1
|
Mathews HF, Çeper T, Speen T, Bastard C, Bulut S, Pieper MI, Schacher FH, De Laporte L, Pich A. Engineering poly(dehydroalanine)-based gels via droplet-based microfluidics: from bulk to microspheres. SOFT MATTER 2024; 20:6231-6246. [PMID: 39051502 DOI: 10.1039/d4sm00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Biomedical applications such as drug delivery, tissue engineering, and functional surface coating rely on switchable adsorption and desorption of specialized guest molecules. Poly(dehydroalanine), a polyzwitterion containing pH-dependent positive and negative charges, shows promise for such reversible loading, especially when integrated into a gel network. Herein, we present the fabrication of poly(dehydroalanine)-derived gels of different size scales and evaluate them with respect to their practical use in biomedicine. Already existing protocols for bulk gelation were remodeled to derive suitable reaction conditions for droplet-based microfluidic synthesis. Depending on the layout of the microfluidic chip, microgels with a size of approximately 30 μm or 200 μm were obtained, whose crosslinking density can be increased by implementing a multi-arm crosslinker. We analyzed the effects of the crosslinker species on composition, permeability, and softness and show that the microgels exhibit advantageous properties inherent to zwitterionic polymer systems, including high hydrophilicity as well as pH- and ionic strength-sensitivity. We demonstrate pH-regulated uptake and release of fluorescent model dyes before testing the adsorption of a small antimicrobial peptide, LL-37. Quantification of the peptide accommodated within the microgels reveals the impact of size and crosslinking density of the microgels. Biocompatibility of the microgels was validated by cell tests.
Collapse
Affiliation(s)
- Hannah F Mathews
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Tolga Çeper
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
| | - Tobias Speen
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Céline Bastard
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Selin Bulut
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Maria I Pieper
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Grüne Aue, 07754 Jena, Germany
| | - Laura De Laporte
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Institute of Applied Medical Engineering (AME), Department of Advanced Materials for Biomedicine (AMB), University Hospital RWTH Aachen, Center for Biohybrid Medical Systems (CMBS), Forckenbeckstr. 55, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightland Chemelot Campus, Maastricht University, 6167 RD Geleen, The Netherlands
| |
Collapse
|
2
|
Engel S, Jeschenko PM, van Dongen M, Rose JC, Schäfer D, Bruns M, Herres-Pawlis S, Keul H, Möller M. Photo-cross-linked and pH-Switchable Soft Polymer Nanocapsules from Polyglycidyl Ethers. Macromolecules 2024; 57:707-718. [PMID: 38283123 PMCID: PMC10810002 DOI: 10.1021/acs.macromol.3c01698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Soft polymer nanocapsules and microgels, which can adapt their shape and, at the same time, sequester and release molecular payloads in response to an external trigger, are a challenging complement to vesicular structures like polymersomes. In this work, we report the synthesis of such capsules by photo-cross-linking of coumarin-substituted polyglycidyl ethers, which we prepared by Williamson etherification of epichlorohydrin (ECH) repeating units with 7-hydroxycoumarin in copolymers with tert-butyl glycidyl ether (tBGE). To control capsule size, we employed the prepolymers in an o/w miniemulsion, where they formed a gel layer at the interface upon irradiation at 365 nm by [2π + 2π] photodimerization of the coumarin groups. Upon irradiation at 254 nm, the reaction could be reversed and the gel wall could be repeatedly disintegrated and rebuilt. We further demonstrated (i) reversible hydrophilization of the gels by hydrolysis of the lactone rings in coumarin dimers as a mechanism to manipulate the permeability of the capsules and (ii) binding functional molecules as amides. Thus, the presented nanogels are remarkably versatile and can be further used as a carrier system.
Collapse
Affiliation(s)
- Stefan Engel
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, D-52074 Aachen, Germany
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Pascal M. Jeschenko
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Marcel van Dongen
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Jonas C. Rose
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Dominic Schäfer
- Institute
of Inorganic Chemistry (IAC), RWTH Aachen
University, Landoltweg
1, D-52074 Aachen, Germany
| | - Michael Bruns
- Institute
for Applied Materials and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sonja Herres-Pawlis
- Institute
of Inorganic Chemistry (IAC), RWTH Aachen
University, Landoltweg
1, D-52074 Aachen, Germany
| | - Helmut Keul
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
| | - Martin Möller
- Institute
of Technical and Macromolecular Chemistry (ITMC), RWTH Aachen University, Worringerweg 2, D-52074 Aachen, Germany
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstraße 50, D-52074 Aachen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
3
|
Bergueiro J, Glitscher EA, Calderón M. A hybrid thermoresponsive plasmonic nanogel designed for NIR-mediated chemotherapy. BIOMATERIALS ADVANCES 2022; 137:212842. [PMID: 35929271 DOI: 10.1016/j.bioadv.2022.212842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Temperature-trigger chemotherapy is one of the state-of-the-art anti-tumoral strategies in nanomedicine. However, this strategy is in close relationship with the effect of the temperature in the tumor tissue. With high temperatures, the ablation of the tumor tissue can hinder a correct chemotherapy approximation. On the other hand, with moderate temperatures a negative vascularization that promotes the tumor growing is produced and competes with the chemotherapeutic effects. We have constructed one nanogel system composed of a thermoresponsive polymer cross-linked by plasmonic gold nanoparticles (AuNPs) for temperature-trigger chemotherapy. Doxorubicin loaded in the porous interior of the nanogel is released when the thermoresponsive network of the nanogel collapses due to the heat generated by the AuNPs upon near infra-red light irradiation. The hybrid nanogel system has been tested in vitro and in vivo, where it was observed that the temperatures reached in the in vivo NIR irradiation have an undesired effect on the inhibition of the tumor growth while the drug loaded systems considerably reduced the tumor sizes. This study shows the importance of design in temperature triggered antitumoral systems, where lower temperatures usually reached in practical situations due to light attenuation produced by the tissue can be positively utilized for enhancing the antitumoral effect of loaded drugs in the system.
Collapse
Affiliation(s)
- Julian Bergueiro
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Emanuel A Glitscher
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| |
Collapse
|
4
|
Biglione C, Neumann‐Tran TMP, Kanwal S, Klinger D. Amphiphilic micro‐ and nanogels: Combining properties from internal hydrogel networks, solid particles, and micellar aggregates. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Catalina Biglione
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | | | - Sidra Kanwal
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry) Freie Universität Berlin Berlin Germany
| |
Collapse
|
5
|
Thünemann AF, Gruber A, Klinger D. Amphiphilic Nanogels: Fuzzy Spheres with a Pseudo-Periodic Internal Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10979-10988. [PMID: 32854501 DOI: 10.1021/acs.langmuir.0c01812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amphiphilic polymer nanogels (NGs) are promising drug delivery vehicles that extend the application of conventional hydrophilic NGs to hydrophobic cargoes. By randomly introducing hydrophobic groups into a hydrophilic polymer network, loading and release profiles as well as surface characteristics of these colloids can be tuned. However, very little is known about the underlying internal structure of such complex colloidal architectures. Of special interest is the question how the amphiphilic network composition influences the internal morphology and the "fuzzy" surface structure. To shine light into the influence of varying network amphiphilicity on these structural features, we investigated a small library of water-swollen amphiphilic NGs using small-angle X-ray scattering (SAXS). It was found that overall hydrophilic NGs, consisting of pure poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA), display a disordered internal structure as indicated by the absence of a SAXS peak. In contrast, a SAXS peak is present for amphiphilic NGs with various amounts of incorporated hydrophobic groups such as cholesteryl (CHOLA) or dodecyl (DODA). The internal composition of the NGs is considered structurally homologous to microgels. Application of the Teubner-Strey model reveals that hydrophilic PHPMA NGs have a disordered internal structure (positive amphiphilicity factor) while CHOLA and DODA samples have an ordered internal structure (negative amphiphilicity factor). From the SAXS data it can be derived that the internal structure of the amphiphilic NGs consists of regularly alternating hydrophilic and hydrophobic domains with repeat distances of 3.45-5.83 nm.
Collapse
Affiliation(s)
- Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Alexandra Gruber
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise Straße 2-4, 14195 Berlin, Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry), Freie Universität Berlin, Königin-Luise Straße 2-4, 14195 Berlin, Germany
| |
Collapse
|
6
|
Valchanova M, Yordanov Y, Tzankova V, Yoncheva K, Turmanova S, Rangelov S. Functional amphiphilic block copolyethers as carriers of caffeic acid phenethyl ester. POLYM INT 2019. [DOI: 10.1002/pi.5898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Miroslava Valchanova
- Institute of PolymersBulgarian Academy of Sciences Sofia Bulgaria
- Department of Material Science and Technology, University ‘Prof. Assen Zlatarov’ Burgas Bulgaria
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and ToxicologyMedical University of Sofia, Faculty of Pharmacy Sofia Bulgaria
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and ToxicologyMedical University of Sofia, Faculty of Pharmacy Sofia Bulgaria
| | - Krassimira Yoncheva
- Department of Pharmaceutical Technology and BiopharmaceuticsMedical University of Sofia, Faculty of Pharmacy Sofia Bulgaria
| | - Sevdalina Turmanova
- Department of Material Science and Technology, University ‘Prof. Assen Zlatarov’ Burgas Bulgaria
| | | |
Collapse
|
7
|
Höck H, Engel S, Weingarten S, Keul H, Schwaneberg U, Möller M, Bocola M. Comparison of Candida antarctica Lipase B Variants for Conversion of ε-Caprolactone in Aqueous Medium-Part 2. Polymers (Basel) 2018; 10:E524. [PMID: 30966558 PMCID: PMC6415414 DOI: 10.3390/polym10050524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/26/2018] [Accepted: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
Enzyme-catalyzed ring-opening polymerization of lactones is a method of increasing interest for the synthesis of polyesters. In the present work, we investigated which changes in the structure of Candida antarctica lipase B (CaLB) shift the catalytic equilibrium between esterification and hydrolysis towards polymerization. Therefore, we present two concepts: (i) removing the glycosylation of CaLB to increase the surface hydrophobicity; and (ii) introducing a hydrophobic lid adapted from Pseudomonas cepacia lipase (PsCL) to enhance the interaction of a growing polymer chain to the elongated lid helix. The deglycosylated CaLB (CaLB-degl) was successfully generated by site-saturation mutagenesis of asparagine 74. Furthermore, computational modeling showed that the introduction of a lid helix at position Ala148 was structurally feasible and the geometry of the active site remained intact. Via overlap extension PCR the lid was successfully inserted, and the variant was produced in large scale in Pichia pastoris with glycosylation (CaLB-lid) and without (CaLB-degl-lid). While the lid variants show a minor positive effect on the polymerization activity, CaLB-degl showed a clearly reduced hydrolytic and enhanced polymerization activity. Immobilization in a hydrophobic polyglycidol-based microgel intensified this effect such that a higher polymerization activity was achieved, compared to the "gold standard" Novozym® 435.
Collapse
Affiliation(s)
- Heidi Höck
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Stefan Engel
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Simone Weingarten
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Helmut Keul
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Marco Bocola
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| |
Collapse
|
8
|
Biglione C, Bergueiro J, Asadian-Birjand M, Weise C, Khobragade V, Chate G, Dongare M, Khandare J, Strumia MC, Calderón M. Optimizing Circulating Tumor Cells' Capture Efficiency of Magnetic Nanogels by Transferrin Decoration. Polymers (Basel) 2018; 10:E174. [PMID: 30966210 PMCID: PMC6414968 DOI: 10.3390/polym10020174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/19/2018] [Accepted: 02/06/2018] [Indexed: 11/17/2022] Open
Abstract
Magnetic nanogels (MNGs) are designed to have all the required features for their use as highly efficient trapping materials in the challenging task of selectively capturing circulating tumor cells (CTCs) from the bloodstream. Advantageously, the discrimination of CTCs from hematological cells, which is a key factor in the capturing process, can be optimized by finely tuning the polymers used to link the targeting moiety to the MNG. We describe herein the relationship between the capturing efficiency of CTCs with overexpressed transferrin receptors and the different strategies on the polymer used as linker to decorate these MNGs with transferrin (Tf). Heterobifunctional polyethylene glycol (PEG) linkers with different molecular weights were coupled to Tf in different ratios. Optimal values over 80% CTC capture efficiency were obtained when 3 PEG linkers with a length of 8 ethylene glycol (EG) units were used, which reveals the important role of the linker in the design of a CTC-sorting system.
Collapse
Affiliation(s)
- Catalina Biglione
- LAMAP Laboratorio de Materiales Poliméricos, IPQA-CONICET, Departamento de Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Julian Bergueiro
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Mazdak Asadian-Birjand
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Christoph Weise
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| | - Vrushali Khobragade
- Actorius Innovations and Research, B 411, GO Square, Wakad Road, 411057 Pune, India.
- Surgical Oncologist, Manik Hospital and Research Center, Aurangabad 431001, India.
| | - Govind Chate
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, Maharashtra, India.
| | - Manoj Dongare
- Actorius Innovations and Research, B 411, GO Square, Wakad Road, 411057 Pune, India.
- Surgical Oncologist, Manik Hospital and Research Center, Aurangabad 431001, India.
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, Maharashtra, India.
| | - Jayant Khandare
- Actorius Innovations and Research, B 411, GO Square, Wakad Road, 411057 Pune, India.
- Surgical Oncologist, Manik Hospital and Research Center, Aurangabad 431001, India.
- MAEER's Maharashtra Institute of Pharmacy, Kothrud, Pune 411038, Maharashtra, India.
| | - Miriam C Strumia
- LAMAP Laboratorio de Materiales Poliméricos, IPQA-CONICET, Departamento de Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, X5000HUA Córdoba, Argentina.
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
9
|
Gruber A, Işık D, Fontanezi BB, Böttcher C, Schäfer-Korting M, Klinger D. A versatile synthetic platform for amphiphilic nanogels with tunable hydrophobicity. Polym Chem 2018. [DOI: 10.1039/c8py01123k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalization of reactive precursor particles allows the preparation of amphiphilic nanogel libraries with tunable network hydrophobicity and comparable colloidal features.
Collapse
Affiliation(s)
- Alexandra Gruber
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Doğuş Işık
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Bianca Bueno Fontanezi
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Christoph Böttcher
- Research Center of Electron Microscopy and Core Facility
- BioSupraMol
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin D-14195
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| |
Collapse
|
10
|
Engel S, Höck H, Bocola M, Keul H, Schwaneberg U, Möller M. CaLB Catalyzed Conversion of ε-Caprolactone in Aqueous Medium. Part 1: Immobilization of CaLB to Microgels. Polymers (Basel) 2016; 8:E372. [PMID: 30974648 PMCID: PMC6432092 DOI: 10.3390/polym8100372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/06/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
The enzymatic ring-opening polymerization of lactones is a method of increasing interest for the synthesis of biodegradable and biocompatible polymers. In the past it was shown that immobilization of Candida antarctica lipase B (CaLB) and the reaction medium play an important role in the polymerization ability especially of medium ring size lactones like ε-caprolactone (ε-CL). We investigated a route for the preparation of compartmentalized microgels based on poly(glycidol) in which CaLB was immobilized to increase its esterification ability. To find the ideal environment for CaLB, we investigated the acceptable water concentration and the accessibility for the monomer in model polymerizations in toluene and analyzed the obtained oligomers/polymers by NMR and SEC. We observed a sufficient accessibility for ε-CL to a toluene like hydrophobic phase imitating a hydrophobic microgel. Comparing free CaLB and Novozym® 435 we found that not the monomer concentration but rather the solubility of the enzyme, as well as the water concentration, strongly influences the equilibrium of esterification and hydrolysis. On the basis of these investigations, microgels of different polarity were prepared and successfully loaded with CaLB by physical entrapment. By comparison of immobilized and free CaLB, we demonstrated an effect of the hydrophobicity of the microenvironment of CaLB on its enzymatic activity.
Collapse
Affiliation(s)
- Stefan Engel
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Heidi Höck
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Marco Bocola
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Helmut Keul
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials and Institute of Biotechnology, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52056 Aachen, Germany.
| |
Collapse
|
11
|
Stoyanova B, Novakov C, Tsvetanov CB, Rangelov S. Synthesis and Aqueous Solution Properties of Block Copolyethers with Latent Chemical Functionality. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Boyana Stoyanova
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev Str. 103-A 1113 Sofia Bulgaria
| | - Christo Novakov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev Str. 103-A 1113 Sofia Bulgaria
| | - Christo B. Tsvetanov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev Str. 103-A 1113 Sofia Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers; Bulgarian Academy of Sciences; Akad. G. Bonchev Str. 103-A 1113 Sofia Bulgaria
| |
Collapse
|
12
|
Spears BR, Marin MA, Montenegro-Burke JR, Evans BC, McLean J, Harth E. Aqueous Epoxide Ring-Opening Polymerization (AEROP): Green Synthesis of Polyglycidol with Ultralow Branching. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Benjamin R. Spears
- Department of Chemistry, 7665 Stevenson Center, ‡Department of Chemical
and Biomolecular
Engineering, §Center for Innovative Technology, ∥Vanderbilt Institute of Chemical Biology, ⊥Department of Biomedical
Engineering, and #Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Michael A. Marin
- Department of Chemistry, 7665 Stevenson Center, ‡Department of Chemical
and Biomolecular
Engineering, §Center for Innovative Technology, ∥Vanderbilt Institute of Chemical Biology, ⊥Department of Biomedical
Engineering, and #Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - J. Rafael Montenegro-Burke
- Department of Chemistry, 7665 Stevenson Center, ‡Department of Chemical
and Biomolecular
Engineering, §Center for Innovative Technology, ∥Vanderbilt Institute of Chemical Biology, ⊥Department of Biomedical
Engineering, and #Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Brian C. Evans
- Department of Chemistry, 7665 Stevenson Center, ‡Department of Chemical
and Biomolecular
Engineering, §Center for Innovative Technology, ∥Vanderbilt Institute of Chemical Biology, ⊥Department of Biomedical
Engineering, and #Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John McLean
- Department of Chemistry, 7665 Stevenson Center, ‡Department of Chemical
and Biomolecular
Engineering, §Center for Innovative Technology, ∥Vanderbilt Institute of Chemical Biology, ⊥Department of Biomedical
Engineering, and #Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Eva Harth
- Department of Chemistry, 7665 Stevenson Center, ‡Department of Chemical
and Biomolecular
Engineering, §Center for Innovative Technology, ∥Vanderbilt Institute of Chemical Biology, ⊥Department of Biomedical
Engineering, and #Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
13
|
Tiwari R, Heuser T, Weyandt E, Wang B, Walther A. Polyacid microgels with adaptive hydrophobic pockets and ampholytic character: synthesis, solution properties and insights into internal nanostructure by cryogenic-TEM. SOFT MATTER 2015; 11:8342-8353. [PMID: 26350118 DOI: 10.1039/c5sm01327e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Microgels with internal and reconfigurable complex nanostructure are emerging as possible adaptive particles, yet they remain challenging to design synthetically. Here, we report the synthesis of highly charged poly(methacrylic acid) (PMAA) microgels incorporating permanent (poly(methyl methacrylate) (PMMA)) and switchable hydrophobic pockets (poly(N,N'-diethylaminoethyl methacrylate) (PDEAEMA)) via emulsion polymerization. We demonstrate detailed tuning of the size, crosslinking density and tailored incorporation of functional comonomers into the polyacid microgels. Analysis via cryo-TEM and pyrene probe measurements reveal switchable hydrophobic pockets inside the microgels as a function of pH. The particles show a rich diversity of internal phase-segregation, that adapts to the surrounding conditions. Large amounts of hydrophobic pockets even lead to hydrophobic bridging between particles. The study shows ways towards tailored polyelectrolyte microgels with narrow dispersity, high charge density, as well as tailored and reconfigurable hydrophobic compartments and interactions.
Collapse
Affiliation(s)
- Rahul Tiwari
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Thomas Heuser
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Elisabeth Weyandt
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Baochun Wang
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| | - Andreas Walther
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany.
| |
Collapse
|
14
|
Liu S, Dicker KT, Jia X. Modular and orthogonal synthesis of hybrid polymers and networks. Chem Commun (Camb) 2015; 51:5218-37. [PMID: 25572255 PMCID: PMC4359094 DOI: 10.1039/c4cc09568e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA.
| | | | | |
Collapse
|
15
|
Schulte B, Rahimi K, Keul H, Demco DE, Walther A, Möller M. Blending of reactive prepolymers to control the morphology and polarity of polyglycidol based microgels. SOFT MATTER 2015; 11:943-953. [PMID: 25515704 DOI: 10.1039/c4sm02116a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The compartmentalization of microgels is a challenging task for synthetic polymer chemistry. Although the complexation with low molecular weight compounds or the use of microfluidic techniques offer attractive possibilities for other length scales, it is difficult to implement compartments in the mesoscale range of 10-100 nm. Herein we show how simple blending of reactive prepolymers is suitable to design new microgel morphologies with tailored compartments. We use poly(EEGE)-block-poly(AGE) as crosslinkable, pro-hydrophilic prepolymer in blends with varying amounts of crosslinkable, yet hydrophobic poly(THF-stat-AllylEHO) or inert and hydrophobic polystyrene, and crosslink the allyl functional prepolymer(s) in a thiol-ene click-type reaction after miniemulsification. Our strategy shows how arrested versus free nanophase separation can be used to control easily the morphology and polarity of microgel particles.
Collapse
Affiliation(s)
- B Schulte
- DWI - Leibniz Institute for Interactive Materials and Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Kuhlmann M, Reimann O, Hackenberger CPR, Groll J. Cysteine-Functional Polymers via Thiol-ene Conjugation. Macromol Rapid Commun 2015; 36:472-6. [DOI: 10.1002/marc.201400703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/25/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Matthias Kuhlmann
- Department for Functional Materials in Medicine and Dentistry; University of Würzburg; Pleicherwall 2 97070 Würzburg Germany
| | - Oliver Reimann
- Department Chemical Biology II; Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Rössle-Strasse 10 13125 Berlin Germany
| | - Christian P. R. Hackenberger
- Department Chemical Biology II; Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department Chemie; Humboldt Universität zu Berlin; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry; University of Würzburg; Pleicherwall 2 97070 Würzburg Germany
| |
Collapse
|
17
|
Kuhlmann M, Groll J. Dispersity control of linear poly(glycidyl ether)s by slow monomer addition. RSC Adv 2015. [DOI: 10.1039/c5ra08067c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this communication we demonstrate that the extent of dispersity of poly(allyl glycidyl ether) and poly(ethoxy ethyl glycidyl ether) can be reduced by slow monomer addition with potassium tert-butoxide as initiator and THF as solvent at 45 °C.
Collapse
Affiliation(s)
- M. Kuhlmann
- Department for Functional Materials in Medicine and Dentistry
- University of Würzburg
- 97070 Würzburg
- Germany
| | - J. Groll
- Department for Functional Materials in Medicine and Dentistry
- University of Würzburg
- 97070 Würzburg
- Germany
| |
Collapse
|
18
|
Thomas A, Müller SS, Frey H. Beyond Poly(ethylene glycol): Linear Polyglycerol as a Multifunctional Polyether for Biomedical and Pharmaceutical Applications. Biomacromolecules 2014; 15:1935-54. [DOI: 10.1021/bm5002608] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Anja Thomas
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Sophie S. Müller
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Holger Frey
- Institute
of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
19
|
Giulbudagian M, Asadian-Birjand M, Steinhilber D, Achazi K, Molina M, Calderón M. Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym Chem 2014. [DOI: 10.1039/c4py01186d] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Thermo-nanoprecipitation is presented as a versatile, surfactant-free, and mild synthetic method for the preparation of thermoresponsive nanogels and in situ encapsulation of bioactives.
Collapse
Affiliation(s)
- Michael Giulbudagian
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin, Germany
| | | | - Dirk Steinhilber
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin, Germany
| | - Katharina Achazi
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin, Germany
| | - Maria Molina
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin, Germany
| | - Marcelo Calderón
- Freie Universität Berlin
- Institute of Chemistry and Biochemistry
- 14195 Berlin, Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
- Teltow, Germany
| |
Collapse
|