1
|
Wu T, Wang Z, Yin F, Wang W, Yi Z. Isoporous Membranes by the Symmetric Triblock Copolymer: A Strategy to Improve the Mechanical Strength without Sharply Changing the Pore Size and Permselectivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37073-37086. [PMID: 38958638 DOI: 10.1021/acsami.4c07113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Isoporous membranes produced from diblock copolymers commonly display a poor mechanical property that shows many negative impacts on their separation application. It is theoretically predicted that dense films produced from symmetric triblock copolymers show much stronger mechanical properties than those of homologous diblock copolymers. However, to the best of our knowledge, symmetric triblock copolymers have rarely been fabricated into isoporous membranes before, and a full understanding of separation as well as mechanical properties of membranes prepared from triblock copolymers and homologous diblock copolymers has not been conducted, either. In this work, a cleavable symmetric triblock copolymer with polystyrene as the side block and poly(4-vinylpyridine) (P4VP) as the middle block was synthesized and designed by the RAFT polymerization using the symmetric chain transfer agent, which located at the center of polymer chains and could be removed to produce homologous diblock copolymers with half-length while having the same composition as that found in triblock copolymers. The self-assembly of these two copolymers in thin films and casting solutions was first investigated, observing that they displayed similar self-organized structures under these two conditions. When fabricated into isoporous membranes, they showed similar pore sizes (5-7% difference) and comparable rejection performance (∼10% difference). However, isoporous membranes produced from triblock copolymers showed significantly improved mechanical strength and higher toughness (2-10 times larger) as evidenced by the compacting resistance, strain-stress determination, and nanoindentation testing, suggesting the unique and novel structure-performance relationship in the isoporous membranes produced from symmetric triblock copolymers. The above finding will guide the way to fabricate mechanically robust isoporous membranes without notably changing the separation performance from rarely used symmetric triblock copolymers, which can be synthesized by the controlled polymerization as facilely as that found for diblock copolymers.
Collapse
Affiliation(s)
- Tao Wu
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| | - Zixiong Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengjie Yin
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Wang
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhuan Yi
- Center for Membrane and Water Science & Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Huzhou Institute of Collaborative Innovation Center for Membrane Separation and Water treatment, Hong Feng Road, Huzhou 313000, China
| |
Collapse
|
2
|
Konefał M, Černoch P, Patsula V, Pavlova E, Dybal J, Załęski K, Zhigunov A. Enhanced Ordering of Block Copolymer Thin Films upon Addition of Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9195-9205. [PMID: 33565869 DOI: 10.1021/acsami.0c21549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The influence of magnetite nanoparticles coated with poly(acrylic acid) (Fe3O4@PAA NPs) on the organization of block copolymer thin films via a self-assembly process was investigated. Polystyrene-b-poly(4-vinylpyridine) films were obtained by the dip-coating method and thoroughly examined by X-ray reflectivity, transmission electron microscopy, atomic force microscopy, and grazing incidence small-angle scattering. Magnetic properties of the films were probed via superconducting quantum interference device (SQUID) magnetometry. It was demonstrated that due to the hydrogen bonding between P4VP and PAA, the Fe3O4@PAA NPs segregate selectively inside P4VP domains, enhancing the microphase separation process. This in turn, together with employing carefully optimized dip-coating parameters, results in the formation of hybrid thin films with highly ordered nanostructures. The addition of Fe3O4@PAA nanoparticles does not change the average interdomain spacing in the film lateral nanostructure. Moreover, it was shown that the nanoparticles can easily be removed to obtain well-ordered nanoporous templates.
Collapse
Affiliation(s)
- Magdalena Konefał
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Peter Černoch
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Vitalii Patsula
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Jiří Dybal
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Karol Załęski
- NanoBioMedical Centre, Adam Mickiewicz University, ul. Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Alexander Zhigunov
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
3
|
Gu PY, Jiang Y, Fink Z, Xie G, Hu Q, Kim PY, Xu QF, Lu JM, Russell TP. Conductive Thin Films over Large Areas by Supramolecular Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54020-54025. [PMID: 33200916 DOI: 10.1021/acsami.0c13488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a "one-step" method for preparing conductive thin films with cylindrical microdomains oriented normal to the surface over large areas using the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS19-b-P4VP5) and 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (HOTPP). HOTPP interacts with the P4VP block by hydrogen bonding between the hydroxyl group of HOTPP and pyridine ring of PS19-b-P4VP5, forming cylindrical P4VP(HOTPP) domains having an average diameter of ∼17 nm in a PS matrix. Dynamic light scattering, contact angle, and in situ grazing incidence small-angle X-ray scattering measurements show a morphological transition from spherical micelles in solution to cylindrical microdomains oriented normal to the substrate surface during the drying process. From the dependence of current on voltage, an average current of ∼4.0 nA is found to pass through a single microdomain, pointing to a promising route for organic semiconductor device applications.
Collapse
Affiliation(s)
- Pei-Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Yufeng Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Applied Science and Technology, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, California 94720, United States
| | - Zachary Fink
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Qin Hu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Qing-Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
4
|
Deepthi K, R B AR, Prasad VS, Gowd EB. Co-assembly of functionalized donor-acceptor molecules within block copolymer microdomains via the supramolecular assembly approach with an improved charge carrier mobility. SOFT MATTER 2020; 16:7312-7322. [PMID: 32672783 DOI: 10.1039/d0sm00894j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we demonstrate the three-component self-assembly of functionalized small molecules (donor and acceptor) and a polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) block copolymer using the supramolecular approach. The introduction of functional groups on both the donor (1-pyrenebutyric acid, PBA) and acceptor (functionalized naphthalene diimide, FNDI) molecules can form stable charge-transfer (CT) complexes within the block copolymer domains and these supramolecules exhibited a charge carrier mobility of around 1.01 × 10-4 cm2 (V s)-1. In this case, both the molecules can form H-bonding with P4VP chains, and as well as π-π stacking between the PBA and FNDI molecules is also possible within the block copolymer domains. These noncovalent interactions lead to the formation of stable hierarchical structures and CT complexes between PBA and FNDI, where bilayer donor-acceptor (D-A) stacks formed within the block copolymer microdomains. Overall, the organization of both functionalized donor and acceptor molecules within the block copolymer domain exhibits an enhanced charge carrier mobility, which is potentially useful in the fabrication of organic photovoltaic cells and organic light-emitting diodes.
Collapse
Affiliation(s)
- Krishnan Deepthi
- Materials Science and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695 019, Kerala, India.
| | | | | | | |
Collapse
|
5
|
Konefał M, Zhigunov A, Pavlova E, Černoch P, Pop-Georgievski O, Špírková M. Adjustable self-assembly in polystyrene-block-poly(4-vinylpyridine) dip-coated thin films. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Organic acids interacting with block copolymers have broadened the window that retains isoporous structures. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Deepthi K, Amal RRB, Rajeev VR, Unni KNN, Gowd EB. Directed Assembly of Hierarchical Supramolecular Block Copolymers: A Strategy To Create Donor–Acceptor Charge-Transfer Stacks. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02448] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Krishnan Deepthi
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | | | | | | - E. Bhoje Gowd
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
8
|
Kennemur JG. Poly(vinylpyridine) Segments in Block Copolymers: Synthesis, Self-Assembly, and Versatility. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01661] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Justin G. Kennemur
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
9
|
Krishnan D, Raj R B A, Gowd EB. Topochemical polymerization of hierarchically ordered diacetylene monomers within the block copolymer domains. Polym Chem 2019. [DOI: 10.1039/c9py00156e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Effect of annealing conditions on the hierarchical ordering of PCDA monomers within the block copolymer supramolecules and their subsequent topochemical polymerization.
Collapse
Affiliation(s)
- Deepthi Krishnan
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695 019
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Amal Raj R B
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695 019
- India
| | - E. Bhoje Gowd
- Materials Science and Technology Division
- CSIR-National Institute for Interdisciplinary Science and Technology
- Trivandrum 695 019
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
10
|
Derikov YI, Abetz C, Karpov ON, Shandryuk GA, Ezhov AA, Kudryavtsev YV, Abetz V. Polymeric and Low-Molecular Stabilizers for Au Nanoparticles in a Diblock Copolymer Matrix. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Isoporous membranes with sub-10 nm pores prepared from supramolecular interaction facilitated block copolymer assembly and application for protein separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.08.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Shi LY, Lei WW, Liao F, Chen J, Wu M, Zhang YY, Hu CX, Xing L, Zhang YL, Ran R. H-bonding tuned phase transitions of a strong microphase-separated polydimethylsiloxane-b-poly(2-vinylpyridine) block copolymer. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Khawas K, Daripa S, Kumari P, Kuila BK. Electrochemical and Electronic Properties of Transparent Coating from Highly Solution Processable Graphene Using Block Copolymer Supramolecular Assembly: Application toward Metal Ion Sensing and Resistive Switching Memory. ACS OMEGA 2018; 3:7106-7116. [PMID: 31458872 PMCID: PMC6644669 DOI: 10.1021/acsomega.8b00883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 06/10/2023]
Abstract
Here, we have discussed the preparation of a highly solution processable graphene from a novel supramolecular assembly consisting of block copolymer polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) and pyrenebutyric acid (PBA)-modified reduced graphene oxide (RGO). The PBA molecules anchored on the graphene surface form supramolecules with PS-b-P4VP through H-bonding between the carboxylic acid group of 1-pyrenebutyric acid and the pyridine ring of P4VP. The formation of a supramolecular assembly results in a highly stable solution of reduced graphene oxide in common organic solvents, such as 1,4-dioxane and chloroform. Highly transparent and mechanically stable thin films can be deposited from these supramolecular assemblies on a relatively smooth surface of different substrates such as silicon wafer, glass, indium tin oxide, and flexible polymer substrates like poly(ethylene terephthalate). The graphene surface modifier (PBA) can be selectively removed from the thin film of the hybrid material by simple dissolution, resulting in a porous structure. Hybrid thin films of around 50 nm thickness exhibit interesting electrochemical properties with an areal capacitance value of 17.73 μF/cm2 at a current density of 2.66 μA/cm2 and good electrochemical stability. The pendent P4VP chains present in the composite thin film were further exploited for electrochemical detection of metal ions. The electrical measurement of the thin film sandwich structure of the composite shows a bipolar resistive switching memory with hysteresis-like current-voltage characteristics and electrical bistability. The OFF state shows ohmic conduction at a lower voltage and trap-free space-charge-limited current (SCLC) conduction at high voltage, whereas the ON state conduction is controlled by ohmic at low bias voltage, trap-free SCLC at moderate voltage, and tarp-assisted SCLC at high voltage.
Collapse
Affiliation(s)
- Koomkoom Khawas
- Center
for Applied Chemistry, Central University
of Jharkhand, Brambe, Ranchi 835205, Jharkhand, India
| | - Soumili Daripa
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pallavi Kumari
- Center
for Applied Chemistry, Central University
of Jharkhand, Brambe, Ranchi 835205, Jharkhand, India
| | - Biplab Kumar Kuila
- Department
of Chemistry, Institute of Science, Banaras
Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
14
|
Khawas K, Kumari P, Daripa S, Oraon R, Kuila BK. Hierarchical Polyaniline-MnO2
-Reduced Graphene Oxide Ternary Nanostructures with Whiskers-Like Polyaniline for Supercapacitor Application. ChemistrySelect 2017. [DOI: 10.1002/slct.201702345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koomkoom Khawas
- Centre for Applied Chemistry; Central University of Jharkhand, Brambe; Ranchi-835205 Jharkhand India
| | - Pallavi Kumari
- Centre for Applied Chemistry; Central University of Jharkhand, Brambe; Ranchi-835205 Jharkhand India
| | - Soumili Daripa
- Centre for Applied Chemistry; Central University of Jharkhand, Brambe; Ranchi-835205 Jharkhand India
| | - Ramesh Oraon
- Centre for Applied Chemistry; Central University of Jharkhand, Brambe; Ranchi-835205 Jharkhand India
| | - Biplab Kumar Kuila
- Centre for Applied Chemistry; Central University of Jharkhand, Brambe; Ranchi-835205 Jharkhand India
- Center for Excellence in Green and Efficient Energy Technology; Central University of Jharkhnad, Brambe; Ranchi-835205 Jharkhand India
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi-221005 India
| |
Collapse
|
15
|
Kumari P, Khawas K, Bera MK, Hazra S, Malik S, Kuila BK. Enhanced Charge Carrier Mobility and Tailored Luminescence of n-Type Organic Semiconductor through Block Copolymer Supramolecular Assembly. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201600508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pallavi Kumari
- Centre for Applied Chemistry; Central University of Jharkhand; Brambe Ranchi 835205 Jharkhand India
| | - Koomkoom Khawas
- Centre for Applied Chemistry; Central University of Jharkhand; Brambe Ranchi 835205 Jharkhand India
| | - Manas Kumar Bera
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A&2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Sunit Hazra
- Centre for Applied Chemistry; Central University of Jharkhand; Brambe Ranchi 835205 Jharkhand India
| | - Sudip Malik
- Polymer Science Unit; Indian Association for the Cultivation of Science; 2A&2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Biplab Kumar Kuila
- Centre for Applied Chemistry; Central University of Jharkhand; Brambe Ranchi 835205 Jharkhand India
- Center for Excellence in Green and Efficient Energy Technology; Central University of Jharkhand; Brambe Ranchi 835205 Jharkhand India
| |
Collapse
|
16
|
Hiekkataipale P, Löbling TI, Poutanen M, Priimagi A, Abetz V, Ikkala O, Gröschel AH. Controlling the shape of Janus nanostructures through supramolecular modification of ABC terpolymer bulk morphologies. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.05.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Huang J, Wang RY, Xu JT, Fan ZQ. Hydrogen-bonding induced abnormal microphase separation behavior of poly(ethylene oxide)-b-poly(tert-butyl acrylate-co-acrylic acid) block copolymers. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Kumari P, Khawas K, Nandy S, Kuila BK. A supramolecular approach to Polyaniline graphene nanohybrid with three dimensional pillar structures for high performing electrochemical supercapacitor applications. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.130] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Rancatore BJ, Kim B, Mauldin CE, Fréchet JMJ, Xu T. Organic Semiconductor-Containing Supramolecules: Effect of Small Molecule Crystallization and Molecular Packing. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin J. Rancatore
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - BongSoo Kim
- Department
of Science Education, Ewha Womans University, Seoul 120-750, Republic of Korea
| | | | - Jean M. J. Fréchet
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia 23955-6900
| | - Ting Xu
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Roland S, Gamys CG, Grosrenaud J, Boissé S, Pellerin C, Prud’homme RE, Bazuin CG. Solvent Influence on Thickness, Composition, and Morphology Variation with Dip-Coating Rate in Supramolecular PS-b-P4VP Thin Films. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Sébastien Roland
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Cé Guinto Gamys
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Josué Grosrenaud
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Stéphanie Boissé
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Christian Pellerin
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - Robert E. Prud’homme
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| | - C. Geraldine Bazuin
- Département de chimie,
Centre de recherche sur les matériaux auto−assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ. Centre−ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
21
|
Kang H, Song Z, Shen X, Zhang S, Li J, Zhang W. Reversible complexation/disassembly of thermo-responsive vesicles and nanospheres of diblock copolymers synthesized by dispersion RAFT polymerization. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Rao J, Ma H, Baettig J, Woo S, Stuparu MC, Bang J, Khan A. Self-assembly of an interacting binary blend of diblock copolymers in thin films: a potential route to porous materials with reactive nanochannel chemistry. SOFT MATTER 2014; 10:5755-5762. [PMID: 24979238 DOI: 10.1039/c4sm01029a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Self-assembly of a binary mixture of poly(styrene)336-block-poly(4-vinyl pyridine)25 (PS336-b-P4VP25) and poly(ethylene glycol)113-block-poly(4-hydroxy styrene)25 (PEG113-b-P4HS25) is shown to give rise to a cylindrical morphology in thin films through pyridine/phenol-based hetero-complementary hydrogen bonding interactions between the P4VP and P4HS copolymer segments. Removal of the cylindrical phase (PEG-b-P4HS) allowed access to porous materials having a pore surface decorated with P4VP polymer blocks. These segments could be transformed into cationic polyelectrolytes through quaternization of the pyridine nitrogen atom. The resulting positively charged nanopore surface could recognize negatively charged gold nanoparticles through electrostatic interactions. This work, therefore, outlines the utility of the supramolecular AB/CD type of block copolymer towards preparation of ordered porous thin films carrying a chemically defined channel surface with a large number of reactive sites.
Collapse
Affiliation(s)
- Jingyi Rao
- Department of Materials, ETH, Zürich, CH-8093, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
23
|
del Barrio J, Blasco E, Toprakcioglu C, Koutsioubas A, Scherman OA, Oriol L, Sánchez-Somolinos C. Self-Assembly and Photoinduced Optical Anisotropy in Dendronized Supramolecular Azopolymers. Macromolecules 2014. [DOI: 10.1021/ma402369p] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jesús del Barrio
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Eva Blasco
- Departamento
de Química Orgánica, Facultad de Ciencias-Instituto
de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | | | - Alexandros Koutsioubas
- Jülich
Centre for Neutron Science, Forschungszentrum Jülich GmbH, Außenstelle
am FRM-II, c/o TU München, Lichtenbergstraße
1, 85747 Garching, Germany
| | - Oren A. Scherman
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Luis Oriol
- Departamento
de Química Orgánica, Facultad de Ciencias-Instituto
de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| | - Carlos Sánchez-Somolinos
- Departamento
de Física de la Materia Condensada, Facultad de Ciencias, Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
| |
Collapse
|
24
|
Madhavan P, Peinemann KV, Nunes SP. Complexation-tailored morphology of asymmetric block copolymer membranes. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7152-7159. [PMID: 23815587 DOI: 10.1021/am401497m] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Hydrogen-bond formation between polystyrene-b-poly (4-vinylpyridine) (PS-b-P4VP) block copolymer (BCP) and -OH/-COOH functionalized organic molecules was used to tune morphology of asymmetric nanoporous membranes prepared by simultaneous self-assembly and nonsolvent induced phase separation. The morphologies were characterized by field emmision scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Hydrogen bonds were confirmed by infrared (IR), and the results were correlated to rheology characterization. The OH-functionalized organic molecules direct the morphology into hexagonal order. COOH-functionalized molecules led to both lamellar and hexagonal structures. Micelle formation in solutions and their sizes were determined using dynamic light scattering (DLS) measurements and water fluxes of 600-3200 L/m(2)·h·bar were obtained. The pore size of the plain BCP membrane was smaller than with additives. The following series of additives led to pores with hexagonal order with increasing pore size: terephthalic acid (COOH-bifunctionalized) < rutin (OH-multifunctionalized) < 9-anthracenemethanol (OH-monofunctionalized) < 3,5-dihydroxybenzyl alcohol (OH-trifunctionalized).
Collapse
Affiliation(s)
- Poornima Madhavan
- Water Desalination and Reuse Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Saudi Arabia
| | | | | |
Collapse
|
25
|
Supramolecular Assemblies from Poly(styrene)-block-poly(4-vinylpyridine) Diblock Copolymers Mixed with 6-Hydroxy-2-naphthoic Acid. Polymers (Basel) 2013. [DOI: 10.3390/polym5020679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Mei S, Jin Z. Mesoporous block-copolymer nanospheres prepared by selective swelling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:322-9. [PMID: 23047432 DOI: 10.1002/smll.201201504] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Revised: 08/06/2012] [Indexed: 05/07/2023]
Abstract
Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor.
Collapse
Affiliation(s)
- Shilin Mei
- Department of Chemistry, Renmin University of China, 100872 Beijing, China
| | | |
Collapse
|
27
|
Hagaman D, Gredzik J, Peart PA, McCaffery JM, Tovar JD, Sidorenko A. Block copolymer supramolecular assembly using a precursor to a novel conjugated polymer. Polym Chem 2013. [DOI: 10.1039/c2py20680c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Kuila BK, Chakraborty C, Malik S. A Synergistic Coassembly of Block Copolymer and Fluorescent Probe in Thin Film for Fine-Tuning the Block Copolymer Morphology and Luminescence Property of the Probe Molecules. Macromolecules 2012. [DOI: 10.1021/ma302041f] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Biplab K. Kuila
- Centre for
Applied Chemistry, Central University of Jharkhand, Brambe, Ranchi 835205,
India
| | - Chanchal Chakraborty
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Sudip Malik
- Polymer Science Unit, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Kolkata 700 032, India
| |
Collapse
|
29
|
Roland S, Prud’homme RE, Bazuin CG. Morphology, Thickness, and Composition Evolution in Supramolecular Block Copolymer Films over a Wide Range of Dip-Coating Rates. ACS Macro Lett 2012; 1:973-976. [PMID: 35607019 DOI: 10.1021/mz3003165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dip-coating, an important industrial technique, has been underexploited for preparing block copolymer (BC) thin films, such that the knowledge regarding their general characteristics is limited. Here, we present an overview of the crucial factors that determine how BC film morphology evolves as a function of dip-coating rate (withdrawal speed) over a wide range, illustrated using THF solutions of a polystyrene-b-poly(4-vinyl pyridine) (PS-P4VP) diblock copolymer mixed with two small molecules, naphthol and naphthoic acid, which are hydrogen-bonders with P4VP. Key factors in determining the film morphology are the systematic variation in film thickness and, for supramolecular BCs, in film composition with dip-coating rate. The former shows a general V-shaped dependence, related to the so-called capillarity and draining regimes identified previously for dip-coated sol-gel films. The relative small molecule content in the films studied is shown to increase in the capillarity regime from low to that of the dip-coating solution and thereafter to remain constant. Together, these changes, in addition to solvent and other effects, determine the film morphology and its evolution with dip-coating rate.
Collapse
Affiliation(s)
- Sébastien Roland
- Département de chimie, Centre de recherche sur
les matériaux auto-assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal (QC), Canada
H3C 3J7
| | - Robert E. Prud’homme
- Département de chimie, Centre de recherche sur
les matériaux auto-assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal (QC), Canada
H3C 3J7
| | - C. Geraldine Bazuin
- Département de chimie, Centre de recherche sur
les matériaux auto-assemblés
(CRMAA/CSACS), Université de Montréal, C.P. 6128 succursale Centre-ville, Montréal (QC), Canada
H3C 3J7
| |
Collapse
|
30
|
Li X, Yu X, Han Y. Intelligent reversible nanoporous antireflection film by solvent-stimuli-responsive phase transformation of amphiphilic block copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10584-10591. [PMID: 22769582 DOI: 10.1021/la301755a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An erasure-reconstruction porous structure with reversible antireflection (AR) property at near-infrared region (NIR) was prepared for the first time based on solvent-stimuli-responsive phase transformation of polystyrene-block-poly(4-vinypyridine) (PS-b-P4VP). The inhomogeneous porous structure with a dense skin and porous underneath, which was obtained by the nonsolvent-induced phase separation of PS-b-P4VP film from micelle solution with mixed solvents (tetrahydrofuran and dimethylformamide), was used as starting porous film. Then, the film was annealed by PS-selective solvent to erase the nanopores because the PS block was swollen effectively by its selective solvent. Afterward, the nonporous film was immersed in linear aliphatic acid to reconstruct the nanoporous structure (loosely packed micelles) by the combination of the hydrogen bond interaction and the positively charge-induced repulsion between each chain. Thus, an intelligent reversible AR property in the NIR region between a high-transmittance porous state (∼99.0%) and a low-transmittance nonporous state (∼90.0%) was realized by alternate treatments of PS-selective solvent and linear aliphatic acids. This reversible erasure-reconstruction porous structure for switching between AR (98.0%) and non-AR (90.0%) properties could be recycled by at least four times.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | | | | |
Collapse
|
31
|
Roland S, Gaspard D, Prud’homme RE, Bazuin CG. Morphology Evolution in Slowly Dip-Coated Supramolecular PS-b-P4VP Thin Films. Macromolecules 2012. [DOI: 10.1021/ma3007398] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sébastien Roland
- Département de chimie, Centre de recherche sur
les matériaux auto−assemblés (CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ.
Centre−ville, Montréal (QC), Canada H3C 3J7
| | - David Gaspard
- Département de chimie, Centre de recherche sur
les matériaux auto−assemblés (CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ.
Centre−ville, Montréal (QC), Canada H3C 3J7
| | - Robert E. Prud’homme
- Département de chimie, Centre de recherche sur
les matériaux auto−assemblés (CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ.
Centre−ville, Montréal (QC), Canada H3C 3J7
| | - C. Geraldine Bazuin
- Département de chimie, Centre de recherche sur
les matériaux auto−assemblés (CRMAA/CSACS), Université de Montréal, C.P. 6128 Succ.
Centre−ville, Montréal (QC), Canada H3C 3J7
| |
Collapse
|
32
|
Gowd EB, Rama MS, Stamm M. Nanostructures Based on Self-Assembly of Block Copolymers. NANOFABRICATION 2012. [DOI: 10.1007/978-3-7091-0424-8_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Hagaman D, Enright TP, Sidorenko A. Block Copolymer Supramolecular Assembly beyond Hydrogen Bonding. Macromolecules 2011. [DOI: 10.1021/ma2011798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Hagaman
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Timothy P. Enright
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Sidorenko
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
34
|
Kao J, Tingsanchali J, Xu T. Effects of Interfacial Interactions and Film Thickness on Nonequilibrium Hierarchical Assemblies of Block Copolymer-Based Supramolecules in Thin Films. Macromolecules 2011. [DOI: 10.1021/ma102857f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ting Xu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, Califonia 94720, United States
| |
Collapse
|
35
|
Kuila BK, Rama MS, Stamm M. Supramolecular assembly of poly(styrene)-b-poly(4-vinylpyridine) and ferroceneacetic acid: an easy way to large-scale controllable periodic arrays of iron oxide nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:1797-1800. [PMID: 21360781 DOI: 10.1002/adma.201004367] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Indexed: 05/30/2023]
Affiliation(s)
- Biplab K Kuila
- Department of Nanostructured Materials, Leibniz Institute of Polymer Research Dresden, Germany
| | | | | |
Collapse
|
36
|
Kuila BK, Stamm M. Block copolymer–small molecule supramolecular assembly in thin film: a novel tool for surface patterning of different functional nanomaterials. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10990a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|