1
|
Santiago TSA, Delezuk JAM, Bataglioli RA, Baratti MO, Carvalho HF, Beppu MM. Influence of hyaluronic acid and chitosan molecular weight on the adhesion of circulating tumor cell on multilayer films. Int J Biol Macromol 2024; 281:136180. [PMID: 39357715 DOI: 10.1016/j.ijbiomac.2024.136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/25/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
CD44 is a cell receptor glycoprotein overexpressed in circulating tumor cells (CTCs), with levels linked to an increase in metastatic capacity of several tumors. Hyaluronic acid (HA), the natural ligand of CD44, has primarily been investigated for tumor cell interaction in self-assembled polyelectrolyte multilayer films, with little attention given to the complementary polycation. In this study, we screened sixteen different polyelectrolyte multilayer assemblies of HA and chitosan (CHI) to identify key assembly parameters and surface properties that control and govern CTCs adhesion. Statistics analysis revealed a major role of CHI molecular weight in the adhesion, followed by its combinatorial response either with HA ionization degree or ionic strength. PM-IRRAS analysis demonstrated a correlation between the orientation of HA carboxyl groups on the film surface and CTCs adhesion, directly impacted by CHI molecular weight. Overall, although CTCs binding onto the surface of multilayer films is primarily driven by HA-CD44 interaction, both chitosan properties and film assembly conditions modulate this interaction. These findings illustrate an alternative to modifying the performance of biomaterials with minimal changes in the composition of multilayer films.
Collapse
Affiliation(s)
- T S A Santiago
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, 500 Albert Einstein Ave, Campinas 13083-852, Brazil
| | - J A M Delezuk
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, 500 Albert Einstein Ave, Campinas 13083-852, Brazil
| | - R A Bataglioli
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, 500 Albert Einstein Ave, Campinas 13083-852, Brazil
| | - M O Baratti
- Universidade Estadual de Campinas, National Institute of Photonics Applied to Cell Biology, Carl Von Linaeus St, Campinas 13083-864, Brazil
| | - H F Carvalho
- Universidade Estadual de Campinas, National Institute of Photonics Applied to Cell Biology, Carl Von Linaeus St, Campinas 13083-864, Brazil; Universidade Estadual de Campinas, Department of Structural and Functional Biology, Bertrand Russel Ave, Campinas 13083-865, Brazil
| | - M M Beppu
- Universidade Estadual de Campinas, School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, 500 Albert Einstein Ave, Campinas 13083-852, Brazil..
| |
Collapse
|
2
|
G Lopez C, Matsumoto A, Shen AQ. Dilute polyelectrolyte solutions: recent progress and open questions. SOFT MATTER 2024; 20:2635-2687. [PMID: 38427030 DOI: 10.1039/d3sm00468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polyelectrolytes are a class of polymers possessing ionic groups on their repeating units. Since counterions can dissociate from the polymer backbone, polyelectrolyte chains are strongly influenced by electrostatic interactions. As a result, the physical properties of polyelectrolyte solutions are significantly different from those of electrically neutral polymers. The aim of this article is to highlight key results and some outstanding questions in the polyelectrolyte research from recent literature. We focus on the influence of electrostatics on conformational and hydrodynamic properties of polyelectrolyte chains. A compilation of experimental results from the literature reveals significant disparities with theoretical predictions. We also discuss a new class of polyelectrolytes called poly(ionic liquid)s that exhibit unique physical properties in comparison to ordinary polyelectrolytes. We conclude this review by listing some key research challenges in order to fully understand the conformation and dynamics of polyelectrolytes in solutions.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Aachen, 52056, Germany
| | - Atsushi Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui City, Fukui 910-8507, Japan.
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan.
| |
Collapse
|
3
|
Chauhan A, Chaudhury S. Multivalent Salt-Induced Self-Assembly of Amphiphilic Polyelectrolytes of Different Charge Fractions: A Coarse-Grained Molecular Dynamics Simulation Study. J Phys Chem B 2024; 128:2037-2044. [PMID: 38359799 DOI: 10.1021/acs.jpcb.3c07886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Amphiphilic polymers with both hydrophobic and hydrophilic blocks are of great interest for their potential applications in drug delivery. Their self-assembly behavior in response to environmental factors like ion charge and multivalent salt concentration has been the subject of recent investigation. Our study utilizes coarse-grained molecular dynamics simulations to investigate the aggregation behavior of amphiphilic copolymers upon introducing tetravalent salt at varying charge fractions. We identify a critical concentration, Cs*, where the aggregation number reaches its maximum for each charge fraction, followed by a subsequent decrease at the excessive salt regime. This study reveals distinct morphological transitions in response to increasing salt concentration and decreasing charged fractions, namely, (i) stable dispersed micelles, (ii) a singular micelle comprising all copolymer chains, and (iii) redispersed micelles, particularly evident at lower charged fractions. Our study highlights the significant influence of tetravalent salt and charge fractions of polyelectrolyte chains on the self-assembly behavior of polyelectrolyte copolymers.
Collapse
Affiliation(s)
- Akshay Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
4
|
Carrillo JM, Wang Y, Kumar R, Sumpter BG. Coarse-grained explicit-solvent molecular dynamics simulations of semidilute unentangled polyelectrolyte solutions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:92. [PMID: 37796422 DOI: 10.1140/epje/s10189-023-00342-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
We present results from explicit-solvent coarse-grained molecular dynamics (MD) simulations of fully charged, salt-free, and unentangled polyelectrolytes in semidilute solutions. The inclusion of a polar solvent in the model allows for a more physical representation of these solutions at concentrations, where the assumptions of a continuum dielectric medium and screened hydrodynamics break down. The collective dynamic structure factor of polyelectrolytes, S(q, t), showed that at [Formula: see text], where [Formula: see text] is the polyelectrolyte peak in the structure factor S(q) and [Formula: see text] is the correlation length, the relaxation time obtained from fits to stretched exponential was [Formula: see text], which describes unscreened Zimm-like dynamics. This is in contrast to implicit-solvent simulations using a Langevin thermostat where [Formula: see text]. At [Formula: see text], a crossover region was observed that eventually transitions to another inflection point [Formula: see text] at length scales larger than [Formula: see text] for both implicit- and explicit-solvent simulations. The simulation results were also compared to scaling predictions for correlation length, [Formula: see text], specific viscosity, [Formula: see text], and diffusion coefficient, [Formula: see text], where [Formula: see text] is the polyelectrolyte concentration. The scaling prediction for [Formula: see text] holds; however, deviations from the predictions for [Formula: see text] and D were observed for systems at higher [Formula: see text], which are in qualitative agreements with recent experimental results. This study highlights the importance of explicit-solvent effects in molecular dynamics simulations, particularly in semidilute solutions, for a better understanding of polyelectrolyte solution behavior.
Collapse
Affiliation(s)
- Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
5
|
Rudov AA, Portnov IV, Bogdanova AR, Potemkin II. Structure of swollen hollow polyelectrolyte nanogels with inhomogeneous cross-link distribution. J Colloid Interface Sci 2023; 640:1015-1028. [PMID: 36921382 DOI: 10.1016/j.jcis.2023.02.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/31/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
HYPOTHESIS Recently, it has become possible to synthesize hollow polyelectrolyte nano- and microgels. The shell permeability can be controlled by external stimuli, while the cavity can serve as a storage place for guest molecules. However, there is a lack of a detailed understanding at the molecular level regarding the role of the network topology, inhomogeneities of the distribution of cross-links, and the impact of the electrostatics on the structural response of hollow microgel to external stimuli. To bridge these gaps, molecular dynamics (MD) of computer simulations are used. EXPERIMENTS Here, we propose a fresh methodology to create realistic hollow microgel particles in silico. The technique involves a gradual change in the average local length of subchains depending on the distance to the center of mass of the microgel particles resulting in the microgels with a non-uniform distribution of cross-linking species. In particular, a series of microgels with (i) a highly cross-linked inner part of the shell and gradually decreased cross-linker concentration towards the periphery, (ii) microgels with loosely cross-linked inner and outer parts, as well as (iii) microgels with a more-or-less homogeneous structure, have been created and validated. Counterions and salt ions are taken into account explicitly, and electrostatic interactions are described by the Coulomb potential. FINDINGS Our studies reveal a strong dependence of the microgel swelling response on the network topology. Simple redistribution of cross-links plays a significant role in the structure of the microgels, including cavity size, microgel size, fuzziness, and extension of the inner and outer parts of the microgels. Our results indicate the possibilities of qualitative justification of the structure of the hollow microgels in the experiments by measuring the relative change in the size of the sacrificial core to the size of the cavity and by estimation of a power law function, [Formula: see text] , of the hydrodynamic radius of the hollow microgels as a function of added salt concentration.
Collapse
Affiliation(s)
- Andrey A Rudov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan V Portnov
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation; A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Alisa R Bogdanova
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
6
|
Carrillo JMY, Chen Z, Premadasa UI, Steinmetz C, Coughlin EB, Doughty B, Russell TP, Sumpter BG. Assembly of polyelectrolyte star block copolymers at the oil-water interface. NANOSCALE 2023; 15:1042-1052. [PMID: 36421060 DOI: 10.1039/d2nr05113c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To understand and resolve adsorption, reconfiguration, and equilibrium conformations of charged star copolymers, we carried out an integrated experimental and coarse-grained molecular dynamics simulation study of the assembly process at the oil-water interface. This is important to guide development of novel surfactants or amphiphiles for chemical transformations and separations. The star block copolymer consisted of arms that are comprised of hydrophilic-hydrophobic block copolymers that are covalently tethered via the hydrophobic blocks to one point. The hydrophobic core represents polystyrene (PS) chains, while the hydrophilic corona represents quaternized poly(2-vinylpyridine) (P2VP) chains. The P2VP is modeled to become protonated when in contact with an acidic aqueous phase, thereby massively increasing the hydrophilicity of this block, and changing the nature of the star at the oil-water interface. This results in a configurational change whereby the chains comprising the hydrophilic corona are significantly stretched into the aqueous phase, while the hydrophobic core remains solubilized in the oil phase. In the simulations, we followed the kinetics of the anchoring and assembly of the star block copolymer at the interface, monitoring the lateral assembly, and the subsequent reconfiguration of the star via changes in the interfacial tension that varies as the degree-of-protonation increases. At low fractions of protonation, the arm cannot fully partition into the aqueous side of the interface and instead interacts with other arms in the oil phase forming a network near the interface. These insights were used to interpret the non-monotonic dependence of pH with the asymptotic interfacial tension from pendant drop tensiometry experiments and spectral signatures of aromatic stretches seen in vibrational sum frequency generation (SFG) spectroscopy. We describe the relationship of interfacial tension to the star assembly via the Frumkin isotherm, which phenomenologically describes anti-cooperativity in adsorbing stars to the interface due to crowding. Although our model explicitly considers long-range electrostatics, the contribution of electrostatics to interfacial tension is small and brought about by strong counterion condensation at the interface. These results provide key insights into resolving the adsorption, reconfiguration, and equilibrium conformations of charged star block copolymers as surfactants.
Collapse
Affiliation(s)
- Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Zhan Chen
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
| | - Uvinduni I Premadasa
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Christian Steinmetz
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
| | - E Bryan Coughlin
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| | - Thomas P Russell
- Polymer Science and Engineering Department, Conte Center for Polymer Research, University of Massachusetts, Amherst, MA 01003, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
| |
Collapse
|
7
|
Liang H, Webb MA, Chawathe M, Bendejacq D, de Pablo JJ. Understanding the Structure and Rheology of Galactomannan Solutions with Coarse-Grained Modeling. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| | - Michael A. Webb
- Chemical and Biological Engineering, Princeton University, Princeton, New Jersey08544, United States
| | - Manasi Chawathe
- Complex Assemblies of Soft Matter Laboratory, IRL 3254, Solvay USA Inc., Bristol, Pennsylvania19007, United States
| | - Denis Bendejacq
- Complex Assemblies of Soft Matter Laboratory, IRL 3254, Solvay USA Inc., Bristol, Pennsylvania19007, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois60637, United States
| |
Collapse
|
8
|
Walhout PK, He Z, Dutagaci B, Nawrocki G, Feig M. Molecular Dynamics Simulations of Rhodamine B Zwitterion Diffusion in Polyelectrolyte Solutions. J Phys Chem B 2022; 126:10256-10272. [PMID: 36440862 PMCID: PMC9813770 DOI: 10.1021/acs.jpcb.2c06281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyelectrolytes continue to find wide interest and application in science and engineering, including areas such as water purification, drug delivery, and multilayer thin films. We have been interested in the dynamics of small molecules in a variety of polyelectrolyte (PE) environments; in this paper, we report simulations and analysis of the small dye molecule rhodamine B (RB) in several very simple polyelectrolyte solutions. Translational diffusion of the RB zwitterion has been measured in fully atomistic, 2 μs long molecular dynamics simulations in four different polyelectrolyte solutions. Two solutions contain the common polyanion sodium poly(styrene sulfonate) (PSS), one with a 30-mer chain and the other with 10 trimers. The other two solutions contain the common polycation poly(allyldimethylammonium) chloride (PDDA), one with two 15-mers and the other with 10 trimers. RB diffusion was also simulated in several polymer-free solutions to verify its known experimental value for the translational diffusion coefficient, DRB, of 4.7 × 10-6 cm2/s at 300 K. RB diffusion was slowed in all four simulated PE solutions, but to varying degrees. DRB values of 3.07 × 10-6 and 3.22 × 10-6 cm2/s were found in PSS 30-mer and PSS trimer solutions, respectively, whereas PDDA 15-mer and trimer solutions yielded values of 2.19 × 10-6 and 3.34 × 10-6 cm2/s. Significant associations between RB and the PEs were analyzed and interpreted via a two-state diffusion model (bound and free diffusion) that describes the data well. Crowder size effects and anomalous diffusion were also analyzed. Finally, RB translation along the polyelectrolytes during association was characterized.
Collapse
Affiliation(s)
| | - Zhe He
- Wheaton College, Chemistry Department, 501 College Ave, Wheaton, IL 60187
| | - Bercem Dutagaci
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| | - Grzegorz Nawrocki
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| | - Michael Feig
- Michigan State University, Biochemistry and Molecular Biology, 603 Wilson Road, Room 218, East Lansing, MI 48824
| |
Collapse
|
9
|
Safi Samghabadi F, Slim AH, Smith MW, Chabi M, Conrad JC. Dynamics of Filamentous Viruses in Polyelectrolyte Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Ali H. Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maxwell W. Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maede Chabi
- Department of Biomedical Engineering, University of Houston, Houston, Texas77204, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
10
|
Phase Behavior of Ion-Containing Polymers in Polar Solvents: Predictions from a Liquid-State Theory with Local Short-Range Interactions. Polymers (Basel) 2022; 14:polym14204421. [PMID: 36297998 PMCID: PMC9612006 DOI: 10.3390/polym14204421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The thermodynamic phase behavior of charged polymers is a crucial property underlying their role in biology and various industrial applications. A complete understanding of the phase behaviors of such polymer solutions remains challenging due to the multi-component nature of the system and the delicate interplay among various factors, including the translational entropy of each component, excluded volume interactions, chain connectivity, electrostatic interactions, and other specific interactions. In this work, the phase behavior of partially charged ion-containing polymers in polar solvents is studied by further developing a liquid-state (LS) theory with local shortrange interactions. This work is based on the LS theory developed for fully-charged polyelectrolyte solutions. Specific interactions between charged groups of the polymer and counterions, between neutral segments of the polymer, and between charged segments of the polymer are incorporated into the LS theory by an extra Helmholtz free energy from the perturbed-chain statistical associating fluid theory (PC-SAFT). The influence of the sequence structure of the partially charged polymer is modeled by the number of connections between bonded segments. The effects of chain length, charge fraction, counterion valency, and specific short-range interactions are explored. A computational App for salt-free polymer solutions is developed and presented, which allows easy computation of the binodal curve and critical point by specifying values for the relevant model parameters.
Collapse
|
11
|
Pothukuchi RP, Radhakrishna M. Understanding the stimuli responsive behavior of polyion grafted nanoparticles in the presence of salt and polyelectrolytes. SOFT MATTER 2022; 18:6124-6137. [PMID: 35943182 DOI: 10.1039/d2sm00650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design of nanoparticles (NPs) that respond to external stimuli like pH, temperature, and electric or magnetic fields has found immense interest in various fields of nanotechnology like nanomedicine, drug delivery, and cancer therapy. Nanoparticles grafted with polymeric ligands have been extensively used as building blocks in the directed self assembly of nanoparticles. These moieties not only assemble into various morphologies but also respond to a wide range of external stimuli. In this work, we have used coarse grained molecular dynamics simulations to understand the stimuli-responsive behavior of assemblies of NPs grafted with oppositely charged polyions (PGNs) in the presence of salt and polyelectrolytes. At low grafting density, a transformation from ring morphology to form dimers/strings/dispersed NPs was observed upon addition of divalent/trivalent salts. NPs grafted with longer grafts showed higher stability to remain as rings compared to shorter grafts. The change in NP morphology was a direct consequence of preferential interaction of the polyaion grafts with the oppositely charged salt ions compared to the oppositely charged grafts on the NPs. At fixed salt valency, the size of the salt ion, concentration and molecular connectivity played a crucial role in the stimuli responsive behavior of polyion grafted NPs in solutions. Further, in the presence of polyelectrolytes, these transitions occurred at lower monomer valency due to the stronger electrostatic interactions between the grafted chains and oppositely charged free polyelectrolytes in solutions. Disordered and ordered aggregates assemblies formed at higher grafting density were broken into smaller NP assemblies in the presence of salt. Drug encapsulation studies in the presence of salt and polyelectrolytes were performed on model drug moieties in order to demonstrate the potential use of the modelled stimuli responsive nanoparticle assemblies in drug delivery applications.
Collapse
Affiliation(s)
- Rajesh Pavan Pothukuchi
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar, Palaj, Gujarat 382355, India.
| | - Mithun Radhakrishna
- Discipline of Chemical Engineering, Indian Institute of Technology (IIT), Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
12
|
Slim AH, Shi WH, Safi Samghabadi F, Faraone A, Marciel AB, Poling-Skutvik R, Conrad JC. Electrostatic Repulsion Slows Relaxations of Polyelectrolytes in Semidilute Solutions. ACS Macro Lett 2022; 11:854-860. [PMID: 35758769 DOI: 10.1021/acsmacrolett.2c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the structure and dynamics of unentangled semidilute solutions of sodium polystyrenesulfonate (NaPSS) using small-angle neutron scattering (SANS) and neutron spin-echo (NSE) spectroscopy. The effects of electrostatic interactions and chain structure are examined as a function of ionic strength and polymer concentration, respectively. The SANS profiles exhibit a characteristic structural peak, signature of polyelectrolyte solutions, that can be fit with a combination of a semiflexible chain with excluded volume interactions form factor and a polymer reference interaction site model (PRISM) structure factor. We confirm that electrostatic interactions vary with ionic strength across solutions with similar geometries. The segmental relaxations from NSE deviate from theoretical predictions from Zimm and exhibit two scaling behaviors, with the crossover between the two regimes taking place around the characteristic structural peak. The chain dynamics are suppressed across the length scale of the correlation blob, and inversely related to the structure factor. These observations suggest that the highly correlated nature of polyelectrolytes presents an additional energy barrier that leads to de Gennes narrowing behavior.
Collapse
Affiliation(s)
- Ali H Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Winnie H Shi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Antonio Faraone
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
13
|
Bonnaud PA, Ushiyama H, Tejima S, Fujita JI. Viscoelasticity of Low-Molecular-Weight Polyelectrolytes. J Phys Chem B 2022; 126:4899-4913. [PMID: 35732066 DOI: 10.1021/acs.jpcb.2c01448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shear-thickening fluids that absorb the impact energy of high-velocity projectiles are of great interest for aerospace and body-armor applications. In such a frame, we investigate transient states of neat and aqueous polyelectrolytes (PE) having low molecular weights and containing poly([2-(methacryloyloxy)ethyl]trimethylammonium) as polycations and poly(acrylamide-co-acrylic acid) as polyanions. We compare results with those of bulk water. We employ nonequilibrium molecular dynamics to simulate oscillatory shear, mainly in the linear viscoelastic regime. We find that neat PE exhibits properties of a viscoelastic solid, whereas water and the aqueous mixture of PE conform to viscoelastic liquids with Maxwellian behavior at low angular frequencies. Terminal relaxation times are ∼0.499 and ∼1.385 ps for water and the aqueous mixture of PE, respectively. At high angular frequencies, storage moduli show anomalous behaviors that correspond to transitions between shear thinning and shear thickening in complex shear viscosities. The change in potential energy with the increase of the angular frequency is mainly driven by intramolecular interactions for neat PE, whereas short-range Coulomb interactions are the major contributions for water and the aqueous mixture of PE. Upon observation of the molecular configurations, only the local polyionic structure in the aqueous mixture of PE shows improvement when increasing the angular frequency, whereas the rest remains barely affected. Thus, the water structure in the aqueous mixture of PE allows the storage of energy elastically through the hydrogen-bond network at large angular frequencies, whereas the mechanical contribution of polyions weakens and fully vanishes at the beginning of shear thinning, explaining the superimposed data with data of bulk water. Our method and findings set the path for future molecular simulations in the nonlinear viscoelastic regime with more complex underlying molecular mechanisms.
Collapse
Affiliation(s)
- Patrick A Bonnaud
- Department of Computational Science and Technology, Research Organization for Information Science and Technology, 1-18-16 Hamamatsucho, Minato, Tokyo 105-0013, Japan.,University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ushiyama
- Department of Computational Science and Technology, Research Organization for Information Science and Technology, 1-18-16 Hamamatsucho, Minato, Tokyo 105-0013, Japan
| | - Syogo Tejima
- Department of Computational Science and Technology, Research Organization for Information Science and Technology, 1-18-16 Hamamatsucho, Minato, Tokyo 105-0013, Japan
| | - Jun-Ichi Fujita
- Institute of Applied Physics, Graduate School of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
14
|
Liang H, de Pablo JJ. A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
15
|
Teng J, Zhang H, Lin H, Lu M, Xu X, Gao T, You X. Molecular level insights into the dynamic evolution of forward osmosis fouling via thermodynamic modeling and quantum chemistry calculation: Effect of protein/polysaccharide ratios. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Lytle TK, Yethiraj A. The effect of explicit counterion binding on the transference number of polyelectrolyte solutions. J Chem Phys 2022; 156:104901. [DOI: 10.1063/5.0083414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polyelectrolyte solutions have been proposed as a method to improve the efficiency of lithium-ion batteries by increasing the cation transference number because the polymer self-diffusion coefficient is much lower than that of the counterion. However, this is not necessarily true for the polymer mobility. In some cases, negative transference numbers have been reported, which implies that the lithium ions are transporting to the same electrode as the anion, behavior that is often attributed to a binding of counterions to the polyion. We use a simple model where we bind some counterions to the polymer via harmonic springs to investigate this phenomenon. We find that both the number of bound counterions and the strength of their binding alter the transference number, and, in some cases, the transference number is negative. We also investigate how the transference number depends on the Manning parameter, the ratio of the Bjerrum length to charge separation along the chain. By altering the Manning parameter, the transference number can almost be doubled, which suggests that charge spacing could be a way to increase the transference number of polyelectrolyte solutions.
Collapse
Affiliation(s)
- T. K. Lytle
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - A. Yethiraj
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
17
|
Thurston BA, Grest GS, Stevens MJ. Overlap Concentration of Sodium Polystyrene Sulfonate in Solution. ACS Macro Lett 2022; 11:217-222. [PMID: 35574772 DOI: 10.1021/acsmacrolett.1c00649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The overlap concentration c* of sodium polystyrene sulfonate in water is calculated using multichain atomistic and coarse grained (CG) simulations for a range of chain lengths. Fully atomistic molecular dynamics simulations are carried out for N = 32-192 monomers. The CG model was parameterized to match the end-to-end distance from the atomistic simulations at small N and allows us to simulate a much larger N. Treating the hydrophobic backbone by inclusion of attraction between monomers is an essential addition to the CG model. The simulation c* are in agreement with experimental data, yet at c*, the chains are not fully stretched, even for N as large as 1200. This implies that none of the experimental systems are in the scaling regime and to reach the scaling regime for NaPSS chains much longer than N = 1200 are required.
Collapse
Affiliation(s)
- Bryce A. Thurston
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Gary S. Grest
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mark J. Stevens
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
18
|
Chakraborty G, Bhattarai A, De R. Polyelectrolyte-Dye Interactions: An Overview. Polymers (Basel) 2022; 14:598. [PMID: 35160587 PMCID: PMC8840521 DOI: 10.3390/polym14030598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Polyelectrolytes are polymers with repeating units of ionizable groups coupled with counterions. Recently, polyelectrolytes have drawn significant attention as highly promising macromolecular materials with potential for applications in almost every sector of our daily lives. Dyes are another class of chemical compounds that can interact with substrates and subsequently impart color through the selective absorption of electromagnetic radiation in the visible range. This overview begins with an introduction to polyelectrolytes and dyes with their respective definitions, classifications (based on origin, molecular architecture, etc.), and applications in diverse fields. Thereafter, it explores the different possible interactions between polyelectrolytes and dyes, which is the main focus of this study. The various mechanisms involved in dye-polyelectrolyte interactions and the factors that influence them are also surveyed. Finally, these discussions are summarized, and their future perspectives are presented.
Collapse
Affiliation(s)
- Gulmi Chakraborty
- Department of Chemistry, C. V. Raman Global University, Odisha 752054, India;
| | - Ajaya Bhattarai
- Department of Chemistry, Mahendra Morang Adarsh Multiple Campus, Tribhuvan University, Biratnagar 56613, Nepal
| | - Ranjit De
- School of Material Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
19
|
Bercea M, Wolf BA. Solutions of polymer blends in highly saline water: Salt-induced inversions of viscosity effects for poly(ethylene oxide) + poly(sodium 4-styrenesulfonate). POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Hu B, Carrillo JM, Collins L, Silmore KS, Keum J, Bonnesen PV, Wang Y, Retterer S, Kumar R, Lokitz BS. Modular Approach for the Synthesis of Bottlebrush Diblock Copolymers from Poly(Glycidyl Methacrylate)-block-Poly(Vinyldimethylazlactone) Backbones. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bin Hu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kevin S. Silmore
- Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jong Keum
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Peter V. Bonnesen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Scott Retterer
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bradley S. Lokitz
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
21
|
Dabhade A, Chaudhury S. Simulation Study of the Conformational Properties of Diblock Polyelectrolytes in Salt Solutions. Chem Asian J 2021; 16:3354-3362. [PMID: 34410041 DOI: 10.1002/asia.202100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Coarse-grained molecular dynamics simulations are performed to understand the behavior of diblock polyelectrolytes in solutions of divalent salt by studying the conformations of chains over a wide range of salt concentrations. The polymer molecules are modeled as bead spring chains with different charged fractions and the counterions and salt ions are incorporated explicitly. Upon addition of a divalent salt, the salt cations replace the monovalent counterions, and the condensation of divalent salt cations onto the polyelectrolyte increases, and the chains favor to collapse. The condensation of ions changes with the salt concentration and depends on the charged fraction. Also, the degree of collapse at a given salt concentration changes with the increasing valency of the counterion due to the bridging effect. As a quantitative measure of the distribution of counterions around the polyelectrolyte chain, we study the radial distribution function between monomers on different polyelectrolytes and the counterions inside the counterion worm surrounding a polymer chain at different concentrations of the divalent salt. Our simulation results show a strong dependence of salt concentration on the conformational properties of diblock copolymers and indicate that it can tune the self-assembly behaviors of such charged polyelectrolyte block copolymers.
Collapse
Affiliation(s)
- Akash Dabhade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| |
Collapse
|
22
|
Lopez CG, Linders J, Mayer C, Richtering W. Diffusion and Viscosity of Unentangled Polyelectrolytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Carlos G. Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| | - Jürgen Linders
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christian Mayer
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, 45117 Essen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany
| |
Collapse
|
23
|
Friedowitz S, Qin J. Reversible ion binding for polyelectrolytes with adaptive conformations. AIChE J 2021. [DOI: 10.1002/aic.17426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sean Friedowitz
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Jian Qin
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
24
|
Herschberg T, Carrillo JMY, Sumpter BG, Panagiotou E, Kumar R. Topological Effects Near Order–Disorder Transitions in Symmetric Diblock Copolymer Melts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tom Herschberg
- Department of Computer Science and Engineering, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Eleni Panagiotou
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, Tennessee 37403, United States
| | - Rajeev Kumar
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
25
|
Sayko R, Tian Y, Liang H, Dobrynin AV. Charged Polymers: From Polyelectrolyte Solutions to Polyelectrolyte Complexes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan Sayko
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yuan Tian
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
26
|
Polyelectrolyte Gels: A Unique Class of Soft Materials. Gels 2021; 7:gels7030102. [PMID: 34449600 PMCID: PMC8395725 DOI: 10.3390/gels7030102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this article is to introduce the readers to the field of polyelectrolyte gels. These materials are common in living systems and have great importance in many biomedical and industrial applications. In the first part of this paper, we briefly review some characteristic properties of polymer gels with an emphasis on the unique features of this type of soft material. Unsolved problems and possible future research directions are highlighted. In the second part, we focus on the typical behavior of polyelectrolyte gels. Many biological materials (e.g., tissues) are charged (mainly anionic) polyelectrolyte gels. Examples are shown to illustrate the effect of counter-ions on the osmotic swelling behavior and the kinetics of the swelling of model polyelectrolyte gels. These systems exhibit a volume transition as the concentration of higher valence counter-ions is gradually increased in the equilibrium bath. A hierarchy is established in the interaction strength between the cations and charged polymer molecules according to the chemical group to which the ions belong. The swelling kinetics of sodium polyacrylate hydrogels is investigated in NaCl solutions and in solutions containing both NaCl and CaCl2. In the presence of higher valence counter-ions, the swelling/shrinking behavior of these gels is governed by the diffusion of free ions in the swollen network, the ion exchange process and the coexistence of swollen and collapsed states.
Collapse
|
27
|
Kuzminskaya O, Hoffmann I, Clemens D, Gradzielski M. Viscosity of Polyelectrolyte Surfactant Complexes—The Importance of the Choice of the Polyelectrolyte Seen for the Case of PDADMAC Versus JR 400. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Olga Kuzminskaya
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin, Germany
| | - Ingo Hoffmann
- Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9, France
| | | | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin, Germany
| |
Collapse
|
28
|
Gupta AK. Combined Salt Concentration and Degree-of-Ionization Effect on the Structure of Poly(methacrylic acid) in Aqueous Solutions as Revealed by Molecular Dynamics Simulations. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Abhishek Kumar Gupta
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat 382426, India
| |
Collapse
|
29
|
Del Sorbo GR, Cristiglio V, Clemens D, Hoffmann I, Schneck E. Influence of the Surfactant Tail Length on the Viscosity of Oppositely Charged Polyelectrolyte/Surfactant Complexes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Giuseppe Rosario Del Sorbo
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Viviana Cristiglio
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Daniel Clemens
- Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, D-14109 Berlin, Germany
| | - Ingo Hoffmann
- Institut Max von Laue-Paul Langevin (ILL), 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
| | - Emanuel Schneck
- Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany
| |
Collapse
|
30
|
Shen KH, Fan M, Hall LM. Molecular Dynamics Simulations of Ion-Containing Polymers Using Generic Coarse-Grained Models. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02557] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
31
|
Starvaggi H, Tian Y, Liang H, Dobrynin AV. Bottlebrushes and Combs with Bimodal Distribution of the Side Chains: Diagram of States and Scattering Function. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haley Starvaggi
- School of Polymer Science and Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Yuan Tian
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
32
|
Dodero A, Vicini S, Castellano M. Depolymerization of sodium alginate in saline solutions via ultrasonic treatments: A rheological characterization. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Kumar Y, Gupta AK, Natarajan U. Conformational and intermolecular structure of stereoregular isomers of poly(acrylic acid) (PAA) and Na+-poly(acrylate) polyelectrolyte (Na+-PAA) in dilute aqueous solution: a molecular dynamics simulation study. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1846036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yogendra Kumar
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Abhishek K. Gupta
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Upendra Natarajan
- Macromolecular Modeling and Simulation Laboratory, Department of Chemical Engineering, Indian Institute of Technology (IIT) Madras, Chennai, India
| |
Collapse
|
34
|
Sayko R, Wang Z, Liang H, Becker ML, Dobrynin AV. Degradation of Block Copolymer Films Confined in Elastic Media: Molecular Dynamics Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan Sayko
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Zilu Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Andrey V. Dobrynin
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
35
|
Fu X, Chen T, Wang C, Zhang Y. Rheological Behavior of a Quaternary Ammonium Copolymer in the Presence of Inorganic Salts. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1816886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xingqin Fu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| | - Tingting Chen
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| | - Chendong Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| | - Yuejun Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, P.R. China
| |
Collapse
|
36
|
Bello L, Sing CE. Mechanisms of Diffusive Charge Transport in Redox-Active Polymer Solutions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liliana Bello
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
37
|
Affiliation(s)
- Sarit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
38
|
Lopez CG, Horkay F, Mussel M, Jones RL, Richtering W. Screening lengths and osmotic compressibility of flexible polyelectrolytes in excess salt solutions. SOFT MATTER 2020; 16:7289-7298. [PMID: 32667374 PMCID: PMC8281568 DOI: 10.1039/d0sm00464b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report results of small angle neutron scattering measurements made on sodium polystyrene sulfonate in aqueous salt solutions. The correlation length (ξ) and osmotic compressibility are measured as a function of polymer (c) and added salt (cS) concentrations, and the results are compared with scaling predictions and the random-phase approximation (RPA). In Dobrynin et al.'s scaling model the osmotic pressure consists of a counter-ion contribution and a polymer contribution. The polymer contribution is found to be two orders of magnitude smaller than expected from the scaling model, in agreement with earlier observations made on neutral polymers in good solvent condition. RPA allows the determination of single-chain dimensions in semidilute solutions at high polymer and added salt concentrations, but fails for cS≤ 2 M. The χ parameter can be modelled as the sum of an intrinsic contribution (χ0) and an electrostatic term: χ∼χ0 + K'/√cS, where χ0 > 0.5 is consistent with the hydrophobic nature of the backbone of NaPSS. The dependence of χelec∼ 1/√cS disagrees with the random-phase approximation (χelec∼ 1/cs), but agrees with the light scattering results in dilute solution and Dobrynin et al.'s scaling treatment of electrostatic excluded volume.
Collapse
Affiliation(s)
- Carlos G Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | | | | | | | | |
Collapse
|
39
|
Samanta M, Chaudhury S. Coarse-grained molecular dynamics simulations study of the conformational properties of single polyelectrolyte diblock copolymers. Biophys Chem 2020; 266:106437. [PMID: 32771806 DOI: 10.1016/j.bpc.2020.106437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
We use coarse-grained molecular dynamics simulations to study a single di block polyelectrolyte chain in solution. We analyze the conformational properties of the chain and localization of counterions as a function of the charge fraction, backbone stiffness, Bjerrum length, and counterion valence. The interplay between the excluded-volume effects and the electrostatic interactions among charged residues leads to variation in block-polyelectrolyte architecture. Our computational findings indicate that varying such system properties lead to nontrivial effects and can be a powerful mechanism to tune the conformational properties of block polyelectrolytes.
Collapse
Affiliation(s)
- Mrityunjay Samanta
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.
| |
Collapse
|
40
|
|
41
|
Landsgesell J, Hebbeker P, Rud O, Lunkad R, Košovan P, Holm C. Grand-Reaction Method for Simulations of Ionization Equilibria Coupled to Ion Partitioning. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00260] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| | - Pascal Hebbeker
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Oleg Rud
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Raju Lunkad
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 43 Prague, Czech Republic
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, D-70569 Stuttgart, Germany
| |
Collapse
|
42
|
Huang J, Zajforoushan Moghaddam S, Maroni P, Thormann E. Swelling Behavior, Interaction, and Electrostatic Properties of Chitosan/Alginate Dialdehyde Multilayer Films with Different Outermost Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3782-3791. [PMID: 32212609 DOI: 10.1021/acs.langmuir.0c00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, self-cross-linked chitosan/alginate dialdehyde multilayer films, capped with either alginate dialdehyde (6 layers) or chitosan (7 layers), were fabricated using the layer-by-layer method. The disruption of the electrostatic equilibrium when exposing the fabricated layers to acidic and alkaline conditions causes swelling within the film and independently in the outermost layer, showing dependence on the ionic strength. Spectroscopic ellipsometry and quartz crystal microbalance with dissipation monitoring were employed to examine the swelling behavior. Atomic force microscopy colloidal probe measurements were conducted to assess the surface forces between the multilayer films at different pH and ionic strengths. Finally, the electrostatic properties of the multilayer films were examined at different pH and ionic strengths using zeta potential measurements. The results suggest that stimuli-responsiveness and overall swelling behavior of the polysaccharide multilayer films significantly depend on the outermost layer, an effect that should expectedly become more pronounced the thinner the film becomes.
Collapse
Affiliation(s)
- Junhao Huang
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
43
|
Batys P, Morga M, Bonarek P, Sammalkorpi M. pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J Phys Chem B 2020; 124:2961-2972. [PMID: 32182068 PMCID: PMC7590956 DOI: 10.1021/acs.jpcb.0c01475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the β-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science and Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
44
|
Sayko R, Wang Z, Liang H, Becker ML, Dobrynin AV. Degradation of Films of Block Copolymers: Molecular Dynamics Simulations. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan Sayko
- University of Akron, Akron, Ohio 44325, United States
| | - Zilu Wang
- University of Akron, Akron, Ohio 44325, United States
| | - Heyi Liang
- University of Akron, Akron, Ohio 44325, United States
| | | | | |
Collapse
|
45
|
Viscosity Behavior of P(DAC-AM) with Serial Cationicity and Intrinsic Viscosity in Inorganic Salt Solutions. Polymers (Basel) 2019; 11:polym11121944. [PMID: 31779246 PMCID: PMC6960869 DOI: 10.3390/polym11121944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
The poly(acryloyloxyethyl trimethyl ammonium chloride-co-acrylamide), P(DAC-AM), is a kind of cationic polyelectrolyte usually applied in a solution form, and its performance is affected by its structure and the environment where it is used. In particular, its viscosity properties in salt solutions are directly related to its efficacy in various applications, and the performance is one of the most important solution properties. Therefore, in this paper, the effects of the salt concentration and valence of seven kinds of inorganic salts, NaCl, LiCl, KCl, MgCl2, AlCl3, Na2SO4, and Na3PO4, on the values of apparent viscosity (ηa) of P(DAC-AM) samples with cationicity of 10%, 50%, and 90%, and intrinsic viscosity ([η]) of 5, 10, and 15 dL/g were investigated. The ηa was determined using a rotational viscometer. The interaction mechanism between the polymers and salt ions was also investigated. The results showed that depending on the salt concentration, the ηa firstly decreased sharply to the inflection point which indicated the minimum volume of the molecule shrinking, and then either maintained the value unchanged or increased. The salt concentration corresponding to the inflection point decreased with the increase of the salt ion valence but with the reduction of the cationicity of the polymer. The ηa at the inflection point increased as the [η] of the polymer grew. This indicated that the salt concentration and the salt ion valence had a notable impact on the stretch of the cationic polymer molecule in the salt solutions. It was discovered that the phenomenon of the increase of the ηa of P(DAC-AM) samples in the multivalent salt solutions after the inflection point was caused by not only the increase of the ηa of the complexes formed from the pure salts, but also the viscosity resistance of the charge and volume between the polymer molecules and salt ions, as well as the complexes themselves. The linear relationship between the increased ηa and the salt concentration, representing the interaction both among the complexes themselves and between the polymer and complexes, was obtained. Furthermore, the interaction model between the salt ions and P(DAC-AM) molecules in a wide range of salt concentrations was illustrated.
Collapse
|
46
|
Tan HG, Xia G, Liu LX, Niu XH, Hao QH. Surface Patterns of a Tetrahedral Polyelectrolyte Brush Induced by Grafting Density and Charge Fraction. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2351-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Pavlov GM, Dommes OA, Okatova OV, Gavrilova II, Panarin EF. Influence of Electrostatic Long-Range and Short-Range Effects on the Conformations of Flexible-Chain Linear Polyelectrolyte Macromolecules with Different Charge Density in Salt-Free Aqueous Solutions. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19060087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Bakhshandeh A, Segala M. Adsorption of polyelectrolytes on charged microscopically patterned surfaces. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2350-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Tan HG, Xia G, Liu LX, Miao B. Morphologies of a polyelectrolyte brush grafted onto a cubic colloid in the presence of trivalent ions. Phys Chem Chem Phys 2019; 21:20031-20044. [PMID: 31478539 DOI: 10.1039/c9cp03819a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study the morphologies of a polyelectrolyte brush grafted onto a surface of cubic geometry under good solvent conditions in the presence of trivalent counterions, using molecular dynamics simulations. The electrostatic correlation effect and excluded volume effect on the morphologies are studied through varying the charge fraction and grafting density, respectively. Combining snapshots of surface morphologies, brush height, distribution profiles of polymer monomers, and monomer-monomer/counterion pair correlation functions, it is clearly shown that the electrostatic correlation effect, represented by the trivalent-counterion-mediated bridging effect, can induce lateral microphase separation of the cubic polyelectrolyte brush, resulting in the formation of pinned patches. These structures then lead to multi-scale ordering in the brush system and, thereby, a non-monotonic dependence of the brush height, corresponding to a collapse-to-swell transition, on the grafting density. Our simulation results demonstrate that, with the sequence of surface morphologies responsive to adjusting external parameters, the cubic polyelectrolyte brush can serve as a candidate system for the manufacturing of smart stimuli-responsive materials.
Collapse
Affiliation(s)
- Hong-Ge Tan
- College of Science, Civil Aviation University of China, Tianjin 300300, China.
| | | | | | | |
Collapse
|