1
|
Polson JM, Kozma MD. Free-energy landscape of a polymer in the presence of two nanofluidic entropic traps. Phys Rev E 2024; 110:044501. [PMID: 39562937 DOI: 10.1103/physreve.110.044501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024]
Abstract
Recently, nanofluidics experiments have been used to characterize the behavior of single DNA molecules confined to narrow slits etched with arrays of nanopits. Analysis of the experimental data relies on analytical estimates of the underlying free-energy landscape. In this study we use computer simulations to explicitly calculate the free energy and test the approximations employed in such analytical models. Specifically, Monte Carlo simulations were used to study a polymer confined to complex geometry consisting of a nanoslit with two square nanopits embedded in one of the surfaces. The two-dimensional weighted histogram analysis method is used to calculate the free energy, F, as a function of the sum (λ_{1}) and the difference (λ_{2}) of the length of the polymer contour contained in the two nanopits. We find the variation of the free-energy function with respect to confinement dimensions to be comparable to the analytical predictions that employ a simplistic theoretical model. However, there are some noteworthy quantitative discrepancies, particularly between the predicted and observed variation of F with respect to λ_{1}. Our study provides a useful lesson on the limitations of using simplistic analytical expressions for polymer free-energy landscapes to interpret results for experiments of DNA confined to a complex geometry and points to the value of carrying out accurate numerical calculations of the free energy instead.
Collapse
|
2
|
Rau S, Huynh T, Larsen A, Kounovsky-Shafer KL. Concentration of lambda concatemers using a 3D printed device. Electrophoresis 2023; 44:744-751. [PMID: 36799437 PMCID: PMC10121831 DOI: 10.1002/elps.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/18/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Identifying significant variations in genomes can be cumbersome, as the variations span a multitude of base pairs and can make genome assembly difficult. However, large DNA molecules that span the variation aid in assembly. Due to the DNA molecule's large size, routine molecular biology techniques can break DNA. Therefore, a method is required to concentrate large DNA. A bis-acrylamide roadblock was cured in a proof-of-principle 3D printed device to concentrate DNA at the interface between the roadblock and solution. Lambda concatemer DNA was stained with YOYO-1 and loaded into the 3D printed device. A dynamic range of voltages and acrylamide concentrations were tested to determine how much DNA was concentrated and recovered. The fluorescence of the original solution and the concentrated solution was measured, the recovery was 37% of the original sample, and the volume decreased by a factor of 3 of the original volume.
Collapse
Affiliation(s)
- Samantha Rau
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | - Thi Huynh
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | - Alex Larsen
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | | |
Collapse
|
3
|
Ghosh S, Vemparala S. Kinetics of charged polymer collapse in poor solvents. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:045101. [PMID: 34352747 DOI: 10.1088/1361-648x/ac1aef] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Extensive molecular dynamics simulations, using simple charged polymer models, have been employed to probe the collapse kinetics of a single flexible polyelectrolyte (PE) chain under implicit poor solvent conditions. We investigate the role of the charged nature of PE chain (A), valency of counterions (Z) on the kinetics of such PE collapse. Our study shows that the collapse kinetics of charged polymers are significantly different from those of the neutral polymer and that the finite-size scaling behavior of PE collapse times does not follow the Rouse scaling as observed in the case of neutral polymers. The critical exponent for charged PE chains is found to be less than that of neutral polymers and also exhibits dependence on counterion valency. The coarsening of clusters along the PE chain suggests a multi-stage collapse and exhibits opposite behavior of exponents compared to neutral polymers: faster in the early stages and slower in the later stages of collapse.
Collapse
Affiliation(s)
- Susmita Ghosh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
4
|
Li J, Jiang X, Singh A, Heinonen OG, Hernández-Ortiz JP, de Pablo JJ. Structure and dynamics of hydrodynamically interacting finite-size Brownian particles in a spherical cavity: Spheres and cylinders. J Chem Phys 2020; 152:204109. [DOI: 10.1063/1.5139431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jiyuan Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xikai Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Abhinendra Singh
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Olle G. Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Northwestern-Argonne Institute for Science and Engineering, Evanston, Illinois 60208, USA
| | - Juan P. Hernández-Ortiz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Departmento de Materiales y Nanotecnología, Universidad Nacional de Colombia, Sede Medellin, Colombia
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellin, Colombia
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
5
|
Yeh JW, Taloni A, Sriram KK, Shen JP, Kao DY, Chou CF. Nanoconfinement-Induced DNA Reptating Motion and Analogy to Fluctuating Interfaces. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jia-Wei Yeh
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Alessandro Taloni
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- CNR-Consiglio Nazionale delle Ricerche, ISC, Via dei Taurini 19, 00185 Roma, Italy
| | - K. K. Sriram
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Jie-Pan Shen
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Der-You Kao
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
- Research Centre for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
- Genomics Research Centre, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
6
|
Houtwed HA, Xie M, Ahmad A, Masters CD, Davison MM, Kounovsky-Shafer K, Cao H. Analysis of Bisulfite Via a Nitro Derivative of Cyanine-3 (NCy3) in the Microfluidic Channel. J Fluoresc 2019; 29:523-529. [PMID: 31140127 PMCID: PMC6612305 DOI: 10.1007/s10895-019-02394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
NCy3, a derivative of Cyanine 3 with a nitro substituent, showed a high reactivity to bisulfite in aqueous media, instantly leading to ratiometric change of absorption spectra and significant fluorescence quenching. Applied in the microfluidic channel, NCy3 functionalize as a sensitive approach for quantitative detection of bisulfite, particularly for samples with a small volume.
Collapse
Affiliation(s)
- Haley A Houtwed
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Meng Xie
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Aatiya Ahmad
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Cody D Masters
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | - Melissa M Davison
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, 68849, USA
| | | | - Haishi Cao
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE, 68849, USA.
| |
Collapse
|
7
|
A simple dialysis device for large DNA molecules. Biotechniques 2019; 66:93-95. [PMID: 30744406 DOI: 10.2144/btn-2018-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The potential of genomic DNA is realized when new modalities are invented that manipulate large DNAs with minimal breakage or loss of sample. Here, we describe a polydimethylsiloxane-polycarbonate membrane device to remove small molecules from a sample while retaining large DNAs. Dialysis rates dramatically change as DNA size in kb (M) increases and DNA dimensions become comparable to pore size, and chain characteristics go from rod-like to Gaussian. Consequently, we describe empirical rates of dialysis, R, as a function of M as falling into two regimes: DNAs ≤ 1 kb show R(M) ∼e - t/τ M (t = time, τM = time constant), while DNAs ≥1.65 kb slowly passage with R(M) ∼M -1.68; such partitioning potentiates single-molecule imaging.
Collapse
|
8
|
Molina J, de Pablo JJ, Hernández-Ortiz JP. Structure and proton conduction in sulfonated poly(ether ether ketone) semi-permeable membranes: a multi-scale computational approach. Phys Chem Chem Phys 2019; 21:9362-9375. [PMID: 30994661 DOI: 10.1039/c9cp00598f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of polymeric membranes for proton or ionic exchange highly depends on the fundamental understanding of the physical and molecular mechanisms that control the formation of the conduction channels. There is an inherent relation between the dynamical structure of the polymeric membrane and the electrostatic forces that drive membrane segregation and proton transport. Here, we used a multi-scale computational approach to analyze the morphology of sulfonated poly(ether ether ketone) membranes at the mesoscale. A self-consistent description of the electrostatic phenomenon was adopted, where discrete polymer chains and a continuum proton field were embedded in a continuum fluid. Brownian dynamics was used for the evolution of the suspended polymer molecules, while a convection-diffusion transport equation, including the Nernst-Planck diffusion mechanism, accounted for the dynamics of the proton concentration field. We varied the polymer concentration, the degree of sulfonation and the level of confinement to find relationships between membrane structure and proton conduction. Our results indicate that the reduced mobility of polymer chains, at concentrations above overlap, and a moderate degree of sulfonation - i.e., 30% - are essential elements for membrane segregation and proton domain connectivity. These conditions also ensure that the membrane structure is not affected by size or by potential gradients. Importantly, our analysis shows that membrane conductivity and current are linearly dependent on polymer concentration and quadratically dependent on the degree of sulfonation. We found that the optimal polymeric membrane design requires a polymer concentration above overlap and a degree of sulfonation around 50%. These conditions promote a dynamical membrane morphology with a constant density of proton channels. Our results and measurements agree with previous experimental works, thereby validating our model and observations.
Collapse
Affiliation(s)
- Jarol Molina
- Departamento de Ciencias Básicas, Corporación Universitaria Minuto de Dios - UNIMINUTO, Bello, Antioquia, Colombia
| | | | | |
Collapse
|
9
|
Krerowicz SJ, Hernandez-Ortiz JP, Schwartz DC. Microscale Objects via Restructuring of Large, Double-Stranded DNA Molecules. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41215-41223. [PMID: 30403478 PMCID: PMC6453721 DOI: 10.1021/acsami.8b18157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
As the interest in DNA nanotechnology increases, so does the need for larger and more complex DNA structures. In this work, we describe two methods of using large, double-stranded (ds) DNA to self-assemble sequence-specific, nonrepetitive microscale structures. A model system restructures T7 DNA (40 kb) through sequence-specific biotinylation followed by intramolecular binding to a 40 nm diameter neutravidin bead to create T7 "rosettes". This model system informed the creation of "nodal DNA" where "nodes" with single-stranded DNA flaps are attached to a large dsDNA insert so that a complementary oligonucleotide "strap" bridges the two nodes for restructuring to form a DNA "bolo". To do this in high yield, several methodologies were developed, including a protection/deprotection scheme using RNA/RNase H and dialysis chambers, which remove excess straps while retaining large DNA molecules. To assess these restructuring processes, the DNA was adsorbed onto supported lipid bilayers, allowing for a visual assay of their structure using single-molecule fluorescence microscopy. Good agreement between the expected and observed fluorescence intensity measurements of the individual features of restructured DNA for both the DNA rosettes and bolos gives us a high degree of confidence that both processes give sequence-specific restructuring of large, dsDNA molecules to create microscale objects.
Collapse
Affiliation(s)
- Samuel J.W. Krerowicz
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Juan P. Hernandez-Ortiz
- UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Departamento de Materiales y Nanotecnología, Universidad Nacional de Colombia- Medellín, Medellín 050034, Colombia
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia- Medellín, Medellín 050034, Colombia
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- UW Biotechnology Center, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Colombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia- Medellín, Medellín 050034, Colombia
| |
Collapse
|
10
|
Masters C, Dolphin J, Maschmann A, McGill K, Moore M, Thompson D, Kounovsky-Shafer KL. Development of 3D printed mesofluidic devices to elute and concentrate DNA. Electrophoresis 2018; 40:810-816. [PMID: 30367503 DOI: 10.1002/elps.201800309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/08/2022]
Abstract
To understand structural variation for personal genomics, an extensive ensemble of large DNA molecules will be required to span large structural variations. Nanocoding, a whole-genome analysis platform, can analyze large DNA molecules for the construction of physical restriction maps of entire genomes. However, handling of large DNA is difficult and a system is needed to concentrate large DNA molecules, while keeping the molecules intact. Insert technology was developed to protect large DNA molecules during routine cell lysis and molecular biology techniques. However, eluting and concentrating DNA molecules has been difficult in the past. Utilizing 3D printed mesofluidic device, a proof of principle system was developed to elute and concentrate lambda DNA molecules at the interface between a solution and a poly-acrylamide roadblock. The matrix allowed buffer solution to move through the pores in the matrix; however, it slowed down the progression of DNA in the matrix, since the molecules were so large and the pore size was small. Using fluorescence intensity of the insert, 84% of DNA was eluted from the insert and 45% of DNA was recovered in solution from the eluted DNA. DNA recovered was digested with a restriction enzyme to determine that the DNA molecules remained full length during the elution and concentration of DNA.
Collapse
Affiliation(s)
- Cody Masters
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Jocelyn Dolphin
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - April Maschmann
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Keegan McGill
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Matthew Moore
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | - Drew Thompson
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, 68849, USA
| | | |
Collapse
|
11
|
Single-molecule DNA-mapping and whole-genome sequencing of individual cells. Proc Natl Acad Sci U S A 2018; 115:11192-11197. [PMID: 30322920 DOI: 10.1073/pnas.1804194115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To elucidate cellular diversity and clonal evolution in tissues and tumors, one must resolve genomic heterogeneity in single cells. To this end, we have developed low-cost, mass-producible micro-/nanofluidic chips for DNA extraction from individual cells. These chips have modules that collect genomic DNA for sequencing or map genomic structure directly, on-chip, with denaturation-renaturation (D-R) optical mapping [Marie R, et al. (2013) Proc Natl Acad Sci USA 110:4893-4898]. Processing of single cells from the LS174T colorectal cancer cell line showed that D-R mapping of single molecules can reveal structural variation (SV) in the genome of single cells. In one experiment, we processed 17 fragments covering 19.8 Mb of the cell's genome. One megabase-large fragment aligned well to chromosome 19 with half its length, while the other half showed variable alignment. Paired-end single-cell sequencing supported this finding, revealing a region of complexity and a 50-kb deletion. Sequencing struggled, however, to detect a 20-kb gap that D-R mapping showed clearly in a megabase fragment that otherwise mapped well to the reference at the pericentromeric region of chromosome 4. Pericentromeric regions are complex and show substantial sequence homology between different chromosomes, making mapping of sequence reads ambiguous. Thus, D-R mapping directly, from a single molecule, revealed characteristics of the single-cell genome that were challenging for short-read sequencing.
Collapse
|
12
|
Bhandari AB, Reifenberger JG, Chuang HM, Cao H, Dorfman KD. Measuring the wall depletion length of nanoconfined DNA. J Chem Phys 2018; 149:104901. [PMID: 30219022 PMCID: PMC6135644 DOI: 10.1063/1.5040458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/20/2018] [Indexed: 12/14/2022] Open
Abstract
Efforts to study the polymer physics of DNA confined in nanochannels have been stymied by a lack of consensus regarding its wall depletion length. We have measured this quantity in 38 nm wide, square silicon dioxide nanochannels for five different ionic strengths between 15 mM and 75 mM. Experiments used the Bionano Genomics Irys platform for massively parallel data acquisition, attenuating the effect of the sequence-dependent persistence length and finite-length effects by using nick-labeled E. coli genomic DNA with contour length separations of at least 30 µm (88 325 base pairs) between nick pairs. Over 5 × 106 measurements of the fractional extension were obtained from 39 291 labeled DNA molecules. Analyzing the stretching via Odijk's theory for a strongly confined wormlike chain yielded a linear relationship between the depletion length and the Debye length. This simple linear fit to the experimental data exhibits the same qualitative trend as previously defined analytical models for the depletion length but now quantitatively captures the experimental data.
Collapse
Affiliation(s)
- Aditya Bikram Bhandari
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Jeffrey G Reifenberger
- Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA
| | - Hui-Min Chuang
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| | - Han Cao
- Bionano Genomics, Inc., 9640 Towne Centre Drive, Suite 100, San Diego, California 92121, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
13
|
Molina JE, Vasquez-Echeverri A, Schwartz DC, Hernández-Ortiz JP. Discrete and Continuum Models for the Salt in Crowded Environments of Suspended Charged Particles. J Chem Theory Comput 2018; 14:4901-4913. [PMID: 30044624 DOI: 10.1021/acs.jctc.8b00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrostatic forces greatly affect the overall dynamics and diffusional activities of suspended charged particles in crowded environments. Accordingly, the concentration of counter- or co-ions in a fluid-''the salt"-determines the range, strength, and order of electrostatic interactions between particles. This environment fosters engineering routes for controlling directed assembly of particles at both the micro- and nanoscale. Here, we analyzed two computational modeling schemes that considered salt within suspensions of charged particles, or polyelectrolytes: discrete and continuum. Electrostatic interactions were included through a Green's function formalism, where the confined fundamental solution for Poisson's equation is resolved by the general geometry Ewald-like method. For the discrete model, the salt was considered as regularized point-charges with a specific valence and size, while concentration fields were defined for each ionic species for the continuum model. These considerations were evolved using Brownian dynamics of the suspended charged particles and the discrete salt ions, while a convection-diffusion transport equation, including the Nernst-Planck diffusion mechanism, accounted for the dynamics of the concentration fields. The salt/particle models were considered as suspensions under slit-confinement conditions for creating crowded "macro-ions", where density distributions and radial distribution functions were used to compare and differentiate computational models. Importantly, our analysis shows that disparate length scales or increased system size presented by the salt and suspended particles are best dealt with using concentration fields to model the ions. These findings were then validated by novel simulations of a semipermeable polyelectrolyte membrane, at the mesoscale, from which ionic channels emerged and enable ion conduction.
Collapse
Affiliation(s)
- Jarol E Molina
- Departamento de Materiales y Nanotecnología , Universidad Nacional de Colombia-Medellín , Medellín 050034 , Colombia
| | - Alejandro Vasquez-Echeverri
- Departamento de Materiales y Nanotecnología , Universidad Nacional de Colombia-Medellín , Medellín 050034 , Colombia
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States.,The Biotechnology Center , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States
| | - Juan P Hernández-Ortiz
- Departamento de Materiales y Nanotecnología , Universidad Nacional de Colombia-Medellín , Medellín 050034 , Colombia.,The Biotechnology Center , University of Wisconsin-Madison , Madison , Wisconsin 53706-1396 , United States.,Institute for Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
14
|
Maschmann A, Masters C, Davison M, Lallman J, Thompson D, Kounovsky-Shafer KL. Determining if DNA Stained with a Cyanine Dye Can Be Digested with Restriction Enzymes. J Vis Exp 2018. [PMID: 29443093 DOI: 10.3791/57141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Visualization of DNA for fluorescence microscopy utilizes a variety of dyes such as cyanine dyes. These dyes are utilized due to their high affinity and sensitivity for DNA. In order to determine if the DNA molecules are full length after the completion of the experiment, a method is required to determine if the stained molecules are full length by digesting DNA with restriction enzymes. However, stained DNA may inhibit the enzymes, so a method is needed to determine what enzymes one could use for fluorochrome stained DNA. In this method, DNA is stained with a cyanine dye overnight to allow the dye and DNA to equilibrate. Next, stained DNA is digested with a restriction enzyme, loaded into a gel and electrophoresed. The experimental DNA digest bands are compared to an in silico digest to determine the restriction enzyme activity. If there is the same number of bands as expected, then the reaction is complete. More bands than expected indicate partial digestion and less bands indicate incomplete digestion. The advantage of this method is its simplicity and it uses equipment that a scientist would need for a restriction enzyme assay and gel electrophoresis. A limitation of this method is that the enzymes available to most scientists are commercially available enzymes; however, any restriction enzymes could be used.
Collapse
Affiliation(s)
| | - Cody Masters
- Department of Chemistry, University of Nebraska - Kearney
| | | | - Joshua Lallman
- Department of Chemistry, University of Nebraska - Kearney
| | - Drew Thompson
- Department of Chemistry, University of Nebraska - Kearney
| | | |
Collapse
|
15
|
Abstract
Repeated sequences make up approximately two-thirds of the human genome, which become fully accountable when very large DNA molecules are analyzed. Long, single DNA molecules are problematic using common experimental techniques and fluidic devices because of mechanical considerations that include breakage, dealing with the massive size of these coils, or the huge length of stretched DNAs. Accordingly, we harness analyte “issues” as exploitable advantages by invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched molecules as DNA dumbbells within nanoslit geometries that may also offer new routes to separation. This was accomplished by theoretical studies and experiments leveraging a series of electrical forces acting on DNA molecules, device walls, and the fluid flows within our devices. Very large DNA molecules enable comprehensive analysis of complex genomes, such as human, cancer, and plants because they span across sequence repeats and complex somatic events. When physically manipulated, or analyzed as single molecules, long polyelectrolytes are problematic because of mechanical considerations that include shear-mediated breakage, dealing with the massive size of these coils, or the length of stretched DNAs using common experimental techniques and fluidic devices. Accordingly, we harness analyte “issues” as exploitable advantages by our invention and characterization of the “molecular gate,” which controls and synchronizes formation of stretched DNA molecules as DNA dumbbells within nanoslit geometries. Molecular gate geometries comprise micro- and nanoscale features designed to synergize very low ionic strength conditions in ways we show effectively create an “electrostatic bottle.” This effect greatly enhances molecular confinement within large slit geometries and supports facile, synchronized electrokinetic loading of nanoslits, even without dumbbell formation. Device geometries were considered at the molecular and continuum scales through computer simulations, which also guided our efforts to optimize design and functionalities. In addition, we show that the molecular gate may govern DNA separations because DNA molecules can be electrokinetically triggered, by varying applied voltage, to enter slits in a size-dependent manner. Lastly, mapping the Mesoplasmaflorum genome, via synchronized dumbbell formation, validates our nascent approach as a viable starting point for advanced development that will build an integrated system capable of large-scale genome analysis.
Collapse
|
16
|
Lallman J, Flaugh R, Kounovsky-Shafer KL. Determination of electroosmotic and electrophoretic mobility of DNA and dyes in low ionic strength solutions. Electrophoresis 2017; 39:862-868. [PMID: 28834563 DOI: 10.1002/elps.201700281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/14/2017] [Accepted: 08/14/2017] [Indexed: 11/10/2022]
Abstract
Nanocoding, a genome analysis platform, relies on very low ionic strength conditions to elongate DNA molecules up to 1.06 (fully stretched DNA = 1). Understanding how electroosmotic and electrophoretic forces vary, as ionic strength decreases, will enable better Nanocoding devices, or other genome analysis platforms, to be developed. Using gel electrophoresis to determine overall mobility (includes contributions from electrophoretic and electroosmotic forces) in different ionic strength conditions, linear DNA molecules (pUC19 (2.7 kb), pBR322 (4.4 kb), ΦX174 (5.4 kb), and PSNAPf-H2B (6.2 kb)) were analyzed in varying gel concentrations (1.50, 1.25, 1.00, 0.75, and 0.50%). Additionally, buffer concentration (Tris-EDTA, TE) was varied to determine free solution mobility at different ionic strength solutions. As ionic strength decreased from 13.8 to 7.3 mM, overall mobility increased. As TE buffer decreased (< 7.3 mM), overall mobility drastically decreased as ionic strength decreased. Rhodamine B dye was utilized to determine the electroosmotic mobility. As the ionic strength decreased, electroosmotic mobility increased. The experimental electrophoretic mobility was compared to theoretical considerations for electrophoretic mobility (Pitts and Debye-Hückel-Onsager). Electroosmotic forces decreased the overall mobility of DNA molecules and bromophenol blue migration in a gel matrix as ionic strength decreased.
Collapse
Affiliation(s)
- Joshua Lallman
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | - Rachel Flaugh
- Department of Chemistry, University of Nebraska - Kearney, Kearney, NE, USA
| | | |
Collapse
|
17
|
Zhao X, Li J, Jiang X, Karpeev D, Heinonen O, Smith B, Hernandez-Ortiz JP, de Pablo JJ. ParallelO(N) Stokes’ solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries. J Chem Phys 2017; 146:244114. [DOI: 10.1063/1.4989545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Xujun Zhao
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jiyuan Li
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xikai Jiang
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Dmitry Karpeev
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Olle Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Northwestern-Argonne Institute for Science and Engineering, Evanston, Illinois 60208, USA
| | - Barry Smith
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Juan P. Hernandez-Ortiz
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Departmento de Materiales, Universidad Nacional de Colombia, Sede Medellin, Colombia
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
18
|
Abstract
Optical mapping (OM) has been used in microbiology for the past 20 years, initially as a technique to facilitate DNA sequence-based studies; however, with decreases in DNA sequencing costs and increases in sequence output from automated sequencing platforms, OM has grown into an important auxiliary tool for genome assembly and comparison. Currently, there are a number of new and exciting applications for OM in the field of microbiology, including investigation of disease outbreaks, identification of specific genes of clinical and/or epidemiological relevance, and the possibility of single-cell analysis when combined with cell-sorting approaches. In addition, designing lab-on-a-chip systems based on OM is now feasible and will allow the integrated and automated microbiological analysis of biological fluids. Here, we review the basic technology of OM, detail the current state of the art of the field, and look ahead to possible future developments in OM technology for microbiological applications.
Collapse
|
19
|
Japaridze A, Orlandini E, Smith KB, Gmür L, Valle F, Micheletti C, Dietler G. Spatial confinement induces hairpins in nicked circular DNA. Nucleic Acids Res 2017; 45:4905-4914. [PMID: 28201616 PMCID: PMC5605231 DOI: 10.1093/nar/gkx098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/25/2017] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
In living cells, DNA is highly confined in space with the help of condensing agents, DNA binding proteins and high levels of supercoiling. Due to challenges associated with experimentally studying DNA under confinement, little is known about the impact of spatial confinement on the local structure of the DNA. Here, we have used well characterized slits of different sizes to collect high resolution atomic force microscopy images of confined circular DNA with the aim of assessing the impact of the spatial confinement on global and local conformational properties of DNA. Our findings, supported by numerical simulations, indicate that confinement imposes a large mechanical stress on the DNA as evidenced by a pronounced anisotropy and tangent-tangent correlation function with respect to non-constrained DNA. For the strongest confinement we observed nanometer sized hairpins and interwound structures associated with the nicked sites in the DNA sequence. Based on these findings, we propose that spatial DNA confinement in vivo can promote the formation of localized defects at mechanically weak sites that could be co-opted for biological regulatory functions.
Collapse
Affiliation(s)
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Universita di Padova, Via Marzolo 8, 35131 Padova, Italy
| | | | - Lucas Gmür
- Laboratory of Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Via P.Gobetti 101, Bologna 40129, Italy
| | - Cristian Micheletti
- SISSA - Scuola Internazionale Superiore di Studi Avanzati and CNR-IOM Democritos, Via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Dietler
- Laboratory of Physics of Living Matter, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Maschmann A, Kounovsky-Shafer KL. Determination of restriction enzyme activity when cutting DNA labeled with the TOTO dye family. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:406-417. [PMID: 28362164 DOI: 10.1080/15257770.2017.1300665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Optical mapping, a single DNA molecule genome analysis platform that can determine methylation profiles, uses fluorescently labeled DNA molecules that are elongated on the surface and digested with a restriction enzyme to produce a barcode of that molecule. Understanding how the cyanine fluorochromes affect enzyme activity can lead to other fluorochromes used in the optical mapping system. The effects of restriction digestion on fluorochrome labeled DNA (Ethidium Bromide, DAPI, H33258, EthD-1, TOTO-1) have been analyzed previously. However, TOTO-1 is a part of a family of cyanine fluorochromes (YOYO-1, TOTO-1, BOBO-1, POPO-1, YOYO-3, TOTO-3, BOBO-3, and POPO-3) and the rest of the fluorochromes have not been examined in terms of their effects on restriction digestion. In order to determine if the other dyes in the TOTO-1 family inhibit restriction enzymes in the same way as TOTO-1, lambda DNA was stained with a dye from the TOTO family and digested. The restriction enzyme activity in regards to each dye, as well as each restriction enzyme, was compared to determine the extent of digestion. YOYO-1, TOTO-1, and POPO-1 fluorochromes inhibited ScaI-HF, PmlI, and EcoRI restriction enzymes. Additionally, the mobility of labeled DNA fragments in an agarose gel changed depending on which dye was intercalated.
Collapse
Affiliation(s)
- April Maschmann
- a Department of Chemistry , University of Nebraska-Kearney , Kearney , NE , USA
| | | |
Collapse
|
21
|
Cheong GK, Li X, Dorfman KD. Wall depletion length of a channel-confined polymer. Phys Rev E 2017; 95:022501. [PMID: 28297899 DOI: 10.1103/physreve.95.022501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 11/07/2022]
Abstract
Numerous experiments have taken advantage of DNA as a model system to test theories for a channel-confined polymer. A tacit assumption in analyzing these data is the existence of a well-defined depletion length characterizing DNA-wall interactions such that the experimental system (a polyelectrolyte in a channel with charged walls) can be mapped to the theoretical model (a neutral polymer with hard walls). We test this assumption using pruned-enriched Rosenbluth method (PERM) simulations of a DNA-like semiflexible polymer confined in a tube. The polymer-wall interactions are modeled by augmenting a hard wall interaction with an exponentially decaying, repulsive soft potential. The free energy, mean span, and variance in the mean span obtained in the presence of a soft wall potential are compared to equivalent simulations in the absence of the soft wall potential to determine the depletion length. We find that the mean span and variance about the mean span have the same depletion length for all soft potentials we tested. In contrast, the depletion length for the confinement free energy approaches that for the mean span only when depletion length no longer depends on channel size. The results have implications for the interpretation of DNA confinement experiments under low ionic strengths.
Collapse
Affiliation(s)
- Guo Kang Cheong
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Xiaolan Li
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
22
|
Saadat A, Khomami B. A new bead-spring model for simulation of semi-flexible macromolecules. J Chem Phys 2016; 145:204902. [DOI: 10.1063/1.4968020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Amir Saadat
- Material Research and Innovation Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, USA
| | - Bamin Khomami
- Material Research and Innovation Laboratory, Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200, USA
| |
Collapse
|
23
|
Klotz AR, de Haan HW, Reisner WW. Waves of DNA: Propagating excitations in extended nanoconfined polymers. Phys Rev E 2016; 94:042603. [PMID: 27841510 DOI: 10.1103/physreve.94.042603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 12/30/2022]
Abstract
We use a nanofluidic system to investigate the emergence of thermally driven collective phenomena along a single polymer chain. In our approach, a single DNA molecule is confined in a nanofluidic slit etched with arrays of embedded nanocavities; the cavity lattice is designed so that a single chain occupies multiple cavities. Fluorescent video-microscopy data shows fluctuations in intensity between cavities, including waves of excess fluorescence that propagate across the cavity-straddling molecule, corresponding to propagating fluctuations of contour overdensity in the cavities. The transfer of DNA between neighboring pits is quantified by examining the correlation in intensity fluctuations between neighboring cavities. Correlations grow from an anticorrelated minimum to a correlated maximum before decaying, corresponding to a transfer of contour between neighboring cavities at a fixed transfer time scale. The observed dynamics can be modeled using Langevin dynamics simulations and a minimal lattice model of coupled diffusion. This study shows how confinement-based sculpting of the polymer equilibrium configuration, by renormalizing the physical system into a series of discrete cavity states, can lead to new types of dynamic collective phenomena.
Collapse
Affiliation(s)
- Alexander R Klotz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Hendrick W de Haan
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada L1H 7K4
| | - Walter W Reisner
- Department of Physics, McGill University, Montreal, QC Canada, H3A 2T8
| |
Collapse
|
24
|
Sun X, Yasui T, Yanagida T, Kaji N, Rahong S, Kanai M, Nagashima K, Kawai T, Baba Y. Identifying DNA methylation in a nanochannel. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:644-649. [PMID: 27877910 PMCID: PMC5102024 DOI: 10.1080/14686996.2016.1223516] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
DNA methylation is a stable epigenetic modification, which is well known to be involved in gene expression regulation. In general, however, analyzing DNA methylation requires rather time consuming processes (24-96 h) via DNA replication and protein modification. Here we demonstrate a methodology to analyze DNA methylation at a single DNA molecule level without any protein modifications by measuring the contracted length and relaxation time of DNA within a nanochannel. Our methodology is based on the fact that methylation makes DNA molecules stiffer, resulting in a longer contracted length and a longer relaxation time (a slower contraction rate). The present methodology offers a promising way to identify DNA methylation without any protein modification at a single DNA molecule level within 2 h.
Collapse
Affiliation(s)
- Xiaoyin Sun
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
| | - Takao Yasui
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
- Japan Science and Technology Agency (JST), PRESTO, Saitama, Japan
| | - Takeshi Yanagida
- Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
| | - Sakon Rahong
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
| | - Masaki Kanai
- Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Kazuki Nagashima
- Institute of Materials Chemistry and Engineering, Kyushu University, Fukuoka, Japan
| | - Tomoji Kawai
- Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Yoshinobu Baba
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Nagoya, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| |
Collapse
|
25
|
Li Y, Zhou S, Schwartz DC, Ma J. Allele-Specific Quantification of Structural Variations in Cancer Genomes. Cell Syst 2016; 3:21-34. [PMID: 27453446 PMCID: PMC4965314 DOI: 10.1016/j.cels.2016.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Aneuploidy and structural variations (SVs) generate cancer genomes containing a mixture of rearranged genomic segments with extensive somatic copy number alterations. However, existing methods can identify either SVs or allele-specific copy number alterations, but not both simultaneously, which provides a limited view of cancer genome structure. Here we introduce Weaver, an algorithm for the quantification and analysis of allele-specific copy numbers of SVs. Weaver uses a Markov Random Field to estimate joint probabilities of allele-specific copy number of SVs and their inter-connectivity based on paired-end whole-genome sequencing data. Weaver also predicts the timing of SVs relative to chromosome amplifications. We demonstrate the accuracy of Weaver using simulations and findings from whole-genome Optical Mapping. We apply Weaver to generate allele-specific copy numbers of SVs for MCF-7 and HeLa cell lines, and identify recurrent SV patterns in 44 TCGA ovarian cancer whole-genome sequencing datasets. Our approach provides a more complete assessment of the complex genomic architectures inherent to many cancer genomes.
Collapse
Affiliation(s)
- Yang Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jian Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
26
|
Pedersen JN, Marie R, Kristensen A, Flyvbjerg H. How to determine local stretching and tension in a flow-stretched DNA molecule. Phys Rev E 2016; 93:042405. [PMID: 27176327 DOI: 10.1103/physreve.93.042405] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Indexed: 11/07/2022]
Abstract
We determine the nonuniform stretching of and tension in a mega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA-e.g., native DNA extracted from human cells or bacteria-must be stretched with ease for inspection, this method applies.
Collapse
Affiliation(s)
- Jonas N Pedersen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345B, DK-2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345B, DK-2800 Kongens Lyngby, Denmark
| | - Anders Kristensen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345B, DK-2800 Kongens Lyngby, Denmark
| | - Henrik Flyvbjerg
- Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345B, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
27
|
Li X, Dorfman KD. Effect of excluded volume on the force-extension of wormlike chains in slit confinement. J Chem Phys 2016; 144:104902. [PMID: 26979704 DOI: 10.1063/1.4943195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use pruned-enriched Rosenbluth method simulations to develop a quantitative phase diagram for the stretching of a real wormlike chain confined in a slit. Our simulations confirm the existence of a "confined Pincus" regime in slit confinement, analogous to the Pincus regime in free solution, where excluded volume effects are sensible. The lower bound for the confined Pincus regime in the force-molecular weight plane, as well as the scaling of the extension with force and slit size, agree with an existing scaling theory for this regime. The upper bound of the confined Pincus regime depends on the strength of the confinement. For strong confinement, the confined Pincus regime ends when the contour length in the Pincus blob is too short to have intrablob excluded volume. As a result, the chain statistics become ideal and the confined Pincus regime at low forces is connected directly to ideal chain stretching at large forces. In contrast, for weak confinement, the confined Pincus regime ends when the Pincus blobs no longer fit inside the slit, even though there is sufficient contour length to have excluded volume inside the Pincus blob. As a result, weak confinement leads to a free-solution Pincus regime intervening between the confined Pincus regime for weak forces and ideal chain stretching at strong forces. Our results highlight shortcomings in existing models for the stretching of wormlike chains in slits.
Collapse
Affiliation(s)
- Xiaolan Li
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
28
|
Mendelowitz LM, Schwartz DC, Pop M. Maligner: a fast ordered restriction map aligner. Bioinformatics 2015; 32:1016-22. [PMID: 26637292 DOI: 10.1093/bioinformatics/btv711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/01/2015] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION The Optical Mapping System discovers structural variants and potentiates sequence assembly of genomes via scaffolding and comparisons that globally validate or correct sequence assemblies. Despite its utility, there are few publicly available tools for aligning optical mapping datasets. RESULTS Here we present software, named 'Maligner', for the alignment of both single molecule restriction maps (Rmaps) and in silico restriction maps of sequence contigs to a reference. Maligner provides two modes of alignment: an efficient, sensitive dynamic programming implementation that scales to large eukaryotic genomes, and a faster indexed based implementation for finding alignments with unmatched sites in the reference but not the query. We compare our software to other publicly available tools on Rmap datasets and show that Maligner finds more correct alignments in comparable runtime. Lastly, we introduce the M-Score statistic for normalizing alignment scores across restriction maps and demonstrate its utility for selecting high quality alignments. AVAILABILITY AND IMPLEMENTATION The Maligner software is written in C ++ and is available at https://github.com/LeeMendelowitz/maligner under the GNU General Public License. CONTACT mpop@umiacs.umd.edu.
Collapse
Affiliation(s)
- Lee M Mendelowitz
- Center for Bioinformatics and Computational Biology, Applied Math & Statistics, and Scientific Computation
| | - David C Schwartz
- Laboratory for Molecular and Computational Genomics, Department of Chemistry, Laboratory of Genetics, USA and the UW-Biotechnology Center, University of Wisconsin-Madison, WI 53706, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Applied Math & Statistics, and Scientific Computation, Department of Computer Science, University of Maryland, College Park, MD 20742, USA and
| |
Collapse
|
29
|
Hernández-Ortiz JP, de Pablo JJ. Self-consistent description of electrokinetic phenomena in particle-based simulations. J Chem Phys 2015; 143:014108. [PMID: 26156466 PMCID: PMC4491022 DOI: 10.1063/1.4923342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/22/2015] [Indexed: 11/14/2022] Open
Abstract
A new computational method is presented for study suspensions of charged particles undergoing fluctuating hydrodynamic and electrostatic interactions. The proposed model is appropriate for polymers, proteins, and porous particles embedded in a continuum electrolyte. A self-consistent Langevin description of the particles is adopted in which hydrodynamic and electrostatic interactions are included through a Green's function formalism. An Ewald-like split is adopted in order to satisfy arbitrary boundary conditions for the Stokeslet and Poisson Green functions, thereby providing a formalism that is applicable to any geometry and that can be extended to deformable objects. The convection-diffusion equation for the continuum ions is solved simultaneously considering Nernst-Planck diffusion. The method can be applied to systems at equilibrium and far from equilibrium. Its applicability is demonstrated in the context of electrokinetic motion, where it is shown that the ionic clouds associated with individual particles can be severely altered by the flow and concentration, leading to intriguing cooperative effects.
Collapse
Affiliation(s)
- Juan P Hernández-Ortiz
- Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín, Colombia
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
30
|
Freitag C, Noble C, Fritzsche J, Persson F, Reiter-Schad M, Nilsson AN, Granéli A, Ambjörnsson T, Mir KU, Tegenfeldt JO. Visualizing the entire DNA from a chromosome in a single frame. BIOMICROFLUIDICS 2015; 9:044114. [PMID: 26392826 PMCID: PMC4570469 DOI: 10.1063/1.4923262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/18/2015] [Indexed: 05/16/2023]
Abstract
The contiguity and phase of sequence information are intrinsic to obtain complete understanding of the genome and its relationship to phenotype. We report the fabrication and application of a novel nanochannel design that folds megabase lengths of genomic DNA into a systematic back-and-forth meandering path. Such meandering nanochannels enabled us to visualize the complete 5.7 Mbp (1 mm) stained DNA length of a Schizosaccharomyces pombe chromosome in a single frame of a CCD. We were able to hold the DNA in situ while implementing partial denaturation to obtain a barcode pattern that we could match to a reference map using the Poland-Scheraga model for DNA melting. The facility to compose such long linear lengths of genomic DNA in one field of view enabled us to directly visualize a repeat motif, count the repeat unit number, and chart its location in the genome by reference to unique barcode motifs found at measurable distances from the repeat. Meandering nanochannel dimensions can easily be tailored to human chromosome scales, which would enable the whole genome to be visualized in seconds.
Collapse
Affiliation(s)
| | - C Noble
- Department of Astronomy and Theoretical Physics, Lund University , Lund, Sweden
| | | | | | - M Reiter-Schad
- Department of Astronomy and Theoretical Physics, Lund University , Lund, Sweden
| | - A N Nilsson
- Department of Astronomy and Theoretical Physics, Lund University , Lund, Sweden
| | - A Granéli
- Department of Physics, University of Gothenburg , Gothenburg, Sweden
| | - T Ambjörnsson
- Department of Astronomy and Theoretical Physics, Lund University , Lund, Sweden
| | | | | |
Collapse
|
31
|
Klotz AR, Mamaev M, Duong L, de Haan HW, Reisner WW. Correlated Fluctuations of DNA between Nanofluidic Entropic Traps. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00961] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Mikhail Mamaev
- Department
of Physics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Lyndon Duong
- Department
of Physics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Hendrick W. de Haan
- Faculty
of Science, University of Ontario Institute of Technology, Oshawa, ON L1H 7K4, Canada
| | - Walter W. Reisner
- Department
of Physics, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
32
|
de Haan HW, Shendruk TN. Force-Extension for DNA in a Nanoslit: Mapping between the 3D and 2D Limits. ACS Macro Lett 2015; 4:632-635. [PMID: 35596406 DOI: 10.1021/acsmacrolett.5b00138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The force-extension relation for a semiflexible polymer confined in a nanoslit is investigated. Both the effective correlation length and force-extension relation change as the chain goes from 3D (large slit heights) to 2D (tight confinement). At low forces, correlations along the polymer give an effective dimensionality. The strong force limit can be interpolated with the weak force limit for two regimes: when confinement dominates over extensile force and vice versa. These interpolations give good agreement with simulations for all slit heights and forces. We thus generalize the Marko-Siggia force-extension relation for DNA and other semiflexible biopolymers in nanoconfinement.
Collapse
Affiliation(s)
- Hendrick W. de Haan
- University of Ontario Institute of Technology, Faculty
of Science, 2000 Simcoe
Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Tyler N. Shendruk
- The
Rudolf Peierls Centre for Theoretical Physics, Department of Physics,
Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, United Kingdom
| |
Collapse
|
33
|
Durney BC, Crihfield CL, Holland LA. Capillary electrophoresis applied to DNA: determining and harnessing sequence and structure to advance bioanalyses (2009-2014). Anal Bioanal Chem 2015; 407:6923-38. [PMID: 25935677 PMCID: PMC4551542 DOI: 10.1007/s00216-015-8703-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/09/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
This review of capillary electrophoresis methods for DNA analyses covers critical advances from 2009 to 2014, referencing 184 citations. Separation mechanisms based on free-zone capillary electrophoresis, Ogston sieving, and reptation are described. Two prevalent gel matrices for gel-facilitated sieving, which are linear polyacrylamide and polydimethylacrylamide, are compared in terms of performance, cost, viscosity, and passivation of electroosmotic flow. The role of capillary electrophoresis in the discovery, design, and characterization of DNA aptamers for molecular recognition is discussed. Expanding and emerging techniques in the field are also highlighted.
Collapse
Affiliation(s)
- Brandon C Durney
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA
| | | | | |
Collapse
|
34
|
Dorfman KD, Gupta D, Jain A, Muralidhar A, Tree DR. Hydrodynamics of DNA confined in nanoslits and nanochannels. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2014; 223:3179-3200. [PMID: 25566349 PMCID: PMC4282777 DOI: 10.1140/epjst/e2014-02326-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Modeling the dynamics of a confined, semi exible polymer is a challenging problem, owing to the complicated interplay between the configurations of the chain, which are strongly affected by the length scale for the confinement relative to the persistence length of the chain, and the polymer-wall hydrodynamic interactions. At the same time, understanding these dynamics are crucial to the advancement of emerging genomic technologies that use confinement to stretch out DNA and "read" a genomic signature. In this mini-review, we begin by considering what is known experimentally and theoretically about the friction of a wormlike chain such as DNA confined in a slit or a channel. We then discuss how to estimate the friction coefficient of such a chain, either with dynamic simulations or via Monte Carlo sampling and the Kirk-wood pre-averaging approximation. We then review our recent work on computing the diffusivity of DNA in nanoslits and nanochannels, and conclude with some promising avenues for future work and caveats about our approach.
Collapse
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455 USA
| | - Damini Gupta
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455 USA
| | - Aashish Jain
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455 USA
| | - Abhiram Muralidhar
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455 USA
| | - Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota – Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455 USA
- Materials Research Laboratory, University of California – Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
35
|
Affiliation(s)
- Douglas R. Tree
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wesley F. Reinhart
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
36
|
Gupta C, Liao WC, Gallego-Perez D, Castro CE, Lee LJ. DNA translocation through short nanofluidic channels under asymmetric pulsed electric field. BIOMICROFLUIDICS 2014; 8:024114. [PMID: 24803963 PMCID: PMC4000398 DOI: 10.1063/1.4871595] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/07/2014] [Indexed: 05/08/2023]
Abstract
Investigation of single molecule DNA dynamics in confined environments has led to important applications in DNA analysis, separation, and sequencing. Here, we studied the electrophoretic transport of DNA molecules through nanochannels shorter than the DNA contour length and calculated the associated translocation time curves. We found that the longer T4 DNA molecules required a longer time to traverse a fixed length nanochannel than shorter λ DNA molecules and that the translocation time decreased with increasing electric field which agreed with theoretical predictions. We applied this knowledge to design an asymmetric electric pulse and demonstrate the different responses of λ and T4 DNA to the pulses. We used Brownian dynamics simulations to corroborate our experimental results on DNA translocation behaviour. This work contributes to the fundamental understanding of polymer transport through nanochannels and may help in designing better separation techniques in the future.
Collapse
Affiliation(s)
- C Gupta
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA ; Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - W-C Liao
- Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - D Gallego-Perez
- Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - C E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio 43210, USA ; Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA
| | - L J Lee
- Centre for Affordable Nanoengineering of Polymeric Biomedical Devices, The Ohio State University, Columbus, Ohio 43210, USA ; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|