1
|
Wang S, Yi K, Guan X, Zhou Z, Cao Y, Zhang X. Construction of charge-reversible coordination-crosslinked spherical nucleic acids to deliver dual anti-cancer genes and ferroptosis payloads. Int J Biol Macromol 2024; 277:134515. [PMID: 39106627 DOI: 10.1016/j.ijbiomac.2024.134515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 08/09/2024]
Abstract
Spherical nucleic acids (SNAs) are nanostructures with the DNA arranged radially on the surface, thus allowing specific binding with cancer cells expressing high levels of scavenger receptor-A to enhance cellular uptake. However, conventional carriers for SNAs are cytotoxic, not degradable and difficult to deliver multiple payloads. In this study, we developed charge-reversible coordination-crosslinked SNAs to deliver dual anti-cancer genes and ferroptosis payload for anti-cancer purposes. To this end, we modified poly(lactic acid) (PLA) with functionalized side chains to allow its binding with antisense oligonucleotides (ASOs) and siRNA, annealed two single-stranded RNAs to obtain double-stranded RNA, and introduced a polyethylene glycol (PEG) shell to enhance the circulation time. Additionally, the ferroptosis payload imidazole was coordinated with iron ions as a core-crosslinked group to enhance the stability of SNAs and efficiency to kill cancer cells. We demonstrated that this novel nanocomplex efficiently internalized and killed CT-26 cells in vitro. In vivo data confirmed that the dual gene delivery system successfully targeted CT-26 tumors in tumor-bearing BALB/c mice, and exhibited strong tumor suppression ability, without inducing adverse toxic effects. Taken together, our dual gene therapy system offered an enhanced anti-tumor solution by simultaneously delivering dual anti-cancer genes and ferroptosis payload in tumor microenvironment.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Kailong Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Xiaoqi Guan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Zeyu Zhou
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xuefei Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Islam MS, Mitra S. Microwave Synthesis of Nanostructured Functionalized Polylactic Acid (nfPLA) for Incorporation Into a Drug Crystals to Enhance Their Dissolution. J Pharm Sci 2023; 112:2260-2266. [PMID: 36958690 DOI: 10.1016/j.xphs.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Active pharmaceutical ingredients that have low aqueous solubility pose a challenge in the field of drug delivery. In this paper we report for the first time the synthesis of nano-structured, hydrophilized polylactic acid (nfPLA) and its application in the delivery of low solubility drugs. Microwave induced acid oxidation was used to generate nfPLA where the oxygen concentration increased from 27.0 percent to 41.0 percent. Also, the original non dispersible PLA was converted to a relatively dispersible form with an average particle size of 131.4 nm and a zeta potential of -23.3 mV. Small quantities of the nfPLA were incorporated into the crystals (0.5 to 2.0 % by weight) of a highly hydrophobic, low solubility antifungal drug Griseofulvin (GF) to form a composite (GF-nfPLA). An antisolvent approach was used for the synthesis of the drug composite. SEM and Raman imaging showed non-uniform distribution of the nfPLA on the crystal surface. The solubility of GF increased from 8.89 µg/mL to as high as 49.67 µg/mL for the GF-nfPLA. At the same time zeta potential changed from -15.4 mV to -39.0 mV, therefore the latter was a relatively stable colloid. Octanol-water partitioning also showed a similar effect as logP reduced from 2.16 for pure GF to 0.55 for GF-nfPLA. In vitro dissolution testing showed six times higher aqueous solubility of GF-nfPLA compared to pure GF. The time for 50 (T50) and 80 % (T80) dissolution reduced significantly for the nfPLA composites; T50 reduced from 40.0 to 14.0 min and T80 reduced form unachievable to 47.0 min. Overall, the PLA which is an FDA approved, bioabsorbable polymer can be used to enhance the dissolution of hydrophobic pharmaceuticals and this can lead to higher efficacy and lower the required dosage for drugs.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
3
|
Ball LE, Pfukwa R, Siqueira RP, Mosqueira VCF, Klumperman B. PLA‐
b
‐SMA as an Amphiphilic Diblock Copolymer for Encapsulation of Lipophilic Cargo. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lauren E. Ball
- Department of Chemistry and Polymer Science Stellenbosch University Private Bag X1 Matieland 7602 South Africa
| | - Rueben Pfukwa
- Department of Chemistry and Polymer Science Stellenbosch University Private Bag X1 Matieland 7602 South Africa
| | - Raoni P. Siqueira
- School of Pharmacy Federal University of Ouro Preto Ouro Preto Minas Gerais 35400‐000 Brazil
| | - Vanessa C. F. Mosqueira
- School of Pharmacy Federal University of Ouro Preto Ouro Preto Minas Gerais 35400‐000 Brazil
| | - Bert Klumperman
- Department of Chemistry and Polymer Science Stellenbosch University Private Bag X1 Matieland 7602 South Africa
| |
Collapse
|
4
|
Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules 2022; 27:molecules27134135. [PMID: 35807380 PMCID: PMC9268542 DOI: 10.3390/molecules27134135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and has less impact resistance than petroleum-based plastics. To improve the mechanical properties of PLA, PLA-based blends are very often used, but the outcome does not meet expectations because of the non-compatibility of the polymer blends. From a chemical point of view, the use of graft copolymers as a compatibilizer with a PLA backbone bearing side chains is an interesting option for improving the compatibility of these blends, which remains challenging. This review article reports on the various graft copolymers based on a PLA backbone and their syntheses following two chemical strategies: the synthesis and polymerization of modified lactide or direct chemical post-polymerization modification of PLA. The main applications of these PLA graft copolymers in the environmental and biomedical fields are presented.
Collapse
|
5
|
Gazzotti S, Adolfsson KH, Hakkarainen M, Farina H, Silvani A, Ortenzi MA. DOX mediated synthesis of PLA-co-PS graft copolymers with matrix-driven self-assembly in PLA-based blends. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Mekpothi T, Meepowpan P, Sriyai M, Molloy R, Punyodom W. Novel Poly(Methylenelactide- g-L-Lactide) Graft Copolymers Synthesized by a Combination of Vinyl Addition and Ring-Opening Polymerizations. Polymers (Basel) 2021; 13:3374. [PMID: 34641191 PMCID: PMC8512580 DOI: 10.3390/polym13193374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a novel poly (methylenelactide-g-L-lactide), P(MLA-g-LLA) graft copolymer was synthesized from poly(methylenelactide) (PMLA) and L-lactide (LLA) using 0.03 mol% liquid tin(II) n-butoxide (Sn(OnBu)2) as an initiator by a combination of vinyl addition and ring-opening polymerization (ROP) at 120 °C for 72 h. Proton and carbon-13 nuclear magnetic resonance spectroscopy (1H- and 13C-NMR) and Fourier-transform infrared spectroscopy (FT-IR) confirmed the grafted structure of P(MLA-g-LLA). The P(MLA-g-LLA) melting temperatures (Tm) range of 144-164 °C, which was lower than that of PLA (170-180 °C), while the thermal decomposition temperature (Td) of around 314-335 °C was higher than that of PLA (approx. 300 °C). These results indicated that the grafting reaction could widen the melt processing range of PLA and in doing so increase PLA's thermal stability during melt processing. The graft copolymers were obtained with weight-average molecular weights (M¯w) = 4200-11,000 g mol-1 and a narrow dispersity (Đ = 1.1-1.4).
Collapse
Affiliation(s)
- Tanyaluck Mekpothi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (P.M.)
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (P.M.)
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Montira Sriyai
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Robert Molloy
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (T.M.); (P.M.)
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Bioplastics Production Laboratory for Medical Applications, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Matxinandiarena E, Múgica A, Tercjak A, Ladelta V, Zapsas G, Hadjichristidis N, Cavallo D, Flores A, Müller AJ. Sequential Crystallization and Multicrystalline Morphology in PE- b-PEO- b-PCL- b-PLLA Tetrablock Quarterpolymers. Macromolecules 2021; 54:7244-7257. [PMID: 35663800 PMCID: PMC9159653 DOI: 10.1021/acs.macromol.1c01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Indexed: 11/30/2022]
Abstract
![]()
We
investigate for the first time the morphology and crystallization
of two novel tetrablock quarterpolymers of polyethylene (PE), poly(ethylene
oxide) (PEO), poly(ε-caprolactone) (PCL), and poly(l-lactide) (PLLA) with four potentially crystallizable blocks: PE187.1-b-PEO3715.1-b-PCL2610.4-b-PLLA197.6 (Q1) and PE299.5-b-PEO268.8-b-PCL237.6-b-PLLA227.3 (Q2) (superscripts give number average molecular weights
in kg/mol, and subscripts give the composition in wt %). Their synthesis
was performed by a combination of polyhomologation (C1 polymerization)
and ring-opening polymerization techniques using a ″catalyst-switch″
strategy, either ″organocatalyst/metal catalyst switch″
(Q1 sample, 96% isotactic tetrads) or ″organocatalyst/organocatalyst
switch″ (Q2 sample, 84% isotactic tetrads). Their corresponding
precursors—triblock terpolymers PE-b-PEO-b-PCL, diblock copolymers PE-b-PEO, and
PE homopolymers—were also studied. Cooling and heating rates
from the melt at 20 °C/min were employed for most experiments:
differential scanning calorimetry (DSC), polarized light optical microscopy
(PLOM), in situ small-angle X-ray scattering/wide-angle
X-ray scattering (SAXS/WAXS), and atomic force microscopy (AFM). The
direct comparison of the results obtained with these different techniques
allows the precise identification of the crystallization sequence
of the blocks upon cooling from the melt. SAXS indicated that Q1 is
melt miscible, while Q2 is weakly segregated in the melt but breaks
out during crystallization. According to WAXS and DSC results, the
blocks follow a sequence as they crystallize: PLLA first, then PE,
then PCL, and finally PEO in the case of the Q1 quarterpolymer; in
Q2, the PLLA block is not able to crystallize due to its low isotacticity.
Although the temperatures at which the PEO and PCL blocks and the
PE and PLLA blocks crystallize overlap, the analysis of the intensity
changes measured by WAXS and PLOM experiments allows identifying each
of the crystallization processes. The quarterpolymer Q1 remarkably
self-assembles during crystallization into tetracrystalline banded
spherulites, where four types of different lamellae coexist. Nanostructural
features arising upon sequential crystallization are found to have
a relevant impact on the mechanical properties. Nanoindentation measurements
show that storage modulus and hardness of the Q1 quarterpolymer significantly
deviate from those of the stiff PE and PLLA blocks, approaching typical
values of compliant PEO and PCL. Results are mainly attributed to
the low crystallinity of the PE and PLLA blocks. Moreover, the Q2
copolymer exhibits inferior mechanical properties than Q1, and this
can be related to the PE block within Q1 that has thinner crystal
lamellae according to its much lower melting point.
Collapse
Affiliation(s)
- Eider Matxinandiarena
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Agurtzane Múgica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain
| | - Agnieszka Tercjak
- Group ‘Materials + Technologies’, Department of Chemical and Environmental Engineering, University of the Basque Country, UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - George Zapsas
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry, University of Genova, via Dodecaneso 31, 16146 Genova, Italy
| | - Araceli Flores
- Polymer Physics, Elastomers and Applications Energy, Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Bhattacharjee J, Sarkar A, Panda TK. Alkali and Alkaline Earth Metal Complexes as Versatile Catalysts for Ring-Opening Polymerization of Cyclic Esters. CHEM REC 2021; 21:1898-1911. [PMID: 34197009 DOI: 10.1002/tcr.202100148] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Biodegradable polyesters such as poly(ϵ-caprolactone) (PCL) and poly(lactic acid) (PLA) have been considered for use in several areas, such as drug delivery devices, sutures, tissue engineering, and GBR membranes, due to its bio-renewability, biodegradability, and biocompatibility. Several synthetic techniques for the preparation of polyesters have been reported in the literature, amongst which the ring-opening polymerization (ROP) of cyclic esters is the most efficient. A convenient approach to access iso-selective PLAs is polymerization of racemic lactide (rac-LA), which shows excellent stereoregularity without the need for costly chiral auxiliaries or ligands. In this personal account, we review a series of methods that have been practiced to the synthesis of biodegradable polyesters from various cyclic monomers using alkali and alkaline earth metal complexes as efficient catalysts.
Collapse
Affiliation(s)
- Jayeeta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, 502 285, Sangareddy, Telangana, India
| | - Alok Sarkar
- Momentive Performance Materials Pvt. Ltd., Survey No. 09, Hosur Road, Electronic City (west), Bangalore, 560100, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi, 502 285, Sangareddy, Telangana, India
| |
Collapse
|
9
|
Fouilloux H, Thomas CM. Production and Polymerization of Biobased Acrylates and Analogs. Macromol Rapid Commun 2021; 42:e2000530. [DOI: 10.1002/marc.202000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| |
Collapse
|
10
|
Botvin V, Karaseva S, Salikova D, Dusselier M. Syntheses and chemical transformations of glycolide and lactide as monomers for biodegradable polymers. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Bhattacharjee J, Harinath A, Sarkar A, Panda TK. Alkaline Earth Metal-Mediated Highly Iso-selective Ring-Opening Polymerization of rac-Lactide. Chem Asian J 2020; 15:860-866. [PMID: 32022475 DOI: 10.1002/asia.201901751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/20/2020] [Indexed: 11/06/2022]
Abstract
Alkaline earth (Ae) metal complexes of the aminophosphine borane ligand are highly active and iso-selective catalysts for the ring-opening polymerization (ROP) of rac-lactide (LA). The polymerization reactions are well controlled and produce polylactides with molecular weights that are precise and narrowly distributed. Kinetic studies reveal that the ROP of rac-LA catalyzed by all Ae metal complexes had a first-order dependency on LA concentration as well as catalyst concentration. A plausible reaction mechanism for Ae metal complex-mediated ROP of rac-LA is discussed, based on controlled kinetic experiments and molecular chain mobility.
Collapse
Affiliation(s)
- Jayeeta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502285, Sangareddy, Telangana, India
| | - Adimulam Harinath
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502285, Sangareddy, Telangana, India
| | - Alok Sarkar
- Momentive Performance Materials Pvt. Ltd., Bangalore, 560 100, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502285, Sangareddy, Telangana, India
| |
Collapse
|
12
|
Friebel J, Ender CP, Mezger M, Michels J, Wagner M, Wagener KB, Weil T. Synthesis of Precision Poly(1,3-adamantylene alkylene)s via Acyclic Diene Metathesis Polycondensation. Macromolecules 2019; 52:4483-4491. [PMID: 31274929 PMCID: PMC6595437 DOI: 10.1021/acs.macromol.9b00294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/14/2019] [Indexed: 11/30/2022]
Abstract
![]()
Fully saturated, aliphatic polymers
containing adamantane moieties
evenly distributed along the polymer backbone are of great interest
due to their exceptional thermal stability, yet more synthetic strategies
toward these polymers would be desirable. Herein, we report for the
first time the synthesis of poly(1,3-adamantylene alkylene)s based
on α,ω-dienes containing bulky 1,3-adamantylene defects
precisely located on every 11th, 17th, 19th, and 21st chain carbon
via acyclic diene metathesis polycondensation. All saturated polymers
revealed excellent thermal stabilities (452–456 °C) that
were significantly higher compared to those of structurally similar
polyolefins with aliphatic or aromatic ring systems in the backbone
of polyethylene (PE). Their crystallinity increases successively from
shorter to longer CH2 chains between the adamantane defects.
The adamantanes were located in the PE crystals distorting the PE
unit cell by the incorporation of the adamantane defect at the kinks
of a terrace arrangement. Precise positioning of structural defects
within the polymeric backbone provides various opportunities to customize
material properties by “defect engineering” in soft
polymeric materials.
Collapse
Affiliation(s)
- Jonas Friebel
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Christopher P Ender
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Markus Mezger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Physics, Johannes Gutenberg University Mainz, Ackermannweg 10, 55128 Mainz, Germany
| | - Jasper Michels
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kenneth B Wagener
- The George and Josephine Butler Polymer Research Laboratory Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
13
|
Kubo T, Scheutz GM, Latty TS, Sumerlin BS. Synthesis of functional and boronic acid-containing aliphatic polyesters via Suzuki coupling. Chem Commun (Camb) 2019; 55:5655-5658. [PMID: 31025997 DOI: 10.1039/c9cc01975h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Imparting additional functionalities along the side chains of polyesters remains a challenge due to the laborious nature of monomer synthesis and limited polymer functionalization methods for polyesters. To address this challenge, a carbon-carbon bond forming reaction was studied to introduce pendent functional groups in polylactides. This functionalization approach was applied for preparing boronic acid-containing polylactides, an unexplored class of polymers.
Collapse
Affiliation(s)
- Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, PO Box 117200, Gainesville, Florida 32611, USA.
| | | | | | | |
Collapse
|
14
|
Zhang X, Dai Y. Recent development of brush polymers via polymerization of poly(ethylene glycol)-based macromonomers. Polym Chem 2019. [DOI: 10.1039/c9py00104b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymerization of poly(ethylene glycol)-based macromonomers is a facile and versatile synthetic method to generate well-defined brush polymers.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- China
| |
Collapse
|
15
|
Harinath A, Bhattacharjee J, Sarkar A, Panda TK. Alkali metal complex-mediated ring-opening polymerization of rac-LA, ε-caprolactone, and δ-valerolactone. NEW J CHEM 2019. [DOI: 10.1039/c9nj01130g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Catalytic ring opening polymerization (ROP) of rac-lactide, ε-caprolactone, and δ-valerolactone using alkali metal (Li, Na, K) complexes as competent catalysts are reported.
Collapse
Affiliation(s)
- Adimulam Harinath
- Department of Chemistry
- Indian Institute of Technology Hyderabad Kandi – 502 285
- Sangareddy
- India
| | - Jayeeta Bhattacharjee
- Department of Chemistry
- Indian Institute of Technology Hyderabad Kandi – 502 285
- Sangareddy
- India
| | - Alok Sarkar
- Momentive Performance Materials Pvt. Ltd
- Bangalore – 560 100
- India
| | - Tarun K. Panda
- Department of Chemistry
- Indian Institute of Technology Hyderabad Kandi – 502 285
- Sangareddy
- India
| |
Collapse
|
16
|
Becker G, Wurm FR. Functional biodegradable polymers via ring-opening polymerization of monomers without protective groups. Chem Soc Rev 2018; 47:7739-7782. [PMID: 30221267 DOI: 10.1039/c8cs00531a] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biodegradable polymers are of current interest and chemical functionality in such materials is often demanded in advanced biomedical applications. Functional groups often are not tolerated in the polymerization process of ring-opening polymerization (ROP) and therefore protective groups need to be applied. Advantageously, several orthogonally reactive functions are available, which do not demand protection during ROP. We give an insight into available, orthogonally reactive cyclic monomers and the corresponding functional synthetic and biodegradable polymers, obtained from ROP. Functionalities in the monomer are reviewed, which are tolerated by ROP without further protection and allow further post-modification of the corresponding chemically functional polymers after polymerization. Synthetic concepts to these monomers are summarized in detail, preferably using precursor molecules. Post-modification strategies for the reported functionalities are presented and selected applications highlighted.
Collapse
Affiliation(s)
- Greta Becker
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
17
|
|
18
|
Harinath A, Bhattacharjee J, Sarkar A, Nayek HP, Panda TK. Ring Opening Polymerization and Copolymerization of Cyclic Esters Catalyzed by Group 2 Metal Complexes Supported by Functionalized P–N Ligands. Inorg Chem 2018; 57:2503-2516. [DOI: 10.1021/acs.inorgchem.7b02847] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Adimulam Harinath
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana, India
| | - Jayeeta Bhattacharjee
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana, India
| | - Alok Sarkar
- Momentive Performance
Materials Pvt. Ltd., Bangalore 560 100, India
| | - Hari Pada Nayek
- Department of Applied Chemistry, Indian Institute of Technology (ISM), Dhanbad 826 004, Jharkhand, India
| | - Tarun K. Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana, India
| |
Collapse
|
19
|
Sun H, Chang MYZ, Cheng WI, Wang Q, Commisso A, Capeling M, Wu Y, Cheng C. Biodegradable zwitterionic sulfobetaine polymer and its conjugate with paclitaxel for sustained drug delivery. Acta Biomater 2017; 64:290-300. [PMID: 29030301 PMCID: PMC5682198 DOI: 10.1016/j.actbio.2017.10.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
A fully biodegradable zwitterionic polymer and the corresponding conjugate with paclitaxel (PTX) were synthesized as promising biomaterials. Allyl-functionalized polylactide (PLA) was employed as the precursor of polymer backbones. UV-induced thiol-ene reaction was conducted to conjugate thiol-functionalized sulfobetaine (SB) with the PLA-based backbone. The resulting zwitterionic polymer did not exhibit considerable cytotoxicity. A polymer-drug conjugate was also obtained by thiol-ene reaction of both thiol-functionalized SB and PTX with allyl-functionalized PLA. The conjugate could readily form narrowly-dispersed nanoparticles in aqueous solutions with a volume-average hydrodynamic diameter (Dh,V) of 19.3 ± 0.2 nm. Such a polymer-drug conjugate-based drug delivery system showed full degradability, well-suppressed non-specific interaction with biomolecules, and sustained drug release. In vitro assessments also confirmed the significant anti-cancer efficacy of the conjugate. After 72 h incubation with PLA-SB/PTX containing 10 µg/mL of PTX, the cell viabilities of A549, MCF7, and PaCa-2 cells were as low as 20.0 ± 2.5%, 1.7 ± 1.7%, and 14.8 ± 0.9%, respectively. Both flow cytometry and confocal microscopy suggested that the conjugates could be easily uptaken by A549 cells before the major release of PTX moieties. Overall, this work elucidates promising potentials of biodegradable zwitterionic polymer-based materials in biomedical applications. STATEMENT OF SIGNIFICANCE The applicability of FDA-approved biodegradable aliphatic polyesters has been significantly restricted because they are hydrophobic and lack functionalities. Recently zwitterionic polymers have emerged as promising hydrophilic biomaterials, but most of the reported zwitterionic polymers are non-biodegradable. This study reports a novel aliphatic polyester-based zwitterionic polymer and the corresponding polymer-drug conjugate. Their aliphatic polyester and zwitterionic components provide them with high enzymatic degradability and low nonspecific interactions with biomolecules, respectively. While the zwitterionic polymer did not show noticeable cytotoxicity, the corresponding polymer-anticancer drug conjugate exhibited acid-sensitive sustained drug release, remarkable effectiveness in killing cancer cells, as well as the ready cellular internalization. This work lays a foundation for the further development of synthetic biodegradable zwitterionic polymer-based materials which potentially may have broad and significant biomedical applications.
Collapse
Affiliation(s)
- Haotian Sun
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Michael Yu Zarng Chang
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Wei-I Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Qing Wang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Alex Commisso
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Meghan Capeling
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Chong Cheng
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
20
|
Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles. Int J Pharm 2017; 548:771-777. [PMID: 29104059 DOI: 10.1016/j.ijpharm.2017.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 02/03/2023]
Abstract
Advantages associated with the use of polylactic acid (PLA) nano- or microparticles as drug delivery systems have been widely proven in the field of pharmaceutical sciences. These biodegradable and biocompatible carriers have demonstrated different loading and release properties depending on interactions with the cargo, preparation methods, particles size or molecular weight of PLA. In this study, we sought to show the possibility of influencing these properties by modifying the structure of the constituting polymer. Seven non-functionalized or functionalized PLA polymers were specifically designed and synthesized by microwave-assisted ring-opening polymerization of d,l-lactide. They presented short hydrophobic and/or hydrophilic groups thanks to the use of C20 aliphatic chain, mPEG1000, sorbitan esters (Spans®) or polysorbates (Tweens®), their PEGylated analogues, as initiators. Then, seven types of drug-loaded nanoparticles (NP) were prepared from these polymers and compared in terms of physico-chemical characteristics, drug loading and release profiles. Although the loading properties were not improved with any of the functionalized PLA NP, different release profiles were observed in an aqueous medium at 37 °C and over a period of five days. The presence of PEG moieties in the core of PLA-polysorbates NP induced a faster release while the addition of a single aliphatic chain induced a slower release due to better interactions with the active molecule.
Collapse
|
21
|
|
22
|
Khanal A, Fang S. Solid Phase Stepwise Synthesis of Polyethylene Glycols. Chemistry 2017; 23:15133-15142. [PMID: 28834652 PMCID: PMC5658237 DOI: 10.1002/chem.201703004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 01/20/2023]
Abstract
Polyethylene glycol (PEG) and derivatives with eight and twelve ethylene glycol units were synthesized by stepwise addition of tetraethylene glycol monomers on a polystyrene solid support. The monomer contains a tosyl group at one end and a dimethoxytrityl group at the other. The Wang resin, which contains the 4-benzyloxy benzyl alcohol function, was used as the support. The synthetic cycle consists of deprotonation, Williamson ether formation (coupling), and detritylation. Cleavage of PEGs from solid support was achieved with trifluoroacetic acid. The synthesis including monomer synthesis was entirely chromatography-free. PEG products including those with different functionalities at the two termini were obtained in high yields. The products were analyzed with ESI and MALDI-TOF MS and were found close to monodispersity.
Collapse
Affiliation(s)
- Ashok Khanal
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
23
|
Bhattacharjee J, Harinath A, Nayek HP, Sarkar A, Panda TK. Highly Active and Iso-Selective Catalysts for the Ring-Opening Polymerization of Cyclic Esters using Group 2 Metal Initiators. Chemistry 2017; 23:9319-9331. [DOI: 10.1002/chem.201700672] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jayeeta Bhattacharjee
- Department of Chemistry; Indian Institute of Technology Hyderabad; Kandi 502 285, Sangareddy, Telangana India
| | - Adimulam Harinath
- Department of Chemistry; Indian Institute of Technology Hyderabad; Kandi 502 285, Sangareddy, Telangana India
| | - Hari Pada Nayek
- Department of Applied Chemistry; Indian Institute of Technology (ISM), Dhanbad; 826004 Jharkhand India
| | - Alok Sarkar
- Momentive Performance Materials Pvt. Ltd. Survey No. 09; Hosur Road Electronic City (West) Bangalore 560100 India
| | - Tarun K. Panda
- Department of Chemistry; Indian Institute of Technology Hyderabad; Kandi 502 285, Sangareddy, Telangana India
| |
Collapse
|
24
|
Jiang Z, Chang Y, Chen Z. Catalyst free synthesis of poly(l
-lactic acid)-poly(propylene glycol) multiblock copolymers and their properties. J Appl Polym Sci 2017. [DOI: 10.1002/app.45299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyan Jiang
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Yue Chang
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| | - Zhize Chen
- College of Chemistry, Chemical Engineering and Biotechnology; Donghua University; Shanghai 201620 China
| |
Collapse
|
25
|
Zhu JB, Tang X, Falivene L, Caporaso L, Cavallo L, Chen EYX. Organocatalytic Coupling of Bromo-Lactide with Cyclic Ethers and Carbonates to Chiral Bromo-Diesters: NHC or Anion Catalysis? ACS Catal 2017. [DOI: 10.1021/acscatal.7b00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Bo Zhu
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Xiaoyan Tang
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Laura Falivene
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis
Center, Thuwal 23955-6900, Saudi Arabia
| | - Lucia Caporaso
- Dipartimento
di Chimica e Biologia, Università di Salerno, Via Papa
Paolo Giovanni II, I-84084 Fisciano, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis
Center, Thuwal 23955-6900, Saudi Arabia
| | - Eugene Y.-X. Chen
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
26
|
d'Arcy R, Burke J, Tirelli N. Branched polyesters: Preparative strategies and applications. Adv Drug Deliv Rev 2016; 107:60-81. [PMID: 27189232 DOI: 10.1016/j.addr.2016.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/19/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
Abstract
In the last 20years, the availability of precision chemical tools (e.g. controlled/living polymerizations, 'click' reactions) has determined a step change in the complexity of both the macromolecular architecture and the chemical functionality of biodegradable polyesters. A major part in this evolution has been played by the possibilities that controlled macromolecular branching offers in terms of tailored physical/biological performance. This review paper aims to provide an updated overview of preparative techniques that derive hyperbranched, dendritic, comb, grafted polyesters through polycondensation or ring-opening polymerization mechanisms.
Collapse
|
27
|
Zhang X, Dai Y. A Functionalized Cyclic Lactide Monomer for Synthesis of Water-Soluble Poly(Lactic Acid) and Amphiphilic Diblock Poly(Lactic Acid). Macromol Rapid Commun 2016; 38. [PMID: 27859972 DOI: 10.1002/marc.201600593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/20/2016] [Indexed: 12/25/2022]
Abstract
Biodegradable and bioabsorbable poly(lactic acid)s are one of the most important biomedical materials. However, it is difficult to introduce the functional groups into poly(lactic acid)s in order to improve their hydrophilicity and degradation rate. Here the authors describe the synthesis of functionalized cyclic lactide monomer 3,6-bis(benzyloxymethyl)-1,4-dioxane-2,5-dione (BnLA) using an advanced synthetic route. Water-soluble hydroxyl-functionalized homopoly(lactic acid) (P(OH)LA) is synthesized via ring-opening polymerization (ROP) of BnLA, followed by a hydrogenolytic deprotection reaction. Amphiphilic diblock poly(lactic acid) (P(OH)LA-PLA) is synthesized via ROP of DL-lactide using PBnLA as an initiator, followed by a hydrogenolytic deprotection reaction. P(OH)LA-PLA is able to form polymeric micelles with the diameter of sub-100 nm.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yu Dai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
28
|
Britner J, Ritter H. Methylenelactide: vinyl polymerization and spatial reactivity effects. Beilstein J Org Chem 2016; 12:2378-2389. [PMID: 28144306 PMCID: PMC5238530 DOI: 10.3762/bjoc.12.232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/26/2016] [Indexed: 12/23/2022] Open
Abstract
The first detailed study on free-radical polymerization, copolymerization and controlled radical polymerization of the cyclic push-pull-type monomer methylenelactide in comparison to the non-cyclic monomer α-acetoxyacrylate is described. The experimental results revealed that methylenelactide undergoes a self-initiated polymerization. The copolymerization parameters of methylenelactide and styrene as well as methyl methacrylate were determined. To predict the copolymerization behavior with other classes of monomers, Q and e values were calculated. Further, reversible addition fragmentation chain transfer (RAFT)-controlled homopolymerization of methylenelactide and copolymerization with N,N-dimethylacrylamide was performed at 70 °C in 1,4-dioxane using AIBN as initiator and 2-(((ethylthio)carbonothioyl)thio)-2-methylpropanoic acid as a transfer agent.
Collapse
Affiliation(s)
- Judita Britner
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Helmut Ritter
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Ottou WN, Sardon H, Mecerreyes D, Vignolle J, Taton D. Update and challenges in organo-mediated polymerization reactions. Prog Polym Sci 2016. [DOI: 10.1016/j.progpolymsci.2015.12.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Kalelkar PP, Alas GR, Collard DM. Synthesis of an Alkene-Containing Copolylactide and Its Facile Modification by the Addition of Thiols. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Pranav P. Kalelkar
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Guillermo R. Alas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - David M. Collard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| |
Collapse
|
31
|
Mangalum A, Boadi F, Masand SA, Lalancette RA, Pietrangelo A. A Pb2+-binding polychelatogen derived from thionated lactide. RSC Adv 2016. [DOI: 10.1039/c6ra16230d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The synthesis and characterization of a polychelatogen derived from thionated lactide is reported.
Collapse
Affiliation(s)
- A. Mangalum
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| | - F. Boadi
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| | - S. A. Masand
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| | | | - A. Pietrangelo
- Department of Chemistry
- Rutgers University-Newark
- Newark
- USA
| |
Collapse
|
32
|
Wang J, Yan J, Zhou H, Huang H, Zhang X, Tang H. Prodrug Micelles Based on Norbornene-Functional Poly(lactide)s Backbone for Redox-Responsive Release of Paclitaxel. Aust J Chem 2016. [DOI: 10.1071/ch16100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Norbornene-functional poly(lactide)s backbone-based amphiphilic copolymer, P(LA-g-mOEG)-b-P(LA-SS-COOH), was synthesized as the polymeric scaffold and paclitaxel (PTX) was directly conjugated to the carboxyl groups of the amphiphilic copolymer to obtain redox-responsive P(LA-g-mOEG)-b-P(LA-SS-PTX) prodrugs. The dynamic light scattering and transmission electron microscopy analyses showed that P(LA-g-mOEG)-b-P(LA-SS-PTX) self-assembled into prodrug micelles with a diameter of 60–70 nm and a low polydispersity in aqueous solution. Remarkably, in vitro release studies revealed that 80 % of PTX was released in 72 h under a reductive environment, whereas only 23 % of PTX was released in 72 h under non-reductive conditions. In addition, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays showed that P(LA-g-mOEG)-b-P(LA-SS-PTX) prodrug micelles retained high anti-tumour activity while polymer carriers were non-toxic up to a tested concentration of 1.0 mg mL–1. These redox-responsive prodrug micelles have tremendous potential for anti-tumour drug delivery.
Collapse
|
33
|
Veccharelli KM, Tong VK, Young JL, Yang J, Gianneschi NC. Dual responsive polymeric nanoparticles prepared by direct functionalization of polylactic acid-based polymers via graft-from ring opening metathesis polymerization. Chem Commun (Camb) 2015; 52:567-70. [PMID: 26541981 DOI: 10.1039/c5cc07882b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polylactic acid (PLA) has found widespread use in plastics and in biomedical applications due to its biodegradability into natural benign products. However, PLA-based materials remain limited in usefulness due to difficulty of incorporating functional groups into the polymer backbone. In this paper, we report a strategy for PLA functionalization that establishes the preparation of highly derivatized materials in which ring opening metathesis polymerization (ROMP) is employed as a graft-from polymerization technique utilizing a norbornene-modified handle incorporated into the PLA backbone. As a demonstration of this new synthetic methodology, a PLA-derived nanoparticle bearing imidazole units protected with a photolabile group was prepared. The morphology of this material could be controllably altered in response to exposure of UV light or acidic pH as a stimulus. We anticipate that this graft-from approach to derivatization of PLA could find broad use in the development of modified, biodegradable PLA-based materials.
Collapse
Affiliation(s)
- Kate M Veccharelli
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
34
|
Long TR, Wongrakpanich A, Do AV, Salem AK, Bowden NB. Long-term release of a thiobenzamide from a backbone functionalized poly(lactic acid). Polym Chem 2015; 6:7188-7195. [PMID: 26870159 PMCID: PMC4746005 DOI: 10.1039/c5py01059d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen sulfide is emerging as a critically important molecule in medicine, yet there are few methods for the long-term delivery of molecules that degrade to release H2S. In this paper the first long-term release of a thiobenzamide that degrades to release H2S is described. A series of polymers were synthesized by the copolymerization of L-lactide and a lactide functionalized with 4-hydroxythiobenzamide. A new method to attach functional groups to a derivative of L-lactide is described based on the addition of a thiol to an α,β-unsaturated lactide using catalytic I2. This reaction proceeded under mild conditions and did not ring-open the lactone. The copolymers had molecular weights from 8 to 88 kg mol-1 with PDIs below 1.50. Two sets of microparticles were fabricated from a copolymer; the average diameters of the microparticles were 0.53 and 12 μm. The degradation of the smaller microparticles was investigated in buffered water to demonstrate the slow release of thiobenzamide over 4 weeks. Based on the ability to synthesize polymers with different loadings of thiobenzamide and that thiobenzamide is a known precursor to H2S, these particles provide a polymer-based method to deliver H2S over days to weeks.
Collapse
Affiliation(s)
- Tyler R. Long
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | | - Anh-Vu Do
- College of Pharmacy, University of Iowa, Iowa City, IA 52242
| | | | - Ned B. Bowden
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
35
|
Maharana T, Pattanaik S, Routaray A, Nath N, Sutar AK. Synthesis and characterization of poly(lactic acid) based graft copolymers. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.05.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Britner J, Ritter H. Self-Activation of Poly(methylenelactide) through Neighboring-Group Effects: A Sophisticated Type of Reactive Polymer. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Judita Britner
- Institute of Organic Chemistry
and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Helmut Ritter
- Institute of Organic Chemistry
and Macromolecular Chemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Miyake GM, Zhang Y, Chen EYX. Polymerizability of Exo
-methylene-lactide toward vinyl addition and ring opening. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27629] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Garret M. Miyake
- Department of Chemistry; Colorado State University; Fort Collins Colorado 80523
| | - Yuetao Zhang
- Department of Chemistry; Colorado State University; Fort Collins Colorado 80523
| | - Eugene Y.-X. Chen
- Department of Chemistry; Colorado State University; Fort Collins Colorado 80523
| |
Collapse
|
38
|
Borchmann DE, Tarallo R, Avendano S, Falanga A, Carberry TP, Galdiero S, Weck M. Membranotropic Peptide-Functionalized Poly(lactide)-graft-poly(ethylene glycol) Brush Copolymers for Intracellular Delivery. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dorothee E. Borchmann
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Rossella Tarallo
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Sarha Avendano
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Annarita Falanga
- Department
of Pharmacy, University of Naples “Federico II”, Via Mezzocannone
16, Naples 80134, Italy
| | - Tom P. Carberry
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico II”, Via Mezzocannone
16, Naples 80134, Italy
| | - Marcus Weck
- Molecular
Design Institute and Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
39
|
Li X, Li H, Zhao Y, Tang X, Ma S, Gong B, Li M. Facile synthesis of well-defined hydrophilic polyesters as degradable poly(ethylene glycol)-like biomaterials. Polym Chem 2015. [DOI: 10.1039/c5py00762c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly stable and polymerizable δ-valerolactones bearing oligo(ethylene glycol) methyl ether functionalities are facilely prepared by alkylphosphine catalyzed thiol–ene addition with an exocyclic α,β-unsaturated δ-valerolactone.
Collapse
Affiliation(s)
- Xiwen Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Hua Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yongye Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Xiaoying Tang
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Sufang Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Bing Gong
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Minfeng Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials
- College of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
40
|
Ghosh S, Gowda RR, Jagan R, Chakraborty D. Gallium and indium complexes containing the bis(imino)phenoxide ligand: synthesis, structural characterization and polymerization studies. Dalton Trans 2015; 44:10410-22. [DOI: 10.1039/c5dt00811e] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A series of gallium and indium complexes containing the bis(imino)phenolate ligand framework were synthesized and completely characterized with different spectroscopic techniques.
Collapse
Affiliation(s)
- Swarup Ghosh
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - Ravikumar R. Gowda
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | - Rajamony Jagan
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600 036
- India
| | | |
Collapse
|
41
|
Wang H, Yang Y, Ma H. Stereoselectivity Switch between Zinc and Magnesium Initiators in the Polymerization of rac-Lactide: Different Coordination Chemistry, Different Stereocontrol Mechanisms. Macromolecules 2014. [DOI: 10.1021/ma501896r] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haobing Wang
- Shanghai Key Laboratory of Functional
Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yang Yang
- Shanghai Key Laboratory of Functional
Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Haiyan Ma
- Shanghai Key Laboratory of Functional
Materials Chemistry and Laboratory of Organometallic Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|
42
|
Lin J, Zhu C, Liu X, Chen B, Zhang Y, Xue J, Liu J. A Highly Selective and Turn-on Fluorescent Probe for Fe3+Ion Based on Perylene Tetracarboxylic Diimide. CHINESE J CHEM 2014. [DOI: 10.1002/cjoc.201400464] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
43
|
Zhang Q, Ren H, Baker G. Synthesis of a library of propargylated and PEGylated α-hydroxy acids toward "clickable" polylactides via hydrolysis of cyanohydrin derivatives. J Org Chem 2014; 79:9546-55. [PMID: 25255205 PMCID: PMC4201358 DOI: 10.1021/jo5016135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Indexed: 02/02/2023]
Abstract
A new simple and practical protocol for scalable synthesis of a novel library of propargylated and PEGylated α-hydroxy acids toward the preparation of "clickable" polylactides was described. The overall synthesis starting from readily available propargyl alcohol, bromoacetaldehyde diethyl acetal, and OEGs or PEGs was developed as a convenient procedure with low cost and no need of column chromatographic purification. The terminal alkyne functionality survives from hydrolysis of the corresponding easily accessible cyanohydrin derivatives in methanolic sulfuric acid. Facile desymmetrization, monofunctionalization, and efficient chain-elongation coupling of OEGs further enable the incorporation of OEGs to α-hydroxy acids in a simple and efficient manner. At the end, synthesis of allyloxy lactic acid indicates that an alkene group is also compatible with the developed method.
Collapse
Affiliation(s)
- Quanxuan Zhang
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hong Ren
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology,
Massachusetts General Hospital, Harvard
Medical School, Charlestown, Massachusetts 02129, United States
| | - Gregory
L. Baker
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
44
|
Fang H, Jiang F, Wu Q, Ding Y, Wang Z. Supertough polylactide materials prepared through in situ reactive blending with PEG-based diacrylate monomer. ACS APPLIED MATERIALS & INTERFACES 2014; 6:13552-63. [PMID: 25105468 DOI: 10.1021/am502735q] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Supertough biocompatible and biodegradable polylactide materials were fabricated by applying a novel and facile method involving reactive blending of polylactide (PLA) and poly(ethylene glycol) diacylate (PEGDA) monomer with no addition of exogenous radical initiators. Torque analysis and FT-IR spectra confirm that cross-linking reaction of acylate groups occurs in the melt blending process according to the free radical polymerization mechanism. The results from differential scanning calorimetry, phase contrast optical microscopy and transmission electron microscopy indicate that the in situ polymerization of PEGDA leads to a phase separated morphology with cross-linked PEGDA (CPEGDA) as the dispersed particle phase domains and PLA matrix as the continuous phase, which leads to increasing viscosity and elasticity with increasing CPEGDA content and a rheological percolation CPEGDA content of 15 wt %. Mechanical properties of the PLA materials are improved significantly, for example, exhibiting improvements by a factor of 20 in tensile toughness and a factor of 26 in notched Izod impact strength at the optimum CPEGDA content. The improvement of toughness in PLA/CPEGDA blends is ascribed to the jointly contributions of crazing and shear yielding during deformation. The toughening strategy in fabricating supertoughened PLA materials in this work is accomplished using biocompatible PEG-based polymer as the toughening modifier with no toxic radical initiators involved in the processing, which has a potential for biomedical applications.
Collapse
Affiliation(s)
- Huagao Fang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China , Hefei, Anhui Province 230026, P. R. China
| | | | | | | | | |
Collapse
|
45
|
Zhang Q, Ren H, Baker GL. An economical and safe procedure to synthesize 2-hydroxy-4-pentynoic acid: A precursor towards 'clickable' biodegradable polylactide. Beilstein J Org Chem 2014; 10:1365-71. [PMID: 24991290 PMCID: PMC4077406 DOI: 10.3762/bjoc.10.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/17/2014] [Indexed: 11/23/2022] Open
Abstract
2-Hydroxy-4-pentynoic acid (1) is a key intermediate towards 'clickable' polylactide which allows for efficient introduction of a broad range of pendant functional groups onto polymers from a single monomer via convenient 'click' chemistry with organic azides. The incorporation of various pendant functional groups could effectively tailor the physicochemical properties of polylactide. The reported synthesis of 1 started from propargyl bromide and ethyl glyoxylate. However, both of starting materials are expensive and unstable; especially, propargyl bromide is shock-sensitive and subjected to thermal explosive decomposition, which makes the preparation of 1 impractical with high cost and high risk of explosion. Herein, we report a simple, economical and safe synthetic route to prepare 1 using cheap and commercially available diethyl 2-acetamidomalonate (4) and propargyl alcohol. The desired product 1 was obtained via alkylation of malonate 4 with propargyl tosylate followed by a one-pot four-step sequence of hydrolysis, decarboxylation, diazotization and hydroxylation of propargylic malonate 5 without work-up of any intermediate.
Collapse
Affiliation(s)
- Quanxuan Zhang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hong Ren
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Gregory L Baker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
46
|
Mauldin TC, Zammarano M, Gilman JW, Shields JR, Boday DJ. Synthesis and characterization of isosorbide-based polyphosphonates as biobased flame-retardants. Polym Chem 2014. [DOI: 10.1039/c4py00591k] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Yan Y, Siegwart DJ. Scalable synthesis and derivation of functional polyesters bearing ene and epoxide side chains. Polym Chem 2014. [DOI: 10.1039/c3py01474f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Yang H, Ge J, Huang W, Xue X, Chen J, Jiang B, Zhang G. Facile synthesis of biodegradable and clickable polymer. RSC Adv 2014. [DOI: 10.1039/c4ra00829d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We report a facile approach to synthesize a biodegradable and clickable polymer consisting of ε-caprolactone (CL) and allyl methacrylate (AMA) with phosphazene base as the catalyst via hybrid copolymerization.
Collapse
Affiliation(s)
- Hongjun Yang
- School of Materials Science and Engineering
- Changzhou University
- Changzhou, P. R. China 213164
| | - Jun Ge
- School of Materials Science and Engineering
- Changzhou University
- Changzhou, P. R. China 213164
| | - Wenyan Huang
- School of Materials Science and Engineering
- Changzhou University
- Changzhou, P. R. China 213164
| | - Xiaoqiang Xue
- School of Materials Science and Engineering
- Changzhou University
- Changzhou, P. R. China 213164
| | - Jianhai Chen
- School of Materials Science and Engineering
- Changzhou University
- Changzhou, P. R. China 213164
| | - Bibiao Jiang
- School of Materials Science and Engineering
- Changzhou University
- Changzhou, P. R. China 213164
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering
- South China University of Technology
- Guangzhou, P. R. China 510640
- Hefei National Laboratory for Physical Sciences at Microscale
- Department of Chemical Physics
| |
Collapse
|
49
|
Couffin A, Martín-Vaca B, Bourissou D, Navarro C. Selective O-acyl ring-opening of β-butyrolactone catalyzed by trifluoromethane sulfonic acid: application to the preparation of well-defined block copolymers. Polym Chem 2014. [DOI: 10.1039/c3py00935a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HOTf catalyzes ring-opening of β-butyrolactone selectively via O-acyl bond cleavage, enabling efficient copolymerization.
Collapse
|
50
|
Yu Y, Zou J, Cheng C. Synthesis and biomedical applications of functional poly(α-hydroxyl acid)s. Polym Chem 2014. [DOI: 10.1039/c4py00667d] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights the recent progress in the synthesis and biomedical applications of poly(α-hydroxyl acid)s with pendent functional groups.
Collapse
Affiliation(s)
- Yun Yu
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo, USA
| | - Jiong Zou
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo, USA
| | - Chong Cheng
- Department of Chemical and Biological Engineering
- University at Buffalo
- The State University of New York
- Buffalo, USA
| |
Collapse
|