/polym13071041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/19/2023] Open
Abstract
There is a possibility of obtaining xylitol-based elastomers sharing common characteristics of biodegradability, thermal stability, and elastomeric behavior by using monomers with different chain-lengths. Therefore, we have synthesized eight elastomers using a combination of four different diols (ethanediol, 1.3-propanediol, 1.4-buanediol, and 1.5-pentanediol) and two different dicarboxylic acids (succinic acid and adipic acid). The obtained materials were further modified by performing e-beam treatment with a dose of 100 kGy. Materials both before and after radiation modification were tested by DSC, DMTA, TGA, tensile tests, gel fraction determination, hydrolytic and enzymatic degradation tests, 1H NMR and 13C NMR and FTIR.
Collapse
Affiliation(s)
- Marta Piątek-Hnat
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (K.B.); (A.K.)
- Correspondence:
| | - Kuba Bomba
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (K.B.); (A.K.)
| | - Janusz P. Kowalski-Stankiewicz
- Department of Computer Sciences in Medicine & Education Quality Evaluation, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Jakub Pęksiński
- Faculty of Electrical Engineering, West Pomeranian University of Technology, 71-313 Szczecin, Poland;
| | - Agnieszka Kozłowska
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (K.B.); (A.K.)
| | - Jacek G. Sośnicki
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (J.G.S.); (T.J.I.)
| | - Tomasz J. Idzik
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (J.G.S.); (T.J.I.)
| | - Beata Schmidt
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (B.S.); (K.K.)
| | - Krzysztof Kowalczyk
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, 71-065 Szczecin, Poland; (B.S.); (K.K.)
| | - Marta Walo
- Laboratory for Measurements of Technological Doses, Institute of Nuclear Chemistry and Technology, 03-195 Warszawa, Poland;
| | - Agnieszka Kochmańska
- Department of Materials Technology, West Pomeranian University of Technology, 70-310 Szczecin, Poland;
| |
Collapse
|
8
|
Rashid H, Golitsyn Y, Bilal MH, Mäder K, Reichert D, Kressler J. Polymer Networks Synthesized from Poly(Sorbitol Adipate) and Functionalized Poly(Ethylene Glycol). Gels 2021; 7:22. [PMID: 33672681 PMCID: PMC8006044 DOI: 10.3390/gels7010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Polymer networks were prepared by Steglich esterification using poly(sorbitol adipate) (PSA) and poly(sorbitol adipate)-graft-poly(ethylene glycol) mono methyl ether (PSA-g-mPEG12) copolymer. Utilizing multi-hydroxyl functionalities of PSA, poly(ethylene glycol) (PEG) was first grafted onto a PSA backbone. Then the cross-linking of PSA or PSA-g-mPEG12 was carried out with disuccinyl PEG of different molar masses (Suc-PEGn-Suc). Polymers were characterized through nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). The degree of swelling of networks was investigated through water (D2O) uptake studies, while for detailed examination of their structural dynamics, networks were studied using 13C magic angle spinning NMR (13C MAS NMR) spectroscopy, 1H double quantum NMR (1H DQ NMR) spectroscopy, and 1H pulsed field gradient NMR (1H PFG NMR) spectroscopy. These solid state NMR results revealed that the networks were composed of a two component structure, having different dipolar coupling constants. The diffusion of solvent molecules depended on the degree of swelling that was imparted to the network by the varying chain length of the PEG based cross-linking agent.
Collapse
Affiliation(s)
- Haroon Rashid
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (H.R.); (M.H.B.)
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Yury Golitsyn
- Department of Physics, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (Y.G.); (D.R.)
| | - Muhammad Humayun Bilal
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (H.R.); (M.H.B.)
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany;
| | - Detlef Reichert
- Department of Physics, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (Y.G.); (D.R.)
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany; (H.R.); (M.H.B.)
| |
Collapse
|
9
|
Slavko E, Taylor MS. Site-Selective, Organoboron-Catalyzed Polymerization of Pyranosides: Access to Sugar-Derived Polyesters with Tunable Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ekaterina Slavko
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark S. Taylor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
10
|
Lang K, Bhattacharya S, Ning Z, Sánchez-Leija RJ, Bramson MTK, Centore R, Corr DT, Linhardt RJ, Gross RA. Enzymatic Polymerization of Poly(glycerol-1,8-octanediol-sebacate): Versatile Poly(glycerol sebacate) Analogues that Form Monocomponent Biodegradable Fiber Scaffolds. Biomacromolecules 2020; 21:3197-3206. [DOI: 10.1021/acs.biomac.0c00641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kening Lang
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Somdatta Bhattacharya
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Zhuoyuan Ning
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Regina J. Sánchez-Leija
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Michael T. K. Bramson
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert Centore
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T. Corr
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
11
|
Branched PLGA derivatives with tailored drug delivery properties. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:63-75. [PMID: 31677370 DOI: 10.2478/acph-2020-0011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2019] [Indexed: 01/19/2023]
Abstract
Despite several shortcomings such as extreme hydrophobicity, low drug capacity, characteristic triphasic drug release pattern with a high burst effect, poly(lactic-co-glycolic acid derivatives are widely used in drug delivery. Most frequent attempts to improve their properties are blending with other polymers or synthesis of block copolymers. We introduce a new class of branched poly(lactic-co-glycolic acid) derivatives as promising biodegradable carriers for prolonged or targeted drug release systems, employed as thin adhesive films, solid dispersions, in situ forming implants or nanoparticles. A series of poly(lactic-co-glycolic acid) derivatives with lower molar mass and star or comb architecture were synthesized by a simple, catalyst free, direct melt polycondensation method not requiring purification of the obtained sterile product by precipitation. Branching monomers used were mannitol, pentaerythritol, dipentaerythritol, tripentaerythritol and polyacrylic acid. The products were characterized by molar mass averages, average branching ratio, rheological and thermal properties.
Collapse
|
12
|
Khatri V, Bhatia S, Deep S, Kohli E, Haag R, Senapati NN, Prasad AK. Exploring hydrophobic diastereomeric 2,6-anhydro-glycoheptitols for their enzymatic polymerization with PEG: towards delivery applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj02642e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two sugar PEG-based amphiphilic copolymers have been synthesized by Novozym®-435-catalyzed greener solvent free transesterification reaction of diastereomeric 2,6-anhydro-glucoheptitol and 2,6-anhydro-mannoheptitol with PEG-1000 diethyl ester.
Collapse
Affiliation(s)
- Vinod Khatri
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Delhi 110 007
- India
- Department of Chemistry, Pt. Neki Ram Sharma Government College
- Rohtak-124001
| | - Sumati Bhatia
- Institute for Chemistry and Biochemistry, Free University Berlin
- 14195 Berlin
- Germany
| | - Satyanarayan Deep
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Delhi 110 007
- India
- DRDO, DIPAS
- Timarpur
| | | | - Rainer Haag
- Institute for Chemistry and Biochemistry, Free University Berlin
- 14195 Berlin
- Germany
| | | | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi
- Delhi 110 007
- India
| |
Collapse
|
13
|
Abstract
Enzymatic polymerization is an environmentally benign process for the synthesis of biodegradable and biocompatible polymers. The regioselectivity of lipase B from Candida Antarctica (CAL-B) produces linear functional polyesters without protection-deprotection steps. In this work, two different methods for the enzymatic synthesis of functional polyesters based on renewable resources, as, e.g., glycerol, using CAL-B are outlined. Poly(glycerol adipate) was synthesized by enzymatic transesterification between glycerol and divinyl adipate or dimethyl adipate. Methods are also reported to graft poly(glycerol adipate) with different amounts of hydrophobic side chains (lauric, stearic, behenic, and oleic acids) and hydrophilic poly(ethylene glycol) side chains, respectively. The hydrophilicity or lipophilicity of grafted polyesters is well controlled by changing the degree of grafting of hydrophilic and hydrophobic side chains. The multiple grafted polyesters are characterized by NMR spectroscopy, differential scanning calorimetry, gel permeation chromatography, and X-ray diffraction. Furthermore, the self-assembly of the graft copolymers in water and their use as steric stabilizers for cubosomes are discussed. For this purpose mainly dynamic light scattering and small angle X-ray scattering have been employed.
Collapse
|
14
|
Debuissy T, Pollet E, Avérous L. Biotic and Abiotic Synthesis of Renewable Aliphatic Polyesters from Short Building Blocks Obtained from Biotechnology. CHEMSUSCHEM 2018; 11:3836-3870. [PMID: 30203918 DOI: 10.1002/cssc.201801700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Biobased polymers have seen their attractiveness increase in recent decades thanks to the significant development of biorefineries to allow access to a wide variety of biobased building blocks. Polyesters are one of the best examples of the development of biobased polymers because most of them now have their monomers produced from renewable resources and are biodegradable. Currently, these polyesters are mainly produced by using traditional chemical catalysts and harsh conditions, but recently greener pathways with nontoxic enzymes as biocatalysts and mild conditions have shown great potential. Bacterial polyesters, such as poly(hydroxyalkanoate)s (PHA), are the best example of the biotic production of high molar mass polymers. PHAs display a wide variety of macromolecular architectures, which allow a large range of applications. The present contribution aims to provide an overview of recent progress in studies on biobased polyesters, especially those made from short building blocks, synthesized through step-growth polymerization. In addition, some important technical aspects of their syntheses through biotic or abiotic pathways have been detailed.
Collapse
Affiliation(s)
- Thibaud Debuissy
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg Cedex 2, France
| |
Collapse
|
15
|
A review on enzymatic polymerization to produce polycondensation polymers: The case of aliphatic polyesters, polyamides and polyesteramides. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.10.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Baheti P, Gimello O, Bouilhac C, Lacroix-Desmazes P, Howdle SM. Sustainable synthesis and precise characterisation of bio-based star polycaprolactone synthesised with a metal catalyst and with lipase. Polym Chem 2018. [DOI: 10.1039/c8py01266k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Development of a sustainable route for the synthesis of star-shaped poly(ε-caprolactone) using renewable feedstocks in clean solvents (scCO2 and bulk) with the catalysts Sn(Oct)2 or the enzyme Novozym 435.
Collapse
Affiliation(s)
| | | | | | | | - Steven M. Howdle
- School of Chemistry
- University of Nottingham
- University Park
- Nottingham NG7 2RD
- UK
| |
Collapse
|
17
|
Bilal MH, Hussain H, Prehm M, Baumeister U, Meister A, Hause G, Busse K, Mäder K, Kressler J. Synthesis of poly(glycerol adipate)- g -oleate and its ternary phase diagram with glycerol monooleate and water. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.03.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
A facile chemoenzymatic synthesis of amphiphilic miktoarm star copolymers from a sugar core and their potential for anticancer drug delivery. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.04.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Bilal MH, Prehm M, Njau AE, Samiullah MH, Meister A, Kressler J. Enzymatic Synthesis and Characterization of Hydrophilic Sugar Based Polyesters and Their Modification with Stearic Acid. Polymers (Basel) 2016; 8:polym8030080. [PMID: 30979182 PMCID: PMC6432536 DOI: 10.3390/polym8030080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/04/2016] [Accepted: 03/09/2016] [Indexed: 11/18/2022] Open
Abstract
Biodegradable and hydrophilic functional polyesters were synthesized enzymatically using xylitol or d-sorbitol together with divinyl adipate and lipase B from Candida antartica (CAL-B). The resulting polyesters had pendant OH-groups from their sugar units which were esterified to different degrees with stearic acid chloride. The structure and the degrees of polymerization of the resulting graft copolymers based on poly(xylitol adipate) and poly(d-sorbitol adipate) were characterized by 1H NMR spectroscopy and SEC. DSC, WAXS and SAXS measurements indicated that a phase separation between polymer backbone and stearoyl side chains occurred in the graft copolymers, and, additionally, the side chains were able to crystallize which resulted in the formation of a lamellar morphology. Additionally, nanoparticles of the graft copolymers in an aqueous environment were studied by DLS and negative stain TEM.
Collapse
Affiliation(s)
- Muhammad Humayun Bilal
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Marko Prehm
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Andrew Efraim Njau
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Muhammad Haris Samiullah
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Annette Meister
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| |
Collapse
|
20
|
Ricapito NG, Ghobril C, Zhang H, Grinstaff MW, Putnam D. Synthetic Biomaterials from Metabolically Derived Synthons. Chem Rev 2016; 116:2664-704. [PMID: 26821863 PMCID: PMC5810137 DOI: 10.1021/acs.chemrev.5b00465] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The utility of metabolic synthons as the building blocks for new biomaterials is based on the early application and success of hydroxy acid based polyesters as degradable sutures and controlled drug delivery matrices. The sheer number of potential monomers derived from the metabolome (e.g., lactic acid, dihydroxyacetone, glycerol, fumarate) gives rise to almost limitless biomaterial structural possibilities, functionality, and performance characteristics, as well as opportunities for the synthesis of new polymers. This review describes recent advances in new chemistries, as well as the inventive use of traditional chemistries, toward the design and synthesis of new polymers. Specific polymeric biomaterials can be prepared for use in varied medical applications (e.g., drug delivery, tissue engineering, wound repair, etc.) through judicious selection of the monomer and backbone linkage.
Collapse
Affiliation(s)
- Nicole G. Ricapito
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Cynthia Ghobril
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Heng Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - David Putnam
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
21
|
Shoda SI, Uyama H, Kadokawa JI, Kimura S, Kobayashi S. Enzymes as Green Catalysts for Precision Macromolecular Synthesis. Chem Rev 2016; 116:2307-413. [PMID: 26791937 DOI: 10.1021/acs.chemrev.5b00472] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present article comprehensively reviews the macromolecular synthesis using enzymes as catalysts. Among the six main classes of enzymes, the three classes, oxidoreductases, transferases, and hydrolases, have been employed as catalysts for the in vitro macromolecular synthesis and modification reactions. Appropriate design of reaction including monomer and enzyme catalyst produces macromolecules with precisely controlled structure, similarly as in vivo enzymatic reactions. The reaction controls the product structure with respect to substrate selectivity, chemo-selectivity, regio-selectivity, stereoselectivity, and choro-selectivity. Oxidoreductases catalyze various oxidation polymerizations of aromatic compounds as well as vinyl polymerizations. Transferases are effective catalysts for producing polysaccharide having a variety of structure and polyesters. Hydrolases catalyzing the bond-cleaving of macromolecules in vivo, catalyze the reverse reaction for bond forming in vitro to give various polysaccharides and functionalized polyesters. The enzymatic polymerizations allowed the first in vitro synthesis of natural polysaccharides having complicated structures like cellulose, amylose, xylan, chitin, hyaluronan, and chondroitin. These polymerizations are "green" with several respects; nontoxicity of enzyme, high catalyst efficiency, selective reactions under mild conditions using green solvents and renewable starting materials, and producing minimal byproducts. Thus, the enzymatic polymerization is desirable for the environment and contributes to "green polymer chemistry" for maintaining sustainable society.
Collapse
Affiliation(s)
- Shin-ichiro Shoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University , Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University , Yamadaoka, Suita 565-0871, Japan
| | - Jun-ichi Kadokawa
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima 890-0065, Japan
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shiro Kobayashi
- Center for Fiber & Textile Science, Kyoto Institute of Technology , Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
22
|
Stebbins ND, Yu W, Uhrich KE. Linear, Mannitol-Based Poly(anhydride-esters) with High Ibuprofen Loading and Anti-Inflammatory Activity. Biomacromolecules 2015; 16:3632-9. [DOI: 10.1021/acs.biomac.5b01088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nicholas D. Stebbins
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Weiling Yu
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Kathryn E. Uhrich
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
- Department
of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
23
|
Galbis JA, García-Martín MDG, de Paz MV, Galbis E. Synthetic Polymers from Sugar-Based Monomers. Chem Rev 2015; 116:1600-36. [DOI: 10.1021/acs.chemrev.5b00242] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Juan A. Galbis
- Department of Organic and
Pharmaceutical Chemistry, University of Seville, 41071 Seville, Spain
| | | | - M. Violante de Paz
- Department of Organic and
Pharmaceutical Chemistry, University of Seville, 41071 Seville, Spain
| | - Elsa Galbis
- Department of Organic and
Pharmaceutical Chemistry, University of Seville, 41071 Seville, Spain
| |
Collapse
|
24
|
Lipases in polymer chemistry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 125:69-95. [PMID: 20859733 DOI: 10.1007/10_2010_90] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lipases are highly active in the polymerization of a range of monomers. Both ring-opening polymerization of cyclic monomers such as lactones and carbonates as well as polycondensation reactions have been investigated in great detail. Moreover, in combination with other (chemical) polymerization techniques, lipase-catalyzed polymerization has been employed to synthesize a variety of polymer materials. Major advantages of enzymatic catalysts are the often-observed excellent regio-, chemo- and enantioselectivity that allows for the direct preparation of functional materials. In particular, the application of techniques such as Dynamic Kinetic Resolution (DKR) in the lipase-catalyzed polymerization of racemic monomers is a new development in enzymatic polymerization. This paper reviews selected examples of the application of lipases in polymer chemistry covering the synthesis of linear polymers, chemoenzymatic polymerization and applications of enantioselective techniques for the synthesis and modification of polymers.
Collapse
|
25
|
de Regil R, Sandoval G. Biocatalysis for biobased chemicals. Biomolecules 2013; 3:812-47. [PMID: 24970192 PMCID: PMC4030974 DOI: 10.3390/biom3040812] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme's own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis.
Collapse
Affiliation(s)
- Rubén de Regil
- Unidad de Biotecnología Industrial, CIATEJ, A.C. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jal, C.P. 44270, Mexico.
| | - Georgina Sandoval
- Unidad de Biotecnología Industrial, CIATEJ, A.C. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jal, C.P. 44270, Mexico.
| |
Collapse
|
26
|
Naolou T, Weiss VM, Conrad D, Busse K, Mäder K, Kressler J. Fatty Acid Modified Poly(glycerol adipate) - Polymeric Analogues of Glycerides. ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1135.ch004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- T. Naolou
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - V. M. Weiss
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - D. Conrad
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - K. Busse
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - K. Mäder
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| | - J. Kressler
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany
| |
Collapse
|
27
|
|
28
|
|
29
|
Gross RA, Ganesh M, Lu W. Enzyme-catalysis breathes new life into polyester condensation polymerizations. Trends Biotechnol 2010; 28:435-43. [PMID: 20598389 DOI: 10.1016/j.tibtech.2010.05.004] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 12/16/2022]
Abstract
Traditional chemical catalysts for polyester synthesis have enabled the generation of important commercial products. Undesirable characteristics of chemically catalyzed condensation polymerizations include the need to conduct reactions at high temperatures (150-280 degrees C) with metal catalysts that are toxic and lack selectivity. The latter is limiting when aspiring towards synthesis of increasingly complex and well-defined polyesters. This review describes an exciting technology that makes use of immobilized enzyme-catalysts for condensation polyester synthesis. Unlike chemical catalysts, enzymes function under mild conditions (< or =100 degrees C), which enables structure retention when polymerizing unstable monomers, circumvents the introduction of metals, and also provides selectivity that avoids protection-deprotection steps and presents unique options for structural control. Examples are provided that describe the progress made in enzyme-catalyzed polymerizations, as well as current limitations and future prospects for developing more efficient enzyme-catalysts for industrial processes.
Collapse
Affiliation(s)
- Richard A Gross
- Polytechnic Institute of NYU, Six Metro Tech Center, Brooklyn, NY 11201, USA.
| | | | | |
Collapse
|
30
|
Hydrolases Part I: Enzyme Mechanism, Selectivity and Control in the Synthesis of Well-Defined Polymers. ADVANCES IN POLYMER SCIENCE 2010. [DOI: 10.1007/12_2010_86] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
|
31
|
Liu Z, Gosser Y, Baker PJ, Ravee Y, Lu Z, Alemu G, Li H, Butterfoss GL, Kong XP, Gross R, Montclare JK. Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 2010; 131:15711-6. [PMID: 19810726 DOI: 10.1021/ja9046697] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Chemical and Biological Sciences, Polytechnic Institute of New York University, Brooklyn, New York 11201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kobayashi S, Makino A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem Rev 2010; 109:5288-353. [PMID: 19824647 DOI: 10.1021/cr900165z] [Citation(s) in RCA: 409] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shiro Kobayashi
- R & D Center for Bio-based Materials, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | |
Collapse
|
33
|
Galbis JA, García-Martín MG. Synthetic Polymers from Readily Available Monosaccharides. CARBOHYDRATES IN SUSTAINABLE DEVELOPMENT II 2010; 295:147-76. [DOI: 10.1007/128_2010_57] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Kralovec JA, Wang W, Barrow CJ. Production of Omega-3 Triacylglycerol Concentrates using a New Food Grade Immobilized Candida antarctica Lipase B. Aust J Chem 2010. [DOI: 10.1071/ch10087] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Triacylglycerol concentrates of eicosapentaenoic and docosahexaenoic omega-3 fatty acids were synthesized either via transesterification or esterification of glycerol with the corresponding ethyl ester or free fatty acid concentrates, respectively. A newly developed food grade immobilized Candida antarctica lipase B system using an Amberlite FPX-66 hydrophobic matrix, was compared with a commercially available non-food grade commercial system, for their ability to catalyze these reactions. For either system, the transesterification required higher temperature (90°C) than esterification (70°C) to achieve maximum triacylglycerol yields. The newly developed immobilized system efficiently catalyzes the esterification of free fatty acids with glycerol and differs from the existing commercial system in that it is food grade and has a more uniform and larger particle distribution. The new system significantly improves flow in a packed bed reactor, enabling multiple reuse of the catalyst for up to 80 repeats.
Collapse
|
35
|
Miletić N, Abetz V, Ebert K, Loos K. Immobilization of Candida antarctica lipase B on Polystyrene Nanoparticles. Macromol Rapid Commun 2009; 31:71-4. [PMID: 21590839 DOI: 10.1002/marc.200900497] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/24/2009] [Indexed: 11/06/2022]
Abstract
Polystyrene (PS) nanoparticles were prepared via a nanoprecipitation process. The influence of the pH of the buffer solution used during the immobilization process on the loading of Candida antarctica lipase B (Cal-B) and on the hydrolytic activity (hydrolysis of p-nitrophenyl acetate) of the immobilized Cal-B was studied. The pH of the buffer solution has no influence on enzyme loading, while immobilized enzyme activity is very dependent on the pH of adsorption. Cal-B immobilized on PS nanoparticles in buffer solution pH 6.8 performed higher hydrolytic activity than crude enzyme powder and Novozyme 435.
Collapse
Affiliation(s)
- Nemanja Miletić
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | | | |
Collapse
|
36
|
Parzuchowski PG, Grabowska M, Jaroch M, Kusznerczuk M. Synthesis and characterization of hyperbranched polyesters from glycerol-based AB2monomer. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
|
38
|
Aschenbrenner E, Weiss C, Landfester K. Enzymatic Esterification in Aqueous Miniemulsions. Chemistry 2009; 15:2434-44. [DOI: 10.1002/chem.200801691] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Kobayashi S. Recent Developments in Lipase-Catalyzed Synthesis of Polyesters. Macromol Rapid Commun 2009; 30:237-66. [DOI: 10.1002/marc.200800690] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 11/25/2008] [Indexed: 11/10/2022]
|
40
|
Teng H, Koike K, Zhou D, Satoh Z, Koike Y, Okamoto Y. High glass transition temperatures of poly(methyl methacrylate) prepared by free radical initiators. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.23154] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Billiet L, Fournier D, Du Prez F. Combining “click” chemistry and step-growth polymerization for the generation of highly functionalized polyesters. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22966] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Haider AF, Williams CK. Synthesis of highly functionalized oligo- and copolyesters from a carbohydrate lactone. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.22615] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Veld MAJ, Palmans ARA, Meijer EW. Selective polymerization of functional monomers with Novozym 435. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/pola.22350] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Kosaka PM, Kawano Y, El Seoud OA, Petri DFS. Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:12167-12173. [PMID: 17949116 DOI: 10.1021/la701913q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ultrathin (approximately 2.0 nm) films of cellulose acetate (CA), cellulose acetate propionate (CAP), and cellulose acetate butyrate (CAB) supported on Si wafers have been prepared by adsorption and characterized by means of ellipsometry, atomic force microscopy (AFM), and contact angle measurements. CA, CAP, and CAB ultrathin films were characterized in air just after their formation and after annealing under reduced pressure at temperature higher than the corresponding melt temperature. Upon annealing, CA, CAP, and CAB ultrathin films became smoother and more hydrophobic, evidencing molecular reorientation at the solid-air interface. CA, CAP, and CAB films were used as supports for the immobilization of lipase. The adsorption of lipase onto annealed films was more pronounced than that onto untreated films, showing the strong affinity of lipase for the more hydrophobic substrates. Enzymatic activity was evaluated by a standard procedure, namely, (spectrophotometric) measurement of p-nitrophenol, the product formed from the hydrolysis of p-nitrophenyl dodecanoate (p-NPD). Lipase immobilized onto hydrophobic films exhibited higher activity than that of free lipase and could be recycled three times while retaining relatively high activity (loss of ca. 30% of original enzymatic activity). The effect of storing time on the activity of immobilized lipase was studied. Compared with free lipase, that immobilized onto more hydrophobic films retained 70% activity after 1 month. More importantly, the latter level of activity is similar to that of free lipase. However, lipase immobilized onto more hydrophilic films retained 50% and 30% activity after 20 and 30 days, respectively. These results are explained in terms of surface wettability and the contribution of the interactions between the polar residues of lipase and the glucopyranosyl moieties of cellulose ester to maintain the natural conformation of immobilized enzyme.
Collapse
Affiliation(s)
- P M Kosaka
- Instituto de Química-Universidade de São Paulo, Brazil, Avenida Prof. Lineu Prestes 748, 05508-900 São Paulo, Brazil
| | | | | | | |
Collapse
|
45
|
Chen B, Miller ME, Gross RA. Effects of porous polystyrene resin parameters on Candida antarctica lipase B adsorption, distribution, and polyester synthesis activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:6467-74. [PMID: 17451255 DOI: 10.1021/la063515y] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Polystyrene resins with varied particle sizes (35 to 350-600 microm) and pore diameters (300-1000 A) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time </= 4 min) for particle sizes </= 120 microm (pore size = 300 A). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ( approximately 8%). From the IR images, the fractions of total surface area available to the enzyme are 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 microm (pore size 300 A), and 35 microm (pore size 1000 A), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was approximately 60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At approximately 8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 A, the turnover frequency (TOF) of epsilon-caprolactone (epsilon-CL) to polyester increased from 12.4 to 28.2 s-1. However, the epsilon-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.
Collapse
Affiliation(s)
- Bo Chen
- NSF I/UCRC for Biocatalysis and Bioprocessing of Macromolecules, Polytechnic University, 6 Metrotech Center, Brooklyn, New York 11201, USA
| | | | | |
Collapse
|
46
|
Kulshrestha AS, Gao W, Fu H, Gross RA. Synthesis and Characterization of Branched Polymers from Lipase-Catalyzed Trimethylolpropane Copolymerizations. Biomacromolecules 2007; 8:1794-801. [PMID: 17477567 DOI: 10.1021/bm061096d] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipase-catalyzed terpolymerizations were performed with the monomers trimethylolpropane (B3), 1,8-octanediol (B2), and adipic acid (A2). Polymerizations were performed in bulk, at 70 degrees C, for 42 h, using immobilized lipase B from Candida antartica (Novozyme-435) as a catalyst. To determine the substitution pattern of trimethylolpropane (TMP) in copolymers, model compounds with variable degrees of acetylation were synthesized. Inverse-gated 13C NMR spectra were recorded to first determine the chemical shift positions for mono-, di-, and trisubstituted TMP units and, subsequently, to determine substitution of TMP units along chains. Variation of TMP in the monomer feed gave copolymers with degrees of branching (DB) from 20% to 67%. In one example, a hyperbranched copolyester with 53 mol % TMP adipate units was formed in 80% yield, with Mw 14 100 (relative to polystyrene standards), Mw/Mn 5.3, and DB 36%. Thermal and crystalline properties of the copolyesters were studied by thermogravimetric analysis and differential scanning calorimetry.
Collapse
Affiliation(s)
- Ankur S Kulshrestha
- National Science Foundation Industry/University Cooperative Research Center for Biocatalysis and Bioprocessing of Macromolecules, Department of Chemical and Biological Sciences, Polytechnic University, Six Metrotech Center, Brooklyn, New York 11201, USA
| | | | | | | |
Collapse
|
47
|
Abstract
This tutorial review summarizes recent developments in the syntheses of functionalized aliphatic polyesters. These polymers are attracting attention as sustainable alternatives to petrochemicals and for applications in medicine. Two main syntheses are described: step polymerization using mild chemo/enzymatic catalysis and ring opening polymerization, which is usually initiated by metal complexes. The methods are compared and their utility illustrated with reference to interesting new materials.
Collapse
|