1
|
Song Z, Chen P, Teng L, Wang W, Zhu W. Copper Nanodrugs with Controlled Morphologies through Aqueous Atom Transfer Radical Polymerization. Biomacromolecules 2024; 25:4545-4556. [PMID: 38902858 DOI: 10.1021/acs.biomac.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper (Cu) nanodrugs can be facilely prepared through atom transfer radical polymerization (ATRP) in an aqueous medium. However, it is difficult to control the morphology of Cu nanodrugs and thereby optimize their anticancer activity. In this work, aqueous ATRP was combined with polymerization-induced self-assembly (PISA) to prepare Cu nanodrugs with various morphologies. We mapped the relationship between polymerization condition and product morphology in which each morphology shows a wide preparation window. Decreasing the reaction temperature and feeding more Cu catalysts can improve the mobility of chains, facilitating the morphology evolution from sphere to other high-order morphologies. The resultant Cu nanodrugs with high monomer conversion and high Cu loading efficiency could be easily taken by cancer cells, showing excellent anticancer efficacy in vitro. This work proposed a potential strategy to prepare Cu nanodrugs with a specific morphology in batches, providing the method to optimize the anticancer efficacy through morphology control.
Collapse
Affiliation(s)
- Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weibin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
2
|
Chen P, Song Z, Yao X, Wang W, Teng L, Matyjaszewski K, Zhu W. Copper Nanodrugs by Atom Transfer Radical Polymerization. Angew Chem Int Ed Engl 2024; 63:e202402747. [PMID: 38488767 DOI: 10.1002/anie.202402747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/09/2024]
Abstract
In this study, some copper catalysts used for atom transfer radical polymerization (ATRP) were explored as efficient anti-tumor agents. The aqueous solution of copper-containing nanoparticles with uniform spheric morphology was in situ prepared through a copper-catalyzed activator generated by electron transfer (AGET) ATRP in water. Nanoparticles were then directly injected into tumor-bearing mice for antitumor chemotherapy. The copper nanodrugs had prolonged blood circulation time and enhanced accumulation at tumor sites, thus showing potent antitumor activity. This work provides a novel strategy for precise and large-scale preparation of copper nanodrugs with high antitumor activity.
Collapse
Affiliation(s)
- Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuxia Yao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weibin Wang
- The First Affiliated Hospital, Department of Surgical Oncology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lisong Teng
- The First Affiliated Hospital, Department of Surgical Oncology, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, United States
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Multiarm Star-Shaped Polydimethylsiloxanes with a Dendritic Branching Center. Molecules 2021; 26:molecules26113280. [PMID: 34072317 PMCID: PMC8199136 DOI: 10.3390/molecules26113280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
New multiarm stars have been synthesized based on polylithium derivatives of high-generation carbosilane dendrimers. In the synthesis of multiarm stars based on the eighth-generation dendrimer, steric hindrances were observed even during the synthesis of a polylithium initiator. Subsequently, this led to chain transfer reactions between growing arms, as well as other side effects. As a result, dense nanogel formations with a higher tendency of ordering than in classical objects of this type were isolated from the reaction mixture. The study of the rheology of multiarm stars based on sixth-generation dendrimers made it possible to determine the activation energies of viscous flow in these objects, which makes it possible to consider them as objects with a macromolecular nature and a reptation flow mechanism.
Collapse
|
4
|
Multicomponent click reactions catalysed by copper(I) oxide nanoparticles (Cu2ONPs) derived using Oryza sativa. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-01774-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Ochs J, Veloso A, Martínez-Tong DE, Alegria A, Barroso-Bujans F. An Insight into the Anionic Ring-Opening Polymerization with Tetrabutylammonium Azide for the Generation of Pure Cyclic Poly(glycidyl phenyl ether). Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jordan Ochs
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel Lardizábal 4, San Sebastian 20018, Spain
| | - Antonio Veloso
- POLYMAT,, University of the Basque Country UPV/EHU, Joxe Mari Korta R&D Ctr, Avda. Tolosa-72, San Sebastian 20018, Spain
| | - Daniel E. Martínez-Tong
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel Lardizábal 4, San Sebastian 20018, Spain
| | - Angel Alegria
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Departamento de Física de Materiales, University of the Basque Country (UPV/EHU), Apartado 1072, San Sebastian 20080, Spain
| | - Fabienne Barroso-Bujans
- Materials Physics Center, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, San Sebastian 20018, Spain
- Donostia International
Physics Center (DIPC), Paseo Manuel Lardizábal 4, San Sebastian 20018, Spain
- IKERBASQUE - Basque
Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
6
|
Anionic Polymerization of Styrene and 1,3-Butadiene in the Presence of Phosphazene Superbases. Polymers (Basel) 2017; 9:polym9100538. [PMID: 30965839 PMCID: PMC6418745 DOI: 10.3390/polym9100538] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022] Open
Abstract
The anionic polymerization of styrene and 1,3-butadiene in the presence of phosphazene bases (t-BuP4, t-BuP2 and t-BuP1), in benzene at room temperature, was studied. When t-BuP1 was used, the polymerization proceeded in a controlled manner, whereas the obtained homopolymers exhibited the desired molecular weights and narrow polydispersity (Ð < 1.05). In the case of t-BuP2, homopolymers with higher than the theoretical molecular weights and relatively low polydispersity were obtained. On the other hand, in the presence of t-BuP4, the polymerization of styrene was uncontrolled due to the high reactivity of the formed carbanion. The kinetic studies from the polymerization of both monomers showed that the reaction rate follows the order of [t-BuP4]/[sec-BuLi] >>> [t-BuP2]/[sec-BuLi] >> [t-BuP1]/[sec-BuLi] > sec-BuLi. Furthermore, the addition of t-BuP2 and t-BuP1 prior the polymerization of 1,3-butadiene allowed the synthesis of polybutadiene with a high 1,2-microstructure (~45 wt %), due to the delocalization of the negative charge. Finally, the one pot synthesis of well-defined polyester-based copolymers [PS-b-PCL and PS-b-PLLA, PS: Polystyrene, PCL: Poly(ε-caprolactone) and PLLA: Poly(L-lactide)], with predictable molecular weights and a narrow molecular weight distribution (Ð < 1.2), was achieved by sequential copolymerization in the presence of t-BuP2 and t-BuP1.
Collapse
|
7
|
Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, Shanmugam S, Davis TP, Boyer C, Qiao GG. Star Polymers. Chem Rev 2016; 116:6743-836. [PMID: 27299693 DOI: 10.1021/acs.chemrev.6b00008] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Collapse
Affiliation(s)
- Jing M Ren
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Thomas G McKenzie
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Qiang Fu
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 2000444, People's Republic of China
| | - Sivaprakash Shanmugam
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Victoria 3052, Australia.,Department of Chemistry, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia , Sydney, New South Wales 2052, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical and Biomolecular Engineering, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Gao L, Chen Y, Luo Q, Wang Y, Li X, Shen Z, Zhu W. Injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation. RSC Adv 2016; 6:94661-94668. [DOI: 10.1039/c6ra20691c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Novel injectable camptothecin conjugated hydrogels with simultaneous drug release and degradation properties were prepared, which show significant cytotoxicity to HepG2 cells, and could be a potential candidate for intratumor drug delivery.
Collapse
Affiliation(s)
- Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Yadong Chen
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- School of Medicine
- Zhejiang University
- Hangzhou 310006
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- People's Republic of China
| |
Collapse
|
9
|
Huang Y, Sun R, Luo Q, Wang Y, Zhang K, Deng X, Zhu W, Li X, Shen Z. In situ
fabrication of paclitaxel-loaded core-crosslinked micelles via thiol-ene “click” chemistry for reduction-responsive drug release. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27778] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ying Huang
- Department of Geriatric Dentistry; School and Hospital of Stomatology, Peking University; Beijing 100081 People's Republic of China
| | - Rui Sun
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Ying Wang
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Kai Zhang
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
- Zhoushan Stomatology Hospital; Zhoushan 316000 People's Republic of China
| | - Xuliang Deng
- Department of Geriatric Dentistry; School and Hospital of Stomatology, Peking University; Beijing 100081 People's Republic of China
| | - Weipu Zhu
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery; Affiliated Stomatology Hospital, College of Medicine, Zhejiang University; Hangzhou 310006 People's Republic of China
| | - Zhiquan Shen
- Department of Polymer Science and Engineering; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
10
|
Shi Q, Xu X, Fan Q, Hou J, Ye W, Yin J. Construction of d-α-tocopheryl polyethylene glycol succinate/PEO core–shell nanofibers on a blood-contacting surface to reduce the hemolysis of preserved erythrocytes. J Mater Chem B 2015; 3:2119-2126. [DOI: 10.1039/c4tb01854k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The TPGS released from the electrospun SEBS protected the preserved red blood cells from oxidative damage, resulting in low hemolysis and mechanical fragility.
Collapse
Affiliation(s)
- Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiaodong Xu
- Polymer Materials Research Center and Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
| | - Qunfu Fan
- Polymer Materials Research Center and Key Laboratory of Superlight Materials and Surface Technology
- Ministry of Education
- College of Materials Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
| | - Jianwen Hou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Wei Ye
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
11
|
Shi Q, Fan Q, Ye W, Hou J, Wong SC, Xu X, Yin J. Binary release of ascorbic acid and lecithin from core–shell nanofibers on blood-contacting surface for reducing long-term hemolysis of erythrocyte. Colloids Surf B Biointerfaces 2015; 125:28-33. [DOI: 10.1016/j.colsurfb.2014.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022]
|
12
|
Zhang W, Ren B, Jiang Y, Hu Z. Carboxymethylpullulan promoted Cu2O-catalyzed Huisgen-click reaction. RSC Adv 2015. [DOI: 10.1039/c4ra14813d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cu2O/CMP has been developed as a highly efficient catalytic system for Huisgen-click reaction in water at 60 °C.
Collapse
Affiliation(s)
- Weiwei Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Baoqi Ren
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Yuqin Jiang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| | - Zhiguo Hu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Henan Normal University
| |
Collapse
|
13
|
Resorcinarene-centered amphiphilic star-block copolymers: Synthesis, micellization and controlled drug release. CHINESE JOURNAL OF POLYMER SCIENCE 2014. [DOI: 10.1007/s10118-014-1528-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Sun R, Luo Q, Gao C, Wang Y, Gao L, Du H, Huang Y, Li X, Shen Z, Zhu W. Facile fabrication of reduction-responsive nanocarriers for controlled drug release. Polym Chem 2014. [DOI: 10.1039/c4py00577e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An amphiphilic multiblock poly(ether–ester) containing multiple thiols was facilely synthesized by “one-pot” polycondensation, and was used to prepare reduction-responsive core-crosslinked micelles for controlled drug release.
Collapse
Affiliation(s)
- Rui Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, People's Republic of China
| | - Qiaojie Luo
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006, P. R. China
| | - Chen Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, People's Republic of China
| | - Lilong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, People's Republic of China
| | - Hong Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, People's Republic of China
| | - Ying Huang
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006, P. R. China
| | - Xiaodong Li
- Department of Oral and Maxillofacial Surgery
- Affiliated Stomatology Hospital
- College of Medicine
- Zhejiang University
- Hangzhou 310006, P. R. China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, People's Republic of China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027, People's Republic of China
| |
Collapse
|
15
|
Tan S, Wong EHH, Fu Q, Ren JM, Sulistio A, Ladewig K, Blencowe A, Qiao GG. Azobenzene-Functionalised Core Cross-Linked Star Polymers and their Host–Guest Interactions. Aust J Chem 2014. [DOI: 10.1071/ch13425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Water-soluble poly(2-hydroxyethyl acrylate) (PHEA)-based core cross-linked star polymers were efficiently synthesised with high macroinitiator-to-star-conversion (>95 %) in a one-pot system via single electron transfer-living radical polymerisation. The star polymers display excellent water solubility and the pendant hydroxyl groups provide a platform for facile post-functionalisation with various molecules. In demonstrating this, a photo-isomerisable molecule, 4-(phenylazo)benzoic acid was conjugated onto the preformed stars through partial esterification of the available hydroxyl groups (5–20 %). The azobenzene functionalised stars were subsequently employed to form reversible inclusion complexes with α-cyclodextrin.
Collapse
|
16
|
Park S, Cho HY, Wegner KB, Burdynska J, Magenau AJD, Paik HJ, Jurga S, Matyjaszewski K. Star Synthesis Using Macroinitiators via Electrochemically Mediated Atom Transfer Radical Polymerization. Macromolecules 2013. [DOI: 10.1021/ma401308e] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sangwoo Park
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh,
Pennsylvania 15213, United States
| | - Hong Yul Cho
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh,
Pennsylvania 15213, United States
| | - Katarzyna Barbara Wegner
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh,
Pennsylvania 15213, United States
- NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan,
Poland
| | - Joanna Burdynska
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh,
Pennsylvania 15213, United States
| | - Andrew J. D. Magenau
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh,
Pennsylvania 15213, United States
| | - Hyun-jong Paik
- Department of Polymer
Science
and Engineering, Pusan National University, Busan, Korea 609735
| | - Stefan Jurga
- NanoBioMedical Center, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan,
Poland
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh,
Pennsylvania 15213, United States
| |
Collapse
|
17
|
Brocas AL, Mantzaridis C, Tunc D, Carlotti S. Polyether synthesis: From activated or metal-free anionic ring-opening polymerization of epoxides to functionalization. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.09.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Cai T, Yang WJ, Neoh KG, Kang ET. Poly(vinylidene fluoride) Membranes with Hyperbranched Antifouling and Antibacterial Polymer Brushes. Ind Eng Chem Res 2012. [DOI: 10.1021/ie302762w] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tao Cai
- NUS Graduate
School for Integrative
Science and Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Wen Jing Yang
- NUS Graduate
School for Integrative
Science and Engineering, National University of Singapore, Kent Ridge, Singapore 117576
| | - Koon-Gee Neoh
- NUS Graduate
School for Integrative
Science and Engineering, National University of Singapore, Kent Ridge, Singapore 117576
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | - En-Tang Kang
- NUS Graduate
School for Integrative
Science and Engineering, National University of Singapore, Kent Ridge, Singapore 117576
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| |
Collapse
|
19
|
Liu B, Quirk RP, Wesdemiotis C, Yol AM, Foster MD. Precision Synthesis of ω-Branch, End-Functionalized Comb Polystyrenes Using Living Anionic Polymerization and Thiol–Ene “Click” Chemistry. Macromolecules 2012. [DOI: 10.1021/ma301897s] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Boxi Liu
- Institute of Polymer Science
and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Roderic P. Quirk
- Institute of Polymer Science
and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Chrys Wesdemiotis
- Institute of Polymer Science
and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United
States
| | - Aleer M. Yol
- Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, United
States
| | - Mark D. Foster
- Institute of Polymer Science
and Polymer Engineering, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
20
|
Li W, Yu Y, Lamson M, Silverstein MS, Tilton RD, Matyjaszewski K. PEO-Based Star Copolymers as Stabilizers for Water-in-Oil or Oil-in-Water Emulsions. Macromolecules 2012. [DOI: 10.1021/ma3016773] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | - Michael S. Silverstein
- Department of Materials Engineering, Technion − Israel Institute of Technology, Haifa
32000, Israel
| | | | | |
Collapse
|
21
|
Terashima T, Nomura A, Ouchi M, Sawamoto M. Efficient and Robust Star Polymer Catalysts for Living Radical Polymerization: Cooperative Activation in Microgel-Core Reactors. Macromol Rapid Commun 2012; 33:833-41. [DOI: 10.1002/marc.201200045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/10/2012] [Indexed: 01/03/2023]
|
22
|
Zhang K, Wang Y, Zhu W, Li X, Shen Z. Synthesis, characterization, and micellization of PCL-g-PEG copolymers by combination of ROP and “Click” chemistry via “Graft onto” method. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/pola.25979] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
Bai L, Zhang L, Cheng Z, Zhu X. Activators generated by electron transfer for atom transfer radical polymerization: recent advances in catalyst and polymer chemistry. Polym Chem 2012. [DOI: 10.1039/c2py20286g] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Zhu W, Wang Y, Zhang Q, Shen Z. Amphiphilic PEG‐grafted poly(ester‐carbonate)s: Synthesis and diverse nanostructures in water. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24944] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Weipu Zhu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Ying Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Qiujin Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Zhiquan Shen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|