1
|
Zhao R, Wang C, Huang K, Li L, Fan W, Zhu Q, Ma H, Wang X, Wang Z, Huang W. Macromolecular Engineered Multifunctional Room-Temperature Phosphorescent Polymers through Reversible Deactivation Radical Polymerization. J Am Chem Soc 2023. [PMID: 38035385 DOI: 10.1021/jacs.3c10673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Despite the intensive research in room-temperature phosphorescent (RTP) polymers, the synthesis of RTP polymers with well-defined macromolecular structures and multiple functions remains a challenge. Herein, reversible deactivation radical polymerization was demonstrated to offer a gradient copolymer (GCP) architecture with controlled heterogeneities, which combines hard segment and flexible segment. The GCPs would self-assemble into a multiphase nanostructure, featuring tunable stretchability, excellent RTP performance, and intrinsic healability without compromising light emission under stretching. The mechanical performance is tunable on demand with elongation at break ranging from 5.0% to 221.7% and Young's modulus ranging from 0.5 to 225.0 MPa.
Collapse
Affiliation(s)
- Ruoqing Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Keer Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenru Fan
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Qixuan Zhu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University, Xi'an 710072, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
2
|
Xue T, Wei Y, Yu C, Zhou Z, Zhang F. RAFT polymerization of MMA in channels of different mesoporous materials. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
3
|
Guo Y, Yu Y, Shi K, Zhang W. Synthesis of ABA triblock copolymer nanoparticles by polymerization induced self-assembly and their application as an efficient emulsifier. Polym Chem 2021. [DOI: 10.1039/d0py01498b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABA triblock copolymer nanoparticles of PHPMA-b-PS-b-PHPMA were synthesized by PISA and demonstrated to be an efficient emulsifier.
Collapse
Affiliation(s)
- Yakun Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuewen Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Keyu Shi
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
4
|
Boussiron C, Le Bechec M, Sabalot J, Lacombe S, Save M. Photoactive rose bengal-based latex via RAFT emulsion polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py01128b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rose bengal shell- or core-functionalized acrylic latex synthesized by RAFT emulsion PISA: interfacial photosensitized 1O2 production under visible light.
Collapse
Affiliation(s)
- Charlène Boussiron
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Mickaël Le Bechec
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Julia Sabalot
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Sylvie Lacombe
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Maud Save
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| |
Collapse
|
5
|
Sobotta FH, Kuchenbrod M, Hoeppener S, Brendel JC. One polymer composition, various morphologies: the decisive influence of conditions on the polymerization-induced self-assembly (PISA) of N-acryloyl thiomorpholine. NANOSCALE 2020; 12:20171-20176. [PMID: 33020784 DOI: 10.1039/d0nr05150k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymerization-induced self-assembly (PISA) represents a powerful technique for the preparation of nanostructures comprising various morphologies. Herein, we demonstrate that the recently introduced monomer N-acryloylthiomorpholine (NAT) features a unique self-assembly behaviour during an aqueous PISA. The one-pot, aqueous RAFT dispersion polymerization starting from short poly(N-acryloylmorpholine) (PNAM) enables access to all common solution morphologies including spheres, worms, vesicles and lamellae, at very low molar masses (< 8 kDa). Moreover, all these structures can be obtained for the same polymer composition and size by the variation of the polymerization temperature and concentration of the monomer. This exceptional self-assembly behavior is associated with the combination of a high glass transition temperature, excellent water solubility of the monomer, and the early onset of aggregation during the polymerization, which stabilizes the morphology at different stages. This PISA system opens up new opportunities to reproducibly create versatile, functional nanostructures and enables an independent evaluation of morphology-property relationships, as it is exemplarily shown for the oxidative degradation of spherical and wormlike micelles, as well as vesicles.
Collapse
Affiliation(s)
- Fabian H Sobotta
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maren Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
6
|
Song W, Shen J, Li X, Huang J, Ding L, Wu J. Metathesis Cyclopolymerization Triggered Self-Assembly of Azobenzene-Containing Nanostructure. Molecules 2020; 25:E3767. [PMID: 32824998 PMCID: PMC7503929 DOI: 10.3390/molecules25173767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/15/2020] [Indexed: 12/03/2022] Open
Abstract
Azobenzene (AB) units were successfully introduced into poly(1,6-heptadiyne)s in order to ensure smooth synthesis of double- and single-stranded poly(1,6-heptadiyne)s (P1 and P2) and simultaneously realize the self-assembly by Grubbs-III catalyst-mediated metathesis cyclopolymerization (CP) of AB-functionalized bis(1,6-heptadiyne) and 1,6-heptadiyne monomers (M1 and M2). Monomers and polymers were characterized by 1H NMR, mass spectroscopy, and GPC techniques. The double-stranded poly(1,6-heptadiyne)s exhibited a large scale of ordered ladder nanostructure. This result was attributed to the π-π attractions between end groups along the longitudinal axis of the polymers and van der Waals interactions between the neighboring polymeric backbones. While the Azo chromophore connected in the side chain of P2 induced conformation of micelles nanostructure during the CP process without any post-treatment. Furthermore, the photoisomerization of Azo units had an obviously different regulatory effect on the conjugated degree of the polymer backbone, especially for the single-stranded P2, which was attributed to the structural differences and the interaction between AB chromophores in the polymers.
Collapse
Affiliation(s)
- Wei Song
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (J.S.); (X.L.); (J.H.)
| | - Jiamin Shen
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (J.S.); (X.L.); (J.H.)
| | - Xiang Li
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (J.S.); (X.L.); (J.H.)
| | - Jinhui Huang
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (J.S.); (X.L.); (J.H.)
| | - Liang Ding
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (J.S.); (X.L.); (J.H.)
| | - Jianhua Wu
- Department of Materials, College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
7
|
Keogh R, Blackman LD, Foster JC, Varlas S, O'Reilly RK. The Importance of Cooperativity in Polymer Blending: Toward Controlling the Thermoresponsive Behavior of Blended Block Copolymer Micelles. Macromol Rapid Commun 2020; 41:e1900599. [DOI: 10.1002/marc.201900599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Robert Keogh
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
- Department of ChemistryUniversity of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | - Lewis D. Blackman
- Department of ChemistryUniversity of Warwick Gibbet Hill Road CV4 7AL Coventry UK
| | - Jeffrey C. Foster
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
| | - Spyridon Varlas
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
| | - Rachel K. O'Reilly
- School of ChemistryUniversity of Birmingham Edgbaston B15 2TT Birmingham UK
| |
Collapse
|
8
|
Deane OJ, Musa OM, Fernyhough A, Armes SP. Synthesis and Characterization of Waterborne Pyrrolidone-Functional Diblock Copolymer Nanoparticles Prepared via Surfactant-free RAFT Emulsion Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver J. Deane
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Osama M. Musa
- Ashland Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Alan Fernyhough
- Ashland Specialty Ingredients, Listers Mills, Heaton Road, Bradford, West Yorkshire BD9 4SH, U.K
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
9
|
Wu S, Geng F, He S, Liu W, Liu H, Huang M, Zhu C. Amphiphilic poly(caprolactone-b-N-hydroxyethyl acrylamide) micelles for controlled drug delivery. RSC Adv 2020; 10:29668-29674. [PMID: 35518233 PMCID: PMC9056162 DOI: 10.1039/d0ra01473g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
To increase the bioavailability and water solubility of hydrophobic medicine, an amphiphilic block copolymer, polycaprolactone-block-polyhydroxyethyl acrylamide (PCL-b-PHEAA), was synthesized.
Collapse
Affiliation(s)
- Shuangxia Wu
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| | - Fengjie Geng
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| | - Suqin He
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- PR China
- Henan Key Laboratory of Advanced Nylon Materials and Application
| | - Wentao Liu
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| | - Hao Liu
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| | - Miaoming Huang
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| | - Chengshen Zhu
- School of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou
- PR China
| |
Collapse
|
10
|
Zhang X, Guillerm B, Prud'homme RE. Synthesis and thermal properties of a triblock copolymer for lithium metal polymer batteries. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.05.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
The effect in the RAFT polymerization of two oligo(ethylene glycol) methacrylates when the CTA 4-cyano-4-(propylthiocarbonothioylthio) pentanoic acid is auto-hydrolyzed to its corresponding amide. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1718-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Zhu R, Luo X, Feng Y, Billon L. CO2-Triggered and temperature-switchable crystallization-driven self-assembly of a semicrystalline block copolymer in aqueous medium. Polym Chem 2019. [DOI: 10.1039/c9py01298b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a semicrystalline block copolymer comprising a hydrophilic poly(acrylic acid) pure block and an amphiphilic poly(acrylic acid)-r-poly(octadecyl acrylate) random block by nitroxide-mediated polymerization is reported.
Collapse
Affiliation(s)
- Rui Zhu
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xinjie Luo
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Yujun Feng
- Polymer Research Institute
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Laurent Billon
- CNRS
- Université de Pau & Pays Adour
- E2S UPPA
- IPREM UMR 5254
- Bio-inspired Materials Group: Functionality & Self-assembly
| |
Collapse
|
13
|
de Freitas AG, Muraro PI, Bortolotto T, Trindade SG, Schmidt V, Lopes LQ, Ninago M, Satti A, Ciolino A, Villar M, Giacomelli C. Facile one-pot synthesis and solution behavior of poly(acrylic acid)-block-polycaprolactone copolymers. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Chernikova EV, Lysenko EA, Serkhacheva NS, Prokopov NI. Self-Assembly of Amphiphilic Block Copolymers during Reversible Addition-Fragmentation Chain Transfer Heterophase Polymerization: Problems, Achievements, and Outlook. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Warren NJ, Derry MJ, Mykhaylyk OO, Lovett JR, Ratcliffe LPD, Ladmiral V, Blanazs A, Fielding LA, Armes SP. Critical Dependence of Molecular Weight on Thermoresponsive Behavior of Diblock Copolymer Worm Gels in Aqueous Solution. Macromolecules 2018; 51:8357-8371. [PMID: 30449901 PMCID: PMC6236470 DOI: 10.1021/acs.macromol.8b01617] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Indexed: 01/03/2023]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate was used to prepare three poly(glycerol monomethacrylate) x -poly(2-hydroxypropyl methacrylate) y (denoted G x -H y or PGMA-PHPMA) diblock copolymers, namely G37-H80, G54-H140, and G71-H200. A master phase diagram was used to select each copolymer composition to ensure that a pure worm phase was obtained in each case, as confirmed by transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS) studies. The latter technique indicated a mean worm cross-sectional diameter (or worm width) ranging from 11 to 20 nm as the mean degree of polymerization (DP) of the hydrophobic PHPMA block was increased from 80 to 200. These copolymer worms form soft hydrogels at 20 °C that undergo degelation on cooling. This thermoresponsive behavior was examined using variable temperature DLS, oscillatory rheology, and SAXS. A 10% w/w G37-H80 worm dispersion dissociated to afford an aqueous solution of molecularly dissolved copolymer chains at 2 °C; on returning to ambient temperature, these chains aggregated to form first spheres and then worms, with the original gel strength being recovered. In contrast, the G54-H140 and G71-H200 worms each only formed spheres on cooling to 2 °C, with thermoreversible (de)gelation being observed in the former case. The sphere-to-worm transition for G54-H140 was monitored by variable temperature SAXS: these experiments indicated the gradual formation of longer worms at higher temperature, with a concomitant reduction in the number of spheres, suggesting worm growth via multiple 1D sphere-sphere fusion events. DLS studies indicated that a 0.1% w/w aqueous dispersion of G71-H200 worms underwent an irreversible worm-to-sphere transition on cooling to 2 °C. Furthermore, irreversible degelation over the time scale of the experiment was also observed during rheological studies of a 10% w/w G71-H200 worm dispersion. Shear-induced polarized light imaging (SIPLI) studies revealed qualitatively different thermoreversible behavior for these three copolymer worm dispersions, although worm alignment was observed at a shear rate of 10 s-1 in each case. Subsequently conducting this technique at a lower shear rate of 1 s-1 combined with ultra small-angle x-ray scattering (USAXS) also indicated that worm branching occurred at a certain critical temperature since an upturn in viscosity, distortion in the birefringence, and a characteristic feature in the USAXS pattern were observed. Finally, SIPLI studies indicated that the characteristic relaxation times required for loss of worm alignment after cessation of shear depended markedly on the copolymer molecular weight.
Collapse
Affiliation(s)
- Nicholas J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Matthew J. Derry
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Joseph R. Lovett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Liam P. D. Ratcliffe
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Vincent Ladmiral
- Ingénierie
et Architectures Macromoléculaires, CNRS, UM, ENSCM, Institut Charles Gerhardt UMR 5253, Place Eugène Bataillon, Cedex 5 34095 Montpellier, France
| | - Adam Blanazs
- BASF SE, GMV/P-B001, 67056 Ludwigshafen, Germany
| | - Lee A. Fielding
- School
of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
16
|
Zhang J, Farias-Mancilla B, Destarac M, Schubert US, Keddie DJ, Guerrero-Sanchez C, Harrisson S. Asymmetric Copolymers: Synthesis, Properties, and Applications of Gradient and Other Partially Segregated Copolymers. Macromol Rapid Commun 2018; 39:e1800357. [DOI: 10.1002/marc.201800357] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/30/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Junliang Zhang
- MOE Key Laboratory; of Material Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Macromolecular Science and Technology; Department of Applied Chemistry; School of Science; Northwestern Polytechnical University; Xi’an Shaanxi 710072 P. R. China
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Barbara Farias-Mancilla
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Mathias Destarac
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| | - Ulrich S. Schubert
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Daniel J. Keddie
- Faculty of Science and Engineering; University of Wolverhampton; Wulfruna Street Wolverhampton WV1 1LY UK
| | - Carlos Guerrero-Sanchez
- Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Simon Harrisson
- Université de Toulouse; CNRS UMR 5623; Université Toulouse III - Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex 9 France
| |
Collapse
|
17
|
Zhou J, Yao H, Ma J. Recent advances in RAFT-mediated surfactant-free emulsion polymerization. Polym Chem 2018. [DOI: 10.1039/c8py00065d] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We summarized the RAFT-mediated surfactant-free emulsion polymerization using various RAFT agents and the polymerization types for the preparation of organic/inorganic hybrid materials.
Collapse
Affiliation(s)
- Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Hongtao Yao
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
- National Demonstration Center for Experimental Light Chemistry Engineering Education (Shaanxi University of Science and Technology)
| |
Collapse
|
18
|
Wright DB, Touve MA, Adamiak L, Gianneschi NC. ROMPISA: Ring-Opening Metathesis Polymerization-Induced Self-Assembly. ACS Macro Lett 2017; 6:925-929. [PMID: 35650892 DOI: 10.1021/acsmacrolett.7b00408] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein we report a polymerization-induced self-assembly (PISA) process with ring-opening metathesis polymerization (ROMP). We utilize a peptide-based norbornenyl monomer as a hydrophobic unit to provide a range of nanostructures at room temperature yet at high solids concentrations of 20 wt % in combination with an oligoethylene glycol based norbornenyl monomer. Evaluation of the polymerizations under mild conditions highlight that good control is maintained along with high monomer conversion of greater than 99%, indicating that the living polymerization is unaffected during the PISA process. The demonstration broadens the scope of the PISA process to a new living polymerization methodology toward the development of easily accessible and highly functionalized nanostructures in situ.
Collapse
Affiliation(s)
- Daniel B. Wright
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Mollie A. Touve
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Lisa Adamiak
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| | - Nathan C. Gianneschi
- Department
of Chemistry, ‡Department of Materials Science
and Engineering, and §Department of Biomedical Engineering, Northwestern University, 2145 Sheridan
Road, Evanston, Illinois 60208-3113, United States of America
- Department of Chemistry and Biochemistry, ⊥Department of NanoEngineering, and #Materials Science and
Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States of America
| |
Collapse
|
19
|
Ferrari R, Agostini A, Brunel L, Morosi L, Moscatelli D. Self-assembling amphiphilic block copolymer from renewable δ-decalactone and δ-dodecalactone. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Raffaele Ferrari
- Department of Chemistry and Applied Biosciences; Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1; Zurich 8093 Switzerland
| | - Azzurra Agostini
- Department of Chemistry, Materials and Chemical Engineering; Politecnico di Milano, Via Mancinelli 7; Milano 20131 Italy
| | - Lucia Brunel
- Department of Chemical and Biological Engineering; Northwestern University, 2145 Sheridan Road; Evanston Illinois 60208
| | - Lavinia Morosi
- IRCSS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19; Milano 20156 Italy
| | - Davide Moscatelli
- Department of Chemistry, Materials and Chemical Engineering; Politecnico di Milano, Via Mancinelli 7; Milano 20131 Italy
| |
Collapse
|
20
|
Chernikova EV, Sivtsov EV. Reversible addition-fragmentation chain-transfer polymerization: Fundamentals and use in practice. POLYMER SCIENCE SERIES B 2017. [DOI: 10.1134/s1560090417020038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Irregular polystyrene peroxides – a promising macroinitiators synthesized by radical polymerization under oxygen inflow. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.02.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Jesson C, Pearce CM, Simon H, Werner A, Cunningham VJ, Lovett JR, Smallridge MJ, Warren NJ, Armes SP. H 2O 2 Enables Convenient Removal of RAFT End-Groups from Block Copolymer Nano-Objects Prepared via Polymerization-Induced Self-Assembly in Water. Macromolecules 2017; 50:182-191. [PMID: 31007283 PMCID: PMC6471490 DOI: 10.1021/acs.macromol.6b01963] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/17/2016] [Indexed: 12/21/2022]
Abstract
RAFT-synthesized polymers are typically colored and malodorous due to the presence of the sulfur-based RAFT end-group(s). In principle, RAFT end-groups can be removed by treating molecularly dissolved copolymer chains with excess free radical initiators, amines, or oxidants. Herein we report a convenient method for the removal of RAFT end-groups from aqueous dispersions of diblock copolymer nano-objects using H2O2. This oxidant is relatively cheap, has minimal impact on the copolymer morphology, and produces benign side products that can be readily removed via dialysis. We investigate the efficiency of end-group removal for various diblock copolymer nano-objects prepared with either dithiobenzoate- or trithiocarbonate-based RAFT chain transfer agents. The advantage of using UV GPC rather than UV spectroscopy is demonstrated for assessing both the kinetics and extent of end-group removal.
Collapse
Affiliation(s)
- Craig
P. Jesson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Charles M. Pearce
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Helene Simon
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Arthur Werner
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Joseph R. Lovett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | | | - Nicholas J. Warren
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
23
|
Abstract
Stimuli-responsive polymers respond to a variety of external stimuli, which include optical, electrical, thermal, mechanical, redox, pH, chemical, environmental and biological signals. This paper is concerned with the process of forming such polymers by RAFT polymerization.
Collapse
|
24
|
Lauber L, Santarelli J, Boyron O, Chassenieux C, Colombani O, Nicolai T. pH- and Thermoresponsive Self-Assembly of Cationic Triblock Copolymers with Controlled Dynamics. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Lionel Lauber
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Julien Santarelli
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Olivier Boyron
- C2P2
UMR5265 CNRS, LCPP Group, ESCPE Lyon, Université de Lyon, Bat 308, 43
Bd du 11 novembre 1918, 69616 Villeurbanne, France
| | - Christophe Chassenieux
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Olivier Colombani
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| | - Taco Nicolai
- IMMM-UMR
CNRS 6283, Equipe Polymères, Colloïdes et Interfaces, Université du Maine, av. O. Messiaen, 72085 Le Mans, Cedex 9, France
| |
Collapse
|
25
|
Chernikova EV, Serkhacheva NS, Smirnov OI, Prokopov NI, Plutalova AV, Lysenko EA, Kozhunova EY. Emulsifier-free polymerization of n-butyl acrylate involving trithiocarbonates based on oligomer acrylic acid. POLYMER SCIENCE SERIES B 2016. [DOI: 10.1134/s1560090416060051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
St Thomas C, Cabello-Romero JN, Garcia-Valdez O, Jiménez-Regalado EJ, Maldonado-Textle H, Guerrero-Santos R. Surface-initiated nitroxide-mediated polymerization of sodium 4-styrene sulfonate from latex particles. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Claude St Thomas
- CONACYT-Centro de Investigación en Química Aplicada (CIQA); Blvd. Enrique Reyna 140 Saltillo Coahuila 25294 Mexico
| | | | - Omar Garcia-Valdez
- Department of Chemical Engineering; Queen's University; 19 Division Street Kingston ON Canada
| | | | - Hortensia Maldonado-Textle
- Centro de Investigación en Química Aplicada (CIQA); Blvd. Enrique Reyna 140 Saltillo Coahuila 25294 Mexico
| | - Ramiro Guerrero-Santos
- Centro de Investigación en Química Aplicada (CIQA); Blvd. Enrique Reyna 140 Saltillo Coahuila 25294 Mexico
| |
Collapse
|
27
|
Wang W, Gao C, Qu Y, Song Z, Zhang W. In Situ Synthesis of Thermoresponsive Polystyrene-b-poly(N-isopropylacrylamide)-b-polystyrene Nanospheres and Comparative Study of the Looped and Linear Poly(N-isopropylacrylamide)s. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00233] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Wang
- Key Laboratory of Functional Polymer Materials
of the Ministry of
Education, Institute of Polymer Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials
of the Ministry of
Education, Institute of Polymer Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Yaqing Qu
- Key Laboratory of Functional Polymer Materials
of the Ministry of
Education, Institute of Polymer Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Zefeng Song
- Key Laboratory of Functional Polymer Materials
of the Ministry of
Education, Institute of Polymer Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials
of the Ministry of
Education, Institute of Polymer Chemistry, and ‡Collaborative Innovation Center
of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Hanisch A, Yang P, Kulak AN, Fielding LA, Meldrum FC, Armes SP. Phosphonic Acid-Functionalized Diblock Copolymer Nano-Objects via Polymerization-Induced Self-Assembly: Synthesis, Characterization, and Occlusion into Calcite Crystals. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02212] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andreas Hanisch
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Pengcheng Yang
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Alexander N. Kulak
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Lee A. Fielding
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Fiona C. Meldrum
- School
of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
29
|
Chernikova EV, Plutalova AV, Mineeva KO, Nasimova IR, Kozhunova EY, Bol’shakova AV, Tolkachev AV, Serkhacheva NS, Zaitsev SD, Prokopov NI, Zezin AB. Homophase and heterophase polymerizations of butyl acrylate mediated by poly(acrylic acid) as a reversible addition–fragmentation chain-transfer agent. POLYMER SCIENCE SERIES B 2015. [DOI: 10.1134/s1560090415060019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Kang H, Song Z, Shen X, Zhang S, Li J, Zhang W. Reversible complexation/disassembly of thermo-responsive vesicles and nanospheres of diblock copolymers synthesized by dispersion RAFT polymerization. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Rieger J. Guidelines for the Synthesis of Block Copolymer Particles of Various Morphologies by RAFT Dispersion Polymerization. Macromol Rapid Commun 2015; 36:1458-71. [PMID: 26010064 DOI: 10.1002/marc.201500028] [Citation(s) in RCA: 263] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/16/2015] [Indexed: 11/06/2022]
Abstract
This article presents the recent developments of radical dispersion polymerizaton controlled by reversible addition fragmentation chain transfer (RAFT) for the production of block copolymer particles of various morphologies, such as core-shell spheres, worms, or vesicles. It is not meant to be an exhaustive review but it rather provides guidelines for non-specialists. The article is subdivided into eight sections. After a general introduction, the mechanism of polymerization-induced self-assembly (PISA) through RAFT-mediated dispersion polymerization is presented and the different parameters that control the morphology produced are discussed. The next two sections are devoted to the choice of the monomer/solvent pair and the macroRAFT agent. Afterwards, post-polymerization morphological order-to-order transitions (i.e. morphological transitions triggered by extrinsic stimuli) or order-to-disorder transitions (i.e. disassembly of chains) are discussed. Assemblies based on more complex polymer architectures, such as triblock copolymers, are presented next, and finally the possibility to stabilize these structures by crosslinking is reported. The manuscript ends with a short conclusion and an outlook.
Collapse
Affiliation(s)
- Jutta Rieger
- Sorbonne UniversitésUPMC Univ Paris 06, UMR 8232Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France.,CNRS, UMR 8232Institut Parisien de Chimie Moléculaire (IPCM), F-75005, Paris, France
| |
Collapse
|
32
|
Veloso A, García W, Agirre A, Ballard N, Ruipérez F, de la Cal JC, Asua JM. Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS. Polym Chem 2015. [DOI: 10.1039/c5py00838g] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RAFT polymerization has emerged as one of the most versatile reversible deactivation radical polymerization techniques and is capable of polymerizing a wide range of monomers under various conditions.
Collapse
Affiliation(s)
- Antonio Veloso
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta R&D Ctr
- Donostia-San Sebastián 20018
- Spain
| | - Wendy García
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta R&D Ctr
- Donostia-San Sebastián 20018
- Spain
| | - Amaia Agirre
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta R&D Ctr
- Donostia-San Sebastián 20018
- Spain
| | - Nicholas Ballard
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta R&D Ctr
- Donostia-San Sebastián 20018
- Spain
| | - Fernando Ruipérez
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta R&D Ctr
- Donostia-San Sebastián 20018
- Spain
| | - José C. de la Cal
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta R&D Ctr
- Donostia-San Sebastián 20018
- Spain
| | - José M. Asua
- POLYMAT
- University of the Basque Country UPV/EHU
- Joxe Mari Korta R&D Ctr
- Donostia-San Sebastián 20018
- Spain
| |
Collapse
|
33
|
Kang Y, Pitto-Barry A, Willcock H, Quan WD, Kirby N, Sanchez AM, O'Reilly RK. Exploiting nucleobase-containing materials – from monomers to complex morphologies using RAFT dispersion polymerization. Polym Chem 2015. [DOI: 10.1039/c4py01074d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis of nucleobase-containing polymers was successfully performed by RAFT dispersion polymerization in both chloroform and 1,4-dioxane and self-assembly was induced by the polymerizations.
Collapse
Affiliation(s)
- Yan Kang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | - Wen-Dong Quan
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | | | | |
Collapse
|
34
|
Song Z, He X, Gao C, Khan H, Shi P, Zhang W. Asymmetrical vesicles: convenient in situ RAFT synthesis and controllable structure determination. Polym Chem 2015. [DOI: 10.1039/c5py01065a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetrical vesicles of a block copolymer were prepared, and the vesicle structure was found to be dependent on the degree of polymerization of solvophilic blocks.
Collapse
Affiliation(s)
- Zefeng Song
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Xin He
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Pengfei Shi
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
35
|
Kang Y, Pitto-Barry A, Maitland A, O'Reilly RK. RAFT dispersion polymerization: a method to tune the morphology of thymine-containing self-assemblies. Polym Chem 2015. [DOI: 10.1039/c5py00617a] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synthesis and self-assembly of thymine-containing polymers were performed using RAFT dispersion polymerization.
Collapse
Affiliation(s)
- Yan Kang
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | - Anna Maitland
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|
36
|
Wang Y, Wang LL, He XC, Zhang ZJ, Yu HY, Gu JS. Integration of RAFT polymerization and click chemistry to fabricate PAMPS modified macroporous polypropylene membrane for protein fouling mitigation. J Colloid Interface Sci 2014; 435:43-50. [DOI: 10.1016/j.jcis.2014.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 10/24/2022]
|
37
|
Gao C, Li S, Li Q, Shi P, Shah SA, Zhang W. Dispersion RAFT polymerization: comparison between the monofunctional and bifunctional macromolecular RAFT agents. Polym Chem 2014. [DOI: 10.1039/c4py01069h] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The dispersion RAFT polymerizations mediated with monofunctional and bifunctional macro-RAFT agents were comparatively studied, in which different block copolymer morphologies were detected.
Collapse
Affiliation(s)
- Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Shentong Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Quanlong Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Pengfei Shi
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| | - Sayyar Ali Shah
- Department of Chemistry
- Tianjin University
- Tianjin 300072, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071, China
| |
Collapse
|